CSCI-UA. 0201

Computer Systems Organization

Data Representation - Floating points

Thomas Wies
wies@cs.nyu.edu
https://cs.nyu.edu/wies

Floating Points

Some slides and information about FP are adopted from Prof. Michael Overton book: Numerical Computing with IEEE Floating Point Arithmetic

Background: Fractional binary numbers

- What is 1011.101_{2} ?

Background: Fractional Binary Numbers

- Value:

$$
\sum_{k=-j}^{i} b_{k} \times 2^{k}
$$

Fractional Binary Numbers: Examples

■ Value

$$
\begin{aligned}
& 53 / 4 \\
& 27 / 8
\end{aligned}
$$

Representation
101.112
10.111_{2}

Why not fractional binary numbers?

- Not efficient
$-3 * 2^{100} \rightarrow 10100 \underbrace{00000}_{100 \text { zeros }} \ldots, \ldots$
- Given a finite length (e.g. 32-bits), cannot represent very large numbers nor numbers very close to 0

IEEE Floating Point

- IEEE Standard 754
- Supported by all major CPUs
- The IEEE standards committee consisted mostly of hardware people, plus a few academics led by W. Kahan at Berkeley.
- Main goals:
- Consistent representation of floating point numbers by all machines .
- Correctly rounded floating point operations.
- Consistent treatment of exceptional situations such as division by zero.

Floating Point Representation

- Numerical Form:

$$
(-1)^{S} M 2^{E}
$$

- Sign bit s determines whether number is negative or positive
- Significand M a fractional value
- Exponent E weights value by power of two
- Encoding
- MSB s is sign bit s
- exp field encodes E
- frac field encodes \boldsymbol{M}
\square

Precisions

- Single precision: 32 bits

s	\exp	frac	
1	8 -bits	23 -bits	

- Double precision: 64 bits

- Extended precision: 80 bits (Intel only)

s	exp	frac	
1	15 -bits	63 or 64 -bits	

Based on exp

we have 3 encoding schemes

- $\exp \neq 0 . .0$ or $11 \ldots 1 \rightarrow$ normalized encoding
- $\exp =0 . . .000 \rightarrow$ denormalized encoding
- $\exp =1111 \ldots 1 \rightarrow$ special value encoding
$-\mathrm{frac}=000 . . .0$
- frac = something else

1. Normalized Encoding

- Condition: $\exp \neq 000 . . .0$ and $\exp \neq 111 . . .1$
referred to as Bias
- Exponent is: $\boldsymbol{E}=\operatorname{Exp}-\left(2^{\mathrm{k}-1}-1\right), \mathrm{k}$ is the \# of exponent bits
- Single precision: E = exp - 127
- Double precision: E = exp - 1023

Range(E) $=[-126,127]$
Range $(E)=[-1022,1023]$

- Significand is: $\boldsymbol{M}=1 . \times x \times . . . \mathrm{x}_{\mathbf{2}}$
- Range $(M)=[1.0,2.0-\varepsilon$)
- Get extra leading bit for free

Normalized Encoding Example

- Value: Float $\mathrm{F}=15213.0$;

$$
\begin{aligned}
15213_{10} & =11101101101101_{2} \\
& =1.1101101101101_{2} \times 2^{13}
\end{aligned}
$$

- Significand

M	1. $\underline{1101101101101 ~}_{2}$
frac=	$11011011011010000000000_{2}$

- Exponent

$$
\begin{array}{llll}
E \quad=\exp -\text { Bias }=\exp -127= & 13 \\
\Rightarrow \quad \exp =140 & =10001100_{2}
\end{array}
$$

- Result:

0	10001100
	exp

2. Denormalized Encoding

(called subnormal in revised standard 854)

- Condition: exp $=000 \ldots 0$
- Exponent value: $\boldsymbol{E}=1$ - Bias (instead of $\boldsymbol{E}=0$ - Bias)
- Significand is: $\boldsymbol{M}=\underset{\text { frac }}{0 . x x x \ldots x_{2}}$ (instead of $\boldsymbol{M = 1 . x x x _ { 2 }}$)
- Cases
- exp = 000...0, $\mathbf{f r a c}=000 \ldots 0$
- Represents zero
- Note distinct values: +0 and -0
- exp = 000...0, frac $\neq 000 \ldots 0$
- Numbers very close to 0.0

3. Special Values Encoding

- Condition: $\exp =111$... 1
- Case: $\exp =111$...1, frac $=000 \ldots 0$
- Represents value ∞ (infinity)
- Used for operations that overflow
- E.g., $1.0 / 0.0=-1.0 /-0.0=+\infty, 1.0 /-0.0=-\infty$
- Case: exp = 111...1, frac $\neq 000$... 0
- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty-\infty, \infty \times 0$

Visualization: Floating Point Encodings

Rounding modes

IEEE 754 supports five rounding modes:

- Round to nearest even (default)
- if fractional part < .5, round to 0
- if fractional part > .5, round away from 0
- if fractional part = .5 , round to nearest even digit
- Round to nearest (tie: round away from 0)
- Round to 0
- Round down (to $-\infty$)
- Round up (to $+\infty$)

Floating Point Operations

Example: Compute $z=x+y$ where
$x=123456.7=1.234567 \times 10^{\wedge} 5$
$y=101.7654=1.017654 \times 10^{\wedge} 2$
$\begin{array}{ll}x: \exp =5 & \text { frac }=1.234567 \\ y: \exp =2 & \text { frac }=1.017654\end{array}$

Adjust exp of y by shifting frac:
$y: \exp =5 \quad$ frac $=0.001017654$

Add frac of x and y :
$z: \exp =5 \quad$ frac $=1.235584654$

Round frac
$z: \exp =5 \quad$ frac $=1.235585$

Floating Point in C

- C:
-float single precision
-double double precision
- Conversions/Casting
-Casting between int, float, and double changes
bit representation, examples:
- double/float \rightarrow int
- Truncates fractional part
- Not defined when out of range or NaN
- int \rightarrow double
- Exact conversion

Conclusions

- Everything is stored in memory as 1 s and $0 s$
- The binary presentation by itself does not carry a meaning, it depends on the interpretation.
- IEEE Floating Point has clear mathematical properties
- Represents numbers as: $(-1)^{\mathrm{S}} \times \mathrm{M} \times 2^{\mathrm{E}}$

