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Data Representation – Floating points 



Floating Points 

Some slides and information about FP are adopted from 
Prof. Michael Overton  book:  
Numerical Computing with IEEE Floating  Point Arithmetic 
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Background: Fractional binary 
numbers 

• What is 1011.1012? 
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• • • 

Background: Fractional Binary Numbers 

• Value: 

• • • 
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Fractional Binary Numbers: Examples 

 Value Representation 

 5 3/4 101.112 

   2 7/8  10.1112 
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Why not fractional binary numbers? 

• Not efficient 

– 3 * 2100 
 1010000000     …..    0 

 

 

 

– Given a finite length (e.g. 32-bits), cannot represent 
very large numbers nor numbers very close to 0 

100 zeros 
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IEEE Floating Point 
• IEEE Standard 754 
– Supported by all major CPUs 

– The IEEE standards committee consisted mostly of 
hardware people, plus a few academics led by W. Kahan 
at Berkeley.  

 

• Main goals: 
– Consistent representation of floating point numbers by 

all machines . 

– Correctly rounded floating point operations. 

– Consistent treatment of exceptional situations such as 
division by zero. 
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Floating Point Representation 

• Numerical Form:  
   (–1)s M  2E 
– Sign bit s determines whether number is negative or 

positive 
– Significand M  a fractional value 
– Exponent E weights value by power of two 

 
• Encoding 
– MSB s is sign bit s 
– exp field encodes E  
– frac field encodes M 

s exp frac 
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Precisions 

• Single precision: 32 bits 

• Double precision: 64 bits 

• Extended precision: 80 bits (Intel only) 

s exp frac 

1 8-bits 23-bits 

s exp frac 

1 11-bits 52-bits 

s exp frac 

1 15-bits 63 or 64-bits 



Based on exp  
we have 3 encoding schemes 

• exp ≠ 0..0 or 11…1  normalized encoding 

• exp = 0… 000  denormalized encoding 

• exp = 1111…1   special value encoding 

– frac = 000…0 

– frac = something else 
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1. Normalized Encoding 
• Condition: exp ≠ 000…0 and exp ≠ 111…1 

 
 

• Exponent is: E  =  Exp – (2k-1 – 1), k is the # of exponent 
bits 
– Single precision: E = exp – 127         
– Double precision: E = exp – 1023 

 
 

• Significand is: M  =  1.xxx…x2 
– Range(M) = [1.0, 2.0-ε) 
– Get extra leading bit for free 

frac 

referred to as Bias 

Range(E)=[-126,127] 
Range(E)=[-1022,1023] 



Normalized Encoding Example 

• Value: Float F = 15213.0; 

 1521310  = 111011011011012    

               = 1.11011011011012 x 213 

 

• Significand 
M  =  1.11011011011012 

frac =    110110110110100000000002 

 

• Exponent 
E   =    exp – Bias    = exp - 127  = 13 

     exp =   140  = 100011002 
 

• Result: 
 

0 10001100 11011011011010000000000  
 s exp frac 
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2. Denormalized Encoding 
(called subnormal in revised standard 854) 

• Condition: exp = 000…0 
 

• Exponent value: E = 1 – Bias (instead of E = 0 – Bias) 
• Significand is: M = 0.xxx…x2  (instead of M=1.xxx2) 

 
• Cases 
–  exp = 000…0, frac = 000…0 

• Represents zero 
• Note distinct values: +0 and –0 

– exp = 000…0, frac ≠ 000…0 

• Numbers very close to 0.0 

frac 
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3. Special Values Encoding 

• Condition: exp = 111…1 
 

• Case: exp = 111…1, frac = 000…0 
– Represents value  (infinity) 
– Used for operations that overflow 
– E.g., 1.0/0.0 = −1.0/−0.0 = +,  1.0/−0.0 = − 

 
• Case: exp = 111…1, frac ≠ 000…0 
– Not-a-Number (NaN) 
– Represents case when no numeric value can be determined 
– E.g., sqrt(–1),  − ,   0 



Carnegie Mellon 

Visualization: Floating Point Encodings 
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Rounding modes 

IEEE 754 supports five rounding modes: 

• Round to nearest even (default) 
– if fractional part < .5, round to 0 

– if fractional part > .5, round away from 0 

– if fractional part = .5, round to nearest even digit 

• Round to nearest (tie: round away from 0) 

• Round to 0 

• Round down (to -1) 

• Round up (to +1) 



Floating Point Operations 
Example:  Compute z = x + y where 
x = 123456.7 = 1.234567 × 10^5 
y = 101.7654 = 1.017654 × 10^2 
 
x: exp = 5 frac = 1.234567 
y: exp = 2 frac = 1.017654 
 
Adjust exp of y by shifting frac: 
y: exp = 5 frac = 0.001017654 
 
Add frac of x and y: 
z: exp = 5 frac = 1.235584654 
 
Round frac 
z: exp = 5 frac = 1.235585 
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Floating Point in C 

• C : 
–float single precision 
–double double precision 

• Conversions/Casting 
–Casting between int, float, and double changes 
bit representation, examples: 
– double/float → int 
• Truncates fractional part 
• Not defined when out of range or NaN 

– int → double 
• Exact conversion 

 



Conclusions 

• Everything is stored in memory as 1s and 0s 

• The binary presentation by itself does not 
carry a meaning, it depends on the 
interpretation. 

• IEEE Floating Point has clear mathematical  
properties 

– Represents numbers as:  (-1)S x M x 2E 


