
Computer Systems Organization

Thomas Wies

wies@cs.nyu.edu

https://cs.nyu.edu/wies

CSCI-UA.0201

Data Representation –
Integers and Floating points

What happens if you change the type
of a variable

(aka type casting)?

Signed vs. Unsigned in C
• Constants

– By default, signed integers
– Unsigned with “U” as suffix

0U, 4294967259U

• Casting
– Explicit casting between signed & unsigned

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

– Implicit casting also occurs via assignments and procedure

calls
tx = ux;

uy = ty;

General Rule for Casting:
signed <-> unsigned

Follow these two steps:

1. Keep the bit presentation

2. Re-interpret

Effect:

• Numerical value may change.

• Bit pattern stays the same.

Mapping Signed Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

Casting Surprises
• Expression Evaluation

–If there is a mix of unsigned and signed in single
expression,
signed values implicitly cast to unsigned

–Including comparison operations <, >, ==, <=, >=

If there is an expression
that has many types, the
compiler follows these rules.

Example

#include <stdio.h>

int main() {
 int i = -7;
 unsigned j = 5;

 if(i > j)
 printf(“Surprise!\n");
 return 0;
}

Condition is
TRUE!

Expanding & Truncating a variable

Expanding

• Convert w-bit signed integer to w+k-bit with
same value

• Convert unsigned: pad k 0 bits in front

• Convert signed: make k copies of sign bit

• • • X

X • • • • • •

• • •

w

w k

Sign Extension Example

• Converting from smaller to larger integer data
type

• C automatically performs sign extension

 short int x = 15213;

 int ix = (int) x;

 short int y = -15213;

 int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101

ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Truncating

• Example: from int to short (i.e. from 32-bit to
16-bit)

• High-order bits are truncated

• Value is altered must reinterpret

• Can lead to buggy code! So don't do it!

Addition, negation, multiplication, and
shifting

Negation: Complement & Increment
• The two's complement of x satisfies

 TC(x) + x = 0

 where TC(x) = ~x + 1

• Proof sketch

– Observation: ~x + x = 1111…111 = -1
 ~x + x + 1 = 0

 (~x + 1) + x = 0

 TC(x) + x = 0

1 0 0 1 0 1 1 1 x

0 1 1 0 1 0 0 0 ~x +

1 1 1 1 1 1 1 1 -1

Unsigned Addition
• • •

• • •

u

v +

• • • u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

Hardware Rules for addition/subtraction
• The hardware must work with two operands of the same length.
• The hardware produces a result of the same length as the operands.
• The hardware does not differentiate between signed and unsigned.

Two's Complement Addition

• If sum 2w–1, becomes negative (positive overflow)

• If sum < –2w–1, becomes positive (negative overflow)

• • •

• • •

u

v +

• • • u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

Signed Overflow in C

• CAUTION: signed overflow has undefined behavior in C!

• The compiler may assume that signed overflow never
happens and exploit this in optimizations.

• Example:
int x = INT_MAX;
if (x + 1 < x) printf("Overflow!");

GCC assumes this is
always FALSE!

Multiplication

• Exact Product of w-bit numbers x, y

– Either signed or unsigned

• Ranges

– Unsigned: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1

– Two’s complement min: x * y ≥ (–2w–1)*(2w–1–1) = –
22w–2 + 2w–1

– Two’s complement max: x * y ≤ (–2w–1) 2 = 22w–2

Power-of-2 Multiply with Shift

• Operation
– u << k gives u * 2k

– Both signed and unsigned

• Examples
– u << 3 == u * 8

– (u << 5) – (u << 3) == u * 24

– Most machines shift and add faster than
multiply
• Compiler generates this code automatically

k

 leal (%eax,%eax,2), %eax

 sall $2, %eax

Compiled Multiplication Code

• C compiler automatically generates shift/add
code when multiplying by constant

int mul12(int x)

{

 return x*12;

}

 t = x+x*2

 return t << 2;

C Function

Compiled Arithmetic Operations Explanation

Unsigned Power-of-2
Divide with Shift

• Quotient of Unsigned by Power of 2

– u >> k gives u / 2k

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6 00011101 10110110

x >> 4 950.8125 950 03 B6 00000011 10110110

x >> 8 59.4257813 59 00 3B 00000000 00111011

Examples:

 shrl $3, %eax

Compiled Unsigned Division Code

• Uses logical shift for unsigned
• For Java Users

– Logical shift written as >>>

unsigned udiv8(unsigned x)

{

 return x/8;

}

 # Logical shift

 return x >> 3;

C Function

Compiled Arithmetic Operations Explanation

Signed Power-of-2 Divide with Shift

• Quotient of Signed by Power of 2
– x >> k gives x / 2k

– Uses arithmetic shift

Examples

 Division Computed Hex Binary
y -15213 -15213 C4 93 11000100 10010011

y >> 1 -7606.5 -7607 E2 49 11100010 01001001

y >> 4 -950.8125 -951 FC 49 11111100 01001001

y >> 8 -59.4257813 -60 FF C4 11111111 11000100

Floating Points

Some slides and information about FP are adopted from
Prof. Michael Overton book:
Numerical Computing with IEEE Floating Point Arithmetic

Turing Award 1989 to William Kahan for design of the IEEE
Floating Point Standards 754 (binary) and 854 (decimal)

Carnegie Mellon

Background: Fractional binary
numbers

• What is 1011.1012?

2i

2i-1

4

2

1

1/2

1/4

1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

Carnegie Mellon

• • •

Background: Fractional Binary Numbers

• Value:

• • •

Carnegie Mellon

Fractional Binary Numbers: Examples

 Value Representation

 5 3/4 101.112

 2 7/8 10.1112

Carnegie Mellon

Why not fractional binary numbers?

• Not efficient

– 3 * 2100
 1010000000 ….. 0

– Given a finite length (e.g. 32-bits), cannot represent
very large numbers nor numbers very close to 0

100 zeros

