CSCI-UA.0201

Computer Systems Organization

Data Representation – Integers and Floating points

Thomas Wies wies@cs.nyu.edu https://cs.nyu.edu/wies What happens if you change the type of a variable (aka type casting)?

Signed vs. Unsigned in C

- Constants
 - By default, signed integers
 - Unsigned with "U" as suffix
 - **OU**, **4294967259U**
- Casting
 - Explicit casting between signed & unsigned

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

tx = ux; uy = ty; General Rule for Casting: signed <-> unsigned

Follow these two steps:

- 1. Keep the bit presentation
- 2. Re-interpret

Effect:

- Numerical value may change.
- Bit pattern stays the same.

Mapping Signed ↔ Unsigned

Casting Surprises

- Expression Evaluation
 - If there is a mix of unsigned and signed in single expression,

signed values implicitly cast to unsigned

-Including comparison operations <, >, ==, <=, >=

Example

```
#include <stdio.h>
```

Expanding & Truncating a variable

Expanding

- Convert w-bit signed integer to w+k-bit with same value
- Convert unsigned: pad k 0 bits in front
- Convert signed: make k copies of sign bit

Sign Extension Example

short int x = 15213; int ix = (int) x; short int y = -15213; int iy = (int) y;

	Decimal	Hex	Binary		
Х	15213	3B 6D	00111011 01101101		
ix	15213	00 00 3B 6D	0000000 0000000 00111011 01101101		
У	-15213	C4 93	11000100 10010011		
iy	-15213	FF FF C4 93	11111111 1111111 11000100 10010011		

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Truncating

- Example: from int to short (i.e. from 32-bit to 16-bit)
- High-order bits are truncated
- Value is altered \rightarrow must reinterpret
- Can lead to buggy code! \rightarrow So don't do it!

Addition, negation, multiplication, and shifting

Negation: Complement & Increment

- The two's complement of x satisfies TC(x) + x = 0 where TC(x) = ~x + 1
- Proof sketch

- Observation: $\sim x + x = 1111...111 = -1$ $\Rightarrow \sim x + x + 1 = 0$ $\Rightarrow (\sim x + 1) + x = 0$ $\Rightarrow TC(x) + x = 0$ x 10011101 $+ \sim x 01100010$ -1 11111111

Unsigned Addition

Hardware Rules for addition/subtraction

- The hardware must work with two operands of the same length.
- The hardware produces a result of the same length as the operands.
- The hardware does not differentiate between signed and unsigned.

Two's Complement Addition

- If sum $\geq 2^{w-1}$, becomes negative (positive overflow)
- If sum < -2^{*w*-1}, becomes positive (negative overflow)

Signed Overflow in C

- **CAUTION**: signed overflow has undefined behavior in C!
- The compiler may assume that signed overflow never happens and exploit this in optimizations.
- Example:

int x = INT_MAX;
if (x + 1 < x) printf("Overflow!");</pre>

GCC assumes this is always FALSE!

Multiplication

- Exact Product of *w*-bit numbers *x*, *y*
 - Either signed or unsigned
- Ranges
 - Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$

Power-of-2 Multiply with Shift

k

- Operation
 - -u << k gives u * 2^k

Both signed and unsigned

• Examples

-(u << 5) - (u << 3) == u * 24

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Compiled Multiplication Code

C Function

int mul12(int x)
{
 return x*12;
}

 C compiler automatically generates shift/add code when multiplying by constant

Unsigned Power-of-2 Divide with Shift • Quotient of Unsigned by Power of 2 -u >> k gives [u / 2^k]

Examples:

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	0000000 00111011

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
   return x/8;
}
```

Compiled Arithmetic Operations

shrl \$3, %eax

Explanation

Logical shift return x >> 3;

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $-\mathbf{x} \gg \mathbf{k}$ gives $\lfloor \mathbf{x} / 2^k \rfloor$
 - Uses arithmetic shift

Examples

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Floating Points

Some slides and information about FP are adopted from Prof. Michael Overton book: Numerical Computing with IEEE Floating Point Arithmetic

Turing Award 1989 to William Kahan for design of the IEEE Floating Point Standards 754 (binary) and 854 (decimal)

Background: Fractional binary numbers

• What is 1011.101₂?

Background: Fractional Binary Numbers

Fractional Binary Numbers: Examples

Value Representation

- 5 3/4 101.112
 - 2 7/8 10.111₂

Why not fractional binary numbers?

• Not efficient

 Given a finite length (e.g. 32-bits), cannot represent very large numbers nor numbers very close to 0