CSCI-UA.0201

Computer Systems Organization

Data Representation – Floating points

Thomas Wies wies@cs.nyu.edu https://cs.nyu.edu/wies

Floating Points

Some slides and information about FP are adopted from Prof. Michael Overton book: Numerical Computing with IEEE Floating Point Arithmetic

Background: Fractional binary numbers

• What is 1011.101₂?

Background: Fractional Binary Numbers

Fractional Binary Numbers: Examples

Value Representation

- 5 3/4 101.112
 - 2 7/8 10.111₂

Why not fractional binary numbers?

• Not efficient

 Given a finite length (e.g. 32-bits), cannot represent very large numbers nor numbers very close to 0

IEEE Floating Point

- IEEE Standard 754
 - Supported by all major CPUs
 - The IEEE standards committee consisted mostly of hardware people, plus a few academics led by W. Kahan at Berkeley.
- Main goals:
 - Consistent representation of floating point numbers by all machines .
 - Correctly rounded floating point operations.
 - Consistent treatment of exceptional situations such as division by zero.

Floating Point Representation

Numerical Form:
⁽⁻¹⁾

- Sign bit s determines whether number is negative or positive
- Significand M a fractional value
- Exponent E weights value by power of two
- Encoding
 - MSB ${}_{\rm S}$ is sign bit ${\color{black} {s}}$
 - \exp field encodes $\textbf{\textit{E}}$
 - frac field encodes M

Precisions

• Single precision: 32 bits

• Double precision: 64 bits

s exp frac

- 1 11-bits 52-bits
- Extended precision: 80 bits (Intel only)

S	exp	frac	
1	15-bits		63 or 64-bits

Based on exp we have 3 encoding schemes

- exp \neq 0..0 or 11...1 \rightarrow normalized encoding
- exp = 0... 000 \rightarrow denormalized encoding
- exp = 1111...1 \rightarrow special value encoding
 - frac = 000...0
 - frac = something else

1. Normalized Encoding

- Condition: exp \neq 000...0 and exp \neq 111...1
 - Exponent is: $E = Exp (2^{k-1} 1)$, k is the # of exponent bits

referred to as Bias

- Single precision: E = exp 127
- Double precision: E = exp 1023

• Significand is:
$$M = 1 \cdot xxx...x_2$$

- $\text{Range}(M) = [1.0, 2.0-\varepsilon)$
- Get extra leading bit for free

Range(E)=[-126,127] Range(E)=[-1022,1023]

Normalized Encoding Example

- Value: Float F = 15213.0; 15213₁₀ = 111011011011₂ = 1.11011011011₂ x 2¹³
- Significand

 $M = 1.1101101101_2$ frac= 1101101101_000000000_2

- Exponent
 - $E = \exp \text{Bias} = \exp 127 = 13$
 - \rightarrow exp = 140 = 10001100₂
- Result:

0 10001100 1101101101101000000000

s exp

frac

2. Denormalized Encoding (called subnormal in revised standard 854)

- **Condition:** exp = 000...0
- Exponent value: *E* = 1 *Bias* (instead of *E* = 0 *Bias*)
- Significand is: M = 0.xxx...x₂ (instead of M=1.xxx₂)
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero
 - Note distinct values: +0 and -0
 - exp = 000...0, frac ≠ 000...0
 - Numbers very close to 0.0

3. Special Values Encoding

- Condition: **exp** = 111...1
- Case: **exp** = 111...1, **frac** = 000...0
 - Represents value ∞ (infinity)
 - Used for operations that overflow
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: **exp** = 111...1, **frac** ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Rounding modes

IEEE 754 supports five rounding modes:

- Round to nearest even (default)
 - if fractional part < .5, round to 0</p>
 - if fractional part > .5, round away from 0
 - if fractional part = .5, round to nearest even digit
- Round to nearest (tie: round away from 0)
- Round to 0
- Round down (to - ∞)
- Round up (to $+\infty$)

Floating Point Operations

Example: Compute z = x + y where x = 123456.7 = 1.234567 × 10^5 y = 101.7654 = 1.017654 × 10^2

x: exp = 5	frac = 1.234567
y: exp = 2	frac = 1.017654

Adjust exp of y by shifting frac: y: exp = 5 frac = 0.001017654

Add frac of x and y: z: exp = 5 frac = 1.235584654

Round frac

z: exp = 5 frac = 1.235585

Floating Point in C

- C:
 -float single precision
 -double double precision
- Conversions/Casting

-Casting between **int**, **float**, and **double** changes bit representation, examples:

- $\texttt{double/float} \rightarrow \texttt{int}$
 - Truncates fractional part
 - Not defined when out of range or NaN

$- \texttt{int} \rightarrow \texttt{double}$

• Exact conversion

Conclusions

- Everything is stored in memory as 1s and 0s
- The binary presentation by itself does not carry a meaning, it depends on the interpretation.
- IEEE Floating Point has clear mathematical properties

– Represents numbers as: $(-1)^{S} \times M \times 2^{E}$