
Object-Oriented Programming
CSCI-UA 0470-001

 Instructor: Thomas Wies

Fall 2017

Class 1 - Introduction

Object-oriented programming is an
exceptionally bad idea which could
only have originated in California.

Edsger Dijkstra

Object-Oriented Programming (OOP)

Object-oriented programming is claimed to
promote greater flexibility and maintainability in
programming, and is widely popular in large-scale
software engineering. Wikipedia

http://xkcd.com/292/

The Goal of this Course

• Learn how to build and evolve large-scale
programs using object-oriented programming
– Design:

How do we think in objects?
• design patterns

– Language Primitives:
How do we express object orientation?
• classes, interfaces, inheritance, method dispatch, generics,

operator overloading, and reflection

– Language Implementation:
How do we realize OO primitives?
• virtual method dispatch with vtables, static overloading

resolution, and automatic memory management

How Do We Achieve This Goal?

• In-class lectures and discussions
– lectures to introduce topics and techniques
– in-class exercises to deepen understanding

• Individual homework assignments that give a
structured introduction to tools and concepts.

• Course project: A translator from Java to C++
– Written in Java, using the XTC toolkit for source-to-

source transformers
– Two versions, with second version improving on first

version
– Teams of 4-6 students

From Java to C++

• Input: Java with inheritance and virtual
methods

– But without interfaces, nested classes, enums,
generics, ...

• Output: C++ without inheritance and virtual
methods

– I.e., a better C with namespaces, classes, operator
overloading

Two Versions

• Version 1
– Challenge: Implement inheritance and virtual

methods in translator

– Due mid-term, with in-class presentation and written
report

• Version 2
– Challenge: Implement method overloading and

automatic memory management

– Due end-of-term, again with presentation and written
report

Don't Panic

• I will try and structure your approach to the
project such that you are not overwhelmed

• We will have regular meetings

• XTC provides a lot of functionality

– Though you need to learn how to use it

But Why?

Translator from Java to C++?

• Is a real, large-scale program (and not just a toy)

– Domain with biggest promised impact of OOP

• Exposes you to implementation of OOP primitives

– While also integrating Java and C++

• Requires you to learn and build on existing tools

– Common scenario in practice

Two Versions of Translator?

• Educational best practice

– “Students can try, fail, receive feedback, and try
again without impact on grade.” (Ken Bains)

• Software engineering best practice

– “Plan to throw one away; you will, anyhow.”
(Frederick Brooks Jr.)

Teams of Students?

• Places emphasis on collaborative learning

• Prepares you for reality in industry and academia

• Helps me keep the feedback process manageable

• Allows for ‘Pair Programming’

Pair Programming

• Programming is sometimes thought of as a
solitary act. It doesn’t have to be!

• Programming in pairs

– yields more readable code

– fewer bugs

– is more productive (!!)

– shares knowledge

– is more fun

Test-driven Development

• This course is, in part, emulating real software
engineering.

• Write test for small parts of your application,
end-to-end tests on every additional feature is
inefficient and a difficult way to debug.

• Test-driven approach using JUnit and sbt

Operational Details

Important Dates

• Class: M & W 2:00 - 3:15pm in Silv 206

• Office hour: W 4:00 - 5:00pm in 60FA 403

• Midterm Presentations: Wednesday, Nov 1

• Final Exam: Monday, Dec 13 (no midterm exam)

• Final Presentations: Monday, Dec 18

Textbooks (not strictly required)

• Rather than making you buy more books I will rely on
free online resources where I can

• For Java, “Object-Oriented Design & Patterns”
– 2nd edition by Cay Horstmann

• For C++, “C++ for Java Programmers”
– 1st edition by Mark Weiss

• In the long term, you may want a good reference for C++
– “The C++ Programming Language.”, by Bjarne Stroustrup

Online Resources

• Piazza - Online discussion and announcements

• NYU Classes - Grade posting

• Github – Homework assignments, project, and
class notes and source code

• Website

– Shows requirements for project

– Lists reading assignments, class notes

– Provides links to useful material

Grading

• 50% for group projects

– Typically, same grade assigned to all members of
group

– Every group will grade all other groups; peer
grades are advisory

• 20% for individual assignments

• 30% for final exam

Homework Policies

• Grading criteria for project and homework assignments will
be published.

• Homework must be submitted before the announced date
and time deadline for full credit.

• For every 24 hours late you lose 10%

• Late homework will not be accepted after the late deadline.
(usually a week)

• If you turn in a homework that does not compile, it will not
be accepted. You can resubmit according to the above rules.

Expectations

• Course is a lot of work, but will be fun and
rewarding

• Attendance is important. Not everything
discussed will be captured online.

• You drive your project's development! No
handholding.

Rules & Resources

• You must do all assignments on your own, without any
collaboration!

• You must do the projects as a group, but not with other groups
and without consulting previous years' students, code, etc.

• You should help other students and groups on specific
technical issues, but you must acknowledge such interactions
in code comments.

• If you need help, first stop is Piazza. If you have the question,
then almost certainly someone else does.
– If a student does not give a satisfactory answer, I will chime in.
– If that does not solve your issue, visit me or a grader in office hours.

• Teams can make appointments with me any time.
– We will schedule some required meetings throughout the semester.

Three Languages

• Source Language – Java 1.6
– No nested classes, anonymous classes, interfaces, enums,

annotations, generics, the enhanced for loop varargs,
automatic boxing and unboxing, synchronization, strictfp,
transient and volatile fields and no new Java 8 features

– Assume good input

• Target Language – C++
– No virtual methods, inheritance, templates (mostly) and

no new C++11 features

– Support for basic classes, exceptions, and name spaces

• Translator language – Java 1.8
– The kitchen sink

Toolchain

• Linux or OS X.
– Windows is not advised. I will give instructions and support for Ubuntu and

OS X.
– I will provide instructions on installing a VM for Ubuntu on Windows.

• IntelliJ & CLion.
– In a project this complex, you really need good tools.
– These IDEs are very good. While its not strictly mandatory, I recommend to

use these as much of the project will utilize their capabilities.
– Full versions are available for free under a student license.

• Sbt, XTC, Git, JUnit, Astyle…
– Real software engineering tools!
– Your first homework will be a detailed guide on installing most of these

tools.
– You will need them!!

• Homework 1 will deal with setting up the toolchain.

Challenges

• How to translate Java class hierarchies into C++
without inheritance

• How to implement Java's virtual method dispatch
in C++ without virtual method dispatch

• How to select the right overloaded method (using
a symbol table)

• How to automatically manage memory without an
existing garbage collector (using smart pointers)

Team make-up

• 4-6 students

• one speaker

– main contact point with me

– ceremonial role

• key to success is to divide and conquer.

Team Selection

• At the end of class, we will take a few minutes to
go around and introduce ourselves to each and
chat a bit.

• You may want to look for students with
complementary expertise. Java? C++? Git? etc..

• Use Piazza to "advertise" yourself to potential
teammates.

• Important: fill out the survey that I sent out.

• I will select the teams.

