
Computer Systems Organization

Thomas Wies

wies@cs.nyu.edu

https://cs.nyu.edu/wies

CSCI-UA.0201

Data Representation – Bits and Bytes

Byte Ordering Example

• Big Endian
– Most significant byte has lowest address

• Little Endian
– Most significant byte has highest address

• Example

– Variable x has 4-byte representation 0x01234567
– Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Most
Significant

Byte

Examining Data Representations

• Code to print Byte Representation of data

printf directives:

%p: Print pointer

%x: Print integer in hexadecimal

void show_bytes(unsigned char * start, int len){
 int i;
 for (i = 0; i < len; i++)
 printf(”%p\t%2x\n",start+i, start[i]);
 printf("\n");
}

show_bytes Execution Example
int a = 0x12345678;

printf("int a = 0x12345678;\n");

show_bytes((unsigned char *) &a, sizeof(int));

Result (Linux):

int a = 0x12345678;

0x11ffffcb8 0x78

0x11ffffcb9 0x56

0x11ffffcba 0x34

0x11ffffcbb 0x12

char S[6] = "18243";

Representing Strings

• Strings in C

– Represented by array of characters

– Each character encoded in ASCII format

• Standard 7-bit encoding of character set

• Character ‘0’ has code 0x30
– Digit i has code 0x30+i

– String should be null-terminated

• Byte ordering not an issue

Little Endian Big Endian

31

38

32

34

33

00

31

38

32

34

33

00

Byte ordering is an issue for a single data item.
An array is a group of data items.

How to Manipulate Bits?

Boolean Algebra
• Applying Boolean operations, such as XOR, NAND, AND, …, to bits to generate new

bit values.

And

 A & B = 1 when both A=1 and B=1

Or

 A | B = 1 when either A=1 or B=1

Not

 ~A = 1 when A=0

Exclusive-Or (Xor)

 A ^ B = 1 when either A=1 or B=1, but not both

A B A & B
0 0 0
0 1 0
1 0 0
1 1 1

A B A | B
0 0 0
0 1 1
1 0 1
1 1 1

A ~ A
0 1
1 0

A B A ^ B
0 0 0
0 1 1
1 0 1
1 1 0

Boolean Algebra
• Applying Boolean operations, such as XOR, NAND, AND, …, to bits to generate new

bit values.

NAND

 The reverse of AND

NOR

 The reverse of OR

Exclusive-NOR (Xor)

 The reverse of XOR

A B ~(A&B)
0 0 1
0 1 1
1 0 1
1 1 0

A B ~(A|B)
0 0 1
0 1 0
1 0 0
1 1 0

A B ~(A^B)
0 0 1
0 1 0
1 0 0
1 1 1

Application of Boolean Algebra

• Applied to Digital Systems by Claude Shannon

– 1937 MIT Master’s Thesis

– Reason about networks of relay switches

• Encode closed switch as 1, open switch as 0

Transistor

Lifting Operations to Bit Vectors

• Operate on Bit Vectors (e.g. an integer is a bit vector of 4
bytes = 32 bits)

– Operations applied bitwise

 01101001

& 01010101

 01000001

 01101001

| 01010101

 01111101

 01101001

^ 01010101

 00111100

~ 01010101

 10101010 01000001 01111101 00111100 10101010

Bit-Level Operations in C

• Operations &, |, ~, ^ Available in C
– Apply to any “integral” data type

• long, int, short, char, unsigned

• Examples (Char data type)
– ~0x41 = 0xBE

• ~010000012 = 101111102

– ~0x00 = 0xFF

• ~000000002 = 111111112

– 0x69 & 0x55 = 0x41

• 011010012 & 010101012 = 010000012

– 0x69 | 0x55 = 0x7D

• 011010012 | 010101012 = 011111012

Contrast: Logic Operations in C

• Contrast to Logical Operators

 &&, ||, !
• View 0 as "false"

• Anything nonzero as "true"

• Always return 0 or 1

• Examples
– !0x41 = 0x00

– !0x00 = 0x01

– !!0x41 = 0x01

– 0x69 && 0x55 = 0x01

– 0x69 || 0x55 = 0x01

– p && *p (avoids null pointer access – short circuiting)

Type bool in C

• Did not exist in standard C89/90

• It was introduced in C99 standard

• You may need to use the following switch with
gcc:
gcc –std=c99 …

#include <stdbool.h>

bool x;

x = false; lower case

x = true;

Shift Operations
• Left Shift: x << y
– Shift x left by y positions
• Throw away extra bits on left
• Fill with 0’s on right

• Right Shift: x >> y
– Shift x right y positions

• Throw away extra bits on right
– type1: Logical shift

• Fill with 0’s on left
– type 2: Arithmetic shift (covered later)

• Replicate most significant bit on right

• Undefined Behavior
– Shift amount < 0 or ≥ size of x

01100010 Argument x

00010000 << 3

00011000 Log. >> 2

00011000 Arith. >> 2

10100010 Argument x

00010000 << 3

00101000 Log. >> 2

11101000 Arith. >> 2

00010000 00010000

00011000 00011000

00011000 00011000

00010000

00101000

11101000

00010000

00101000

11101000

How to present Integers
in binary?

