
Computer Systems Organization

Thomas Wies

wies@cs.nyu.edu

https://cs.nyu.edu/wies

CSCI-UA.0201

Data Representation – Floating points

Floating Points

Some slides and information about FP are adopted from
Prof. Michael Overton book:
Numerical Computing with IEEE Floating Point Arithmetic

Carnegie Mellon

Background: Fractional binary
numbers

• What is 1011.1012?

2i

2i-1

4

2

1

1/2

1/4

1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

Carnegie Mellon

• • •

Background: Fractional Binary Numbers

• Value:

• • •

Carnegie Mellon

Fractional Binary Numbers: Examples

 Value Representation

 5 3/4 101.112

 2 7/8 10.1112

Carnegie Mellon

Why not fractional binary numbers?

• Not efficient

– 3 * 2100
 1010000000 ….. 0

– Given a finite length (e.g. 32-bits), cannot represent
very large numbers nor numbers very close to 0

100 zeros

Carnegie Mellon

IEEE Floating Point
• IEEE Standard 754
– Supported by all major CPUs

– The IEEE standards committee consisted mostly of
hardware people, plus a few academics led by W. Kahan
at Berkeley.

• Main goals:
– Consistent representation of floating point numbers by

all machines .

– Correctly rounded floating point operations.

– Consistent treatment of exceptional situations such as
division by zero.

Carnegie Mellon

Floating Point Representation

• Numerical Form:
 (–1)s M 2E
– Sign bit s determines whether number is negative or

positive
– Significand M a fractional value
– Exponent E weights value by power of two

• Encoding
– MSB s is sign bit s
– exp field encodes E
– frac field encodes M

s exp frac

Carnegie Mellon

Precisions

• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits

Based on exp
we have 3 encoding schemes

• exp ≠ 0..0 or 11…1  normalized encoding

• exp = 0… 000  denormalized encoding

• exp = 1111…1  special value encoding

– frac = 000…0

– frac = something else

Carnegie Mellon

1. Normalized Encoding
• Condition: exp ≠ 000…0 and exp ≠ 111…1

• Exponent is: E = Exp – (2k-1 – 1), k is the # of exponent
bits
– Single precision: E = exp – 127
– Double precision: E = exp – 1023

• Significand is: M = 1.xxx…x2
– Range(M) = [1.0, 2.0-ε)
– Get extra leading bit for free

frac

referred to as Bias

Range(E)=[-126,127]
Range(E)=[-1022,1023]

Normalized Encoding Example

• Value: Float F = 15213.0;

 1521310 = 111011011011012

 = 1.11011011011012 x 213

• Significand
M = 1.11011011011012

frac = 110110110110100000000002

• Exponent
E = exp – Bias = exp - 127 = 13

 exp = 140 = 100011002

• Result:

0 10001100 11011011011010000000000
 s exp frac

Carnegie Mellon

2. Denormalized Encoding
(called subnormal in revised standard 854)

• Condition: exp = 000…0

• Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
• Significand is: M = 0.xxx…x2 (instead of M=1.xxx2)

• Cases
– exp = 000…0, frac = 000…0

• Represents zero
• Note distinct values: +0 and –0

– exp = 000…0, frac ≠ 000…0

• Numbers very close to 0.0

frac

Carnegie Mellon

3. Special Values Encoding

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0
– Represents value  (infinity)
– Used for operations that overflow
– E.g., 1.0/0.0 = −1.0/−0.0 = +, 1.0/−0.0 = −

• Case: exp = 111…1, frac ≠ 000…0
– Not-a-Number (NaN)
– Represents case when no numeric value can be determined
– E.g., sqrt(–1),  − ,   0

Carnegie Mellon

Visualization: Floating Point Encodings

+ −

0

+Denorm +Normalized −Denorm −Normalized

+0
NaN NaN

Rounding modes

IEEE 754 supports five rounding modes:

• Round to nearest even (default)
– if fractional part < .5, round to 0

– if fractional part > .5, round away from 0

– if fractional part = .5, round to nearest even digit

• Round to nearest (tie: round away from 0)

• Round to 0

• Round down (to -1)

• Round up (to +1)

Floating Point Operations
Example: Compute z = x + y where
x = 123456.7 = 1.234567 × 10^5
y = 101.7654 = 1.017654 × 10^2

x: exp = 5 frac = 1.234567
y: exp = 2 frac = 1.017654

Adjust exp of y by shifting frac:
y: exp = 5 frac = 0.001017654

Add frac of x and y:
z: exp = 5 frac = 1.235584654

Round frac
z: exp = 5 frac = 1.235585

Carnegie Mellon

Floating Point in C

• C :
–float single precision
–double double precision

• Conversions/Casting
–Casting between int, float, and double changes
bit representation, examples:
– double/float → int
• Truncates fractional part
• Not defined when out of range or NaN

– int → double
• Exact conversion

Conclusions

• Everything is stored in memory as 1s and 0s

• The binary presentation by itself does not
carry a meaning, it depends on the
interpretation.

• IEEE Floating Point has clear mathematical
properties

– Represents numbers as: (-1)S x M x 2E

