CSCI-UA. 0201

Computer Systems Organization

Data Representation Integers and Floating points

Thomas Wies
wies@cs.nyu.edu
https://cs.nyu.edu/wies

What happens if you change the type of a variable (aka type casting)?

Signed vs. Unsigned in C

- Constants
- By default, signed integers
- Unsigned with " U " as suffix OU, 4294967259U
- Casting
- Explicit casting between signed \& unsigned
int tx, ty;
unsigned ux, uy;
tx $=$ (int) ux;
$u y=$ (unsigned) ty;
- Implicit casting also occurs via assignments and procedure calls

$$
\begin{aligned}
& t x=u x \\
& u y=t y
\end{aligned}
$$

General Rule for Casting: signed <-> unsigned

Follow these two steps:

1. Keep the bit presentation
2. Re-interpret

Effect:

- Numerical value may change.
- Bit pattern stays the same.

Mapping Signed \leftrightarrow Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Casting Surprises

- Expression Evaluation
-If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
-Including comparison operations $<,>,==,<=,>=$

If there is an expression
that has many types, the compiler follows these rules.

Example

\#include <stdio.h>
int main() \{
int $i=-7$;
unsigned $j=5$;

$$
\begin{aligned}
& \text { if(i }>j) \\
& \quad \text { printf("Surprise! } \backslash n ") ;
\end{aligned}
$$

Condition is TRUE! return 0;
\}

Expanding \& Truncating a variable

Expanding

- Convert w-bit signed integer to $w+k$-bit with same value
- Convert unsigned: pad k 0 bits in front
- Convert signed: make k copies of sign bit

Sign Extension Example

```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```


- Converting from smaller to larger integer data type
- C automatically performs sign extension

Truncating

- Example: from int to short (i.e. from 32-bit to 16-bit)
- High-order bits are truncated
- Value is altered \rightarrow must reinterpret
- Can lead to buggy code! \rightarrow So don't do it!

Addition, negation, multiplication, and shifting

Negation: Complement \& Increment

- The two's complement of x satisfies

$$
\mathrm{TC}(\mathrm{x})+x=0
$$

where $\mathbf{T C}(\mathbf{x})=\sim \mathbf{x}+1$

- Proof sketch
- Observation: $\sim x+x=1111 . .111=-1$

$$
\begin{aligned}
& \rightarrow \sim \mathrm{x}+\mathrm{x}+1=0 \\
& \rightarrow(\sim \mathrm{x}+1)+\mathrm{x}=0 \\
& \rightarrow \mathrm{TC}(\mathrm{x})+\mathrm{x}=0
\end{aligned}
$$

Unsigned Addition

Operands: w bits

True Sum: w+1 bits
Discard Carry: w bits

Hardware Rules for addition/subtraction

- The hardware must work with two operands of the same length.
- The hardware produces a result of the same length as the operands.
- The hardware does not differentiate between signed and unsigned.

Two's Complement Addition

Operands: w bits

True Sum: $w+1$ bits

- If sum $\geq 2^{w-1}$, becomes negative (positive overflow)
- If sum $<-2^{w-1}$, becomes positive (negative overflow)

Signed Overflow in C

- CAUTION: signed overflow has undefined behavior in C!
- The compiler may assume that signed overflow never happens and exploit this in optimizations.
- Example:
int $x=$ INT_MAX;
if (x + 1 < x) printf("Overflow!");
GCC assumes this is always FALSE!

Multiplication

- Exact Product of w-bit numbers x, y
- Either signed or unsigned
- Ranges
- Unsigned: $0 \leq x^{*} y \leq\left(2^{w}-1\right)^{2}=2^{2 w}-2^{w+1}+1$
- Two's complement min: $x^{*} y \geq\left(-2^{w-1}\right)^{*}\left(2^{w-1}-1\right)=-$ $2^{2 w-2}+2^{w-1}$
- Two's complement max: $x^{*} y \leq\left(-2^{w-1}\right)^{2}=2^{2 w-2}$

Power-of-2 Multiply with Shift

- Operation
$-\mathrm{u} \ll \mathrm{k}$ gives $\mathrm{u} * \mathbf{2}^{\mathbf{k}}$
- Both signed and unsigned
- Examples
$-u \ll 3==u * 8$
$-(u \ll 5)-(u \ll 3)==u * 24$
- Most machines shift and add faster than multiply
- Compiler generates this code automatically

Compiled Multiplication Code

C Function

```
int mul12(int x)
{
    return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
    sall $2, %eax
```

Explanation

```
t = x+x*2
return t << 2;
```

- C compiler automatically generates shift/add code when multiplying by constant

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
-u >> kgives $\left\lfloor u / 2^{k}\right\rfloor$

Examples:

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	0011101101101101
x >> 1	7606.5	7606	1D B6	0001110110110110
$x \gg 4$	950.8125	950	03 B6	0000001110110110
x >> 8	59.4257813	59	00 3B	0000000000111011

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
    return x/8;
}
```

Compiled Arithmetic Operations
shrl \$3, \%eax

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
- Logical shift written as >>>

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
- x >> k gives Lx / 2k
- Uses arithmetic shift

Examples

	Division	Computed	Hex		Binary	
y	-15213	-15213	C4 93	1100010010010011		
$\mathrm{y} \gg 1$	-7606.5	-7607	E2 49	$11100010 \quad 01001001$		
$\mathrm{y} \gg 4$	-950.8125	-951	FC 49	$11111100 \quad 01001001$		
$\mathrm{y} \gg 8$	-59.4257813	-60	FF C4	$11111111 \quad 11000100$		

Floating Points

Some slides and information about FP are adopted from Prof. Michael Overton book: Numerical Computing with IEEE Floating Point Arithmetic

Turing Award 1989 to William Kahan for design of the IEEE Floating Point Standards 754 (binary) and 854 (decimal)

Background: Fractional binary numbers

- What is 1011.101_{2} ?

Background: Fractional Binary Numbers

- Value:

$$
\sum_{k=-j}^{i} b_{k} \times 2^{k}
$$

Fractional Binary Numbers: Examples

■ Value

$$
\begin{aligned}
& 53 / 4 \\
& 27 / 8
\end{aligned}
$$

Representation
101.112
10.111_{2}

Why not fractional binary numbers?

- Not efficient
$-3 * 2^{100} \rightarrow 10100 \underbrace{00000}_{100 \text { zeros }} \ldots, \ldots$
- Given a finite length (e.g. 32-bits), cannot represent very large numbers nor numbers very close to 0