Two Types of Integers

• Unsigned

– positive numbers and 0

• Signed numbers

– negative numbers as well as positive numbers and
0

Unsigned Integers

B2U(X) xi 2
i

i0

w1

1 0 1 1 1 0 1 1

128 64 32 16 8 4 2 1

187

Unsigned Integers

• An n-bit unsigned integer represents 2n
values:
from 0 to 2n-1.

22 21 20

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Unsigned Binary Arithmetic
• Base-2 addition – just like base-10

– add from right to left, propagating carry

 10010 10010 1111

 + 1001 + 1011 + 1

 11011 11101 10000

 10111

 + 111

carry

 Sign Magnitude: One's Complement Two's Complement

 000 = +0 000 = +0 000 = +0
 001 = +1 001 = +1 001 = +1
 010 = +2 010 = +2 010 = +2
 011 = +3 011 = +3 011 = +3
 100 = -0 100 = -3 100 = -4
 101 = -1 101 = -2 101 = -3
 110 = -2 110 = -1 110 = -2
 111 = -3 111 = -0 111 = -1

• Issues: balance, number of zeros, ease of operations

• Which one is best? Why?

What About Negative Numbers?
People have tried several options:

Signed Integers

• With n bits, we have 2n distinct values.

– assign about half to positive integers and about half
to negative

• Positive integers

– just like unsigned: zero in most significant (MS) bit
00101 = 5

• Negative integers

– In two’s complement form

In general: a 0 at the MS bit indicates positive
and a 1 indicates negative.

Two's Complement
• Two's complement representation developed to

make circuits easy for arithmetic.
– for each positive number (X), assign value to its

negative (-X),
such that X + (-X) = 0 with “normal” addition, ignoring
carry out

 00101 (5) 01001 (9)

 + 11011 (-5) + 10111 (-9)

 00000 (0) 00000 (0)

Two’s Complement Signed Integers

• MS bit is sign bit.
• Range of an n-bit number: -2n-1 through 2n-1 – 1.

– The most negative number (-2n-1) has no positive
counterpart.

-23 22 21 20

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

-23 22 21 20

1 0 0 0 -8

1 0 0 1 -7

1 0 1 0 -6

1 0 1 1 -5

1 1 0 0 -4

1 1 0 1 -3

1 1 1 0 -2

1 1 1 1 -1

Converting Binary (2’s C) to Decimal

1. If MS bit is one (i.e. number is
negative), take two’s complement to
get a positive number.

2. Get the decimal as if the number is
unsigned (using power of 2s).

3. If original number was negative,
add a minus sign.

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

Examples

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

 X = 00100111two

 = 25+22+21+20 = 32+4+2+1
 = 39ten

 X = 11100110two

 -X = 00011010
 = 24+23+21 = 16+8+2
 = 26ten

 X = -26ten

Shift Operations
• Left Shift: x << y
– Shift x left by y positions
• Throw away extra bits on left
• Fill with 0’s on right

• Right Shift: x >> y
– Shift x right y positions

• Throw away extra bits on right
– type1: Logical shift

• Fill with 0’s on left
– type 2: Arithmetic shift (covered later)

• Replicate most significant bit on right

• Undefined Behavior
– Shift amount < 0 or ≥ size of x

01100010 Argument x

00010000 << 3

00011000 Log. >> 2

00011000 Arith. >> 2

10100010 Argument x

00010000 << 3

00101000 Log. >> 2

11101000 Arith. >> 2

00010000 00010000

00011000 00011000

00011000 00011000

00010000

00101000

11101000

00010000

00101000

11101000

Numeric Ranges

 Decimal Hex Binary
Unsigned

Max
65535 FF FF 11111111 11111111

Signed

Max
32767 7F FF 01111111 11111111

Signed

Min
-32768 80 00 10000000 00000000

-1 -1 FF FF 11111111 11111111

0 0 00 00 00000000 00000000

Example: Assume 16-bit numbers

Values for Different Sizes
 W

 8 16 32 64
Unsig.
Max

255 65,535 4,294,967,295 18,446,744,073,709,551,615

Signed
Max

127 32,767 2,147,483,647 9,223,372,036,854,775,807

Signed
Min

-128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

 C Programming
 #include <limits.h>

 Declares constants, e.g.,

 INT_MAX

 LONG_MAX

 INT_MIN

 UINT_MIN

 …

