CSCI-UA.0201

Computer Systems Organization

Data Representation — Bits and Bytes

Byte Ordering Example

* Big Endian
— Most significant byte has lowest address Most
e Little Endian Significant
Byte

— Most significant byte has highest address

 Example /

— Variable x has 4-byte representation 0)4913234567
— Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

Examining Data Representations

* Code to print Byte Representation of data

void show_bytes(unsigned char * start, int len){
int 1i;
for (i = 0; 1 < len; i++)
printf(”%p\t%2x\n",start+i, start[i]);
printf("\n");
}

printf directives:
%p: Print pointer
%X: Print integer in hexadecimal

show bytes Execution Example

int a = 0x12345678;
printf("int a = 0x12345678;\n");
show_bytes((unsigned char *) &a, sizeof(int));

Result (Linux):

int a = 0x12345678;
Ox11ffffcb8 ©x78
Ox11ffffcb9 ©x56
Oox11ffffcba ©0x34
Ox11ffffcbb ©x12

Representing Strings

char S[6] = "18243";

e StringsinC
— Represented by array of characters

— Each character encoded in ASCII format

e Standard 7-bit encoding of character set
* Character ‘0’ has code 0x30

— Digit i has code 0x30+i Little Endian Big Endian
— String should be null-terminated 31 ["l 31
' : 38 | 1 38
* Byte ordering not an issue | i
34 ["| 34
Byte ordering is an issue for a single data item. 33 ["| 33

An array is a group of data items. oo [* "l 00

How to Manipulate Bits?

Boolean Algebra

* Applying Boolean operations, such as XOR, NAND, AND, ..., to bits to generate new

bit values.

And Or
= A & B=1whenboth A=1andB=1 ®A | B=1when either A=1or B=1

AB A&B AB A|B

00 0 00 0

01 0 01 1

10 0 10 1

11 1 11 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = A B =1 when either A=1 or B=1, but not both

A ~A AB AAMB

0 1 00 0

1 0 01

1
10 1
11 0

Boolean Algebra

* Applying Boolean operations, such as XOR, NAND, AND, ..., to bits to generate new

bit values.
NAND NOR
a The reverse of AND m The reverse of OR
AB ~(A&B) AB ~(A|B)
00 1 00 1
01 1 01 0
10 1 10 0
11 0 11 0

Exclusive-NOR (Xor)
m The reverse of XOR

A B ~(ArB)
00 1
01 0
10 0
11 1

Application of Boolean Algebra

* Applied to Digital Systems by Claude Shannon
— 1937 MIT Master’s Thesis

— Reason about networks of relay switches
* Encode closed switch as 1, open switch as O

Transistor

Lifting Operations to Bit Vectors

* QOperate on Bit Vectors (e.g. an integer is a bit vector of 4
bytes = 32 bits)
— Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

Bit-Level Operations in C

 Operations &, |, ~, ”~ AvailableinC
— Apply to any “integral” data type

* long, 1int, short, char, unsigned

 Examples (Char data type)

— ~0x41 = OxBE
* ~010000012 = 101111102
— ~0x00 = OxFF
* ~000000002 = 111111112
— 0x69 & 0Ox55 = 0x41
* 011010012 & 010101012 = 010000012
— 0x69 | 0x55 = 0x7D

* 011010012 | 010101012 = 01111101

Contrast: Logic Operations in C

e Contrast to Logical Operators

&&, | [, !

* View 0 as "false"
* Anything nonzero as "true"
* AlwaysreturnOor1

 Examples
— 10x41 = 0x00
— 10x00 = 0x01
— 1'10x41 = 0x01
— 0x09 && Oxb55 = 0x01
— 0x69 || Oxb5 = 0x01

— p s&& *p (avoids null pointer access — short circuiting)

Type bool in C

* Did not exist in standard C89/90

* It was introduced in C99 standard

* You may need to use the following switch with
gcc:
gcc —std=c99 ...

#include <stdbool.h>

bool X;

x = false; < lower case
X = true;

Shift Operations

e Left Shift: x << vy

| Argument x | 01100010
— Shift x left by y positions 0 =

 Throw away extra bits on left << 3 00010000

* Fill with o’s on right Log. >> 2 | 00011000

* Right Shift: X >> Y Arith. >> 2 | 00011000

— Shift x right v positions
* Throw away extra bits on right

— typel: Logical shift Argument x | 10100010

e Fill with o’s on left

' ic shi << 00010000
— type 2: Arithmetic shift (covered later) 3

* Replicate most significant bit on right Log.>> 2 | 00101000

* Undefined Behavior Arith. >> 2 | 11101000

— Shift amount < 0 or > size of x

How to present Integers
in binary?

Two Types of Integers

* Unsigned
— positive numbers and O

* Signed numbers

— negative numbers as well as positive numbers and
0

Unsigned Integers

w—1

=0

187

Unsighed Integers

* An n-bit unsigned integer represents 2"

values:
22 21 20

from O to 2"-1. —

P P P P O O O O
P B O O Fk B O
P O P O Fr O Bk

~N OO O A WODN B O

Unsigned Binary Arithmetic
e Base-2 addition — just like base-10
— add from right to left, propagating carry

carry

O YY)

10010 10010 1111

+ 1001 + 1011 + 1

11011 11101 10000
10111

+ 111

What About Negative Numbers?

People have tried several options:

Sign Magnitude: One's Complement Two's Complement
000 =+0 000 =+0 000 =+0
001=+1 001=+1 001 =+1
010 =+2 010=+2 010=+2
011=+3 011=+3 011=+3
100 =-0 100 =-3 100 =-4
101 =-1 101 =-2 101 =-3
110 =-2 110=-1 110 =-2
111 =-3 111=-0 111=-1

e |ssues: balance, number of zeros, ease of operations
e Which one is best? Why?

Signed Integers

 With n bits, we have 2" distinct values.

— assign about half to positive integers and about half
to negative

* Positive integers

— just like unsigned: zero in most significant (MS) bit
00101 =5

* Negative integers

— In two’s complement form

In general: a 0 at the MS bit indicates positive
and a 1 indicates negative.

Two's Complement

 Two's complement representation developed to
make circuits easy for arithmetic.
— for each positive number (X), assign value to its
negative (-X),
such that X + (-X) = 0 with “normal” addition, ignoring

carry out
00101 (5 01001 (9
+ 11011 (5 +10111 (9

00000 (o 00000 (o)

Two’s Complement Signed Integers

 MS bit is sign bit.
e Range of an n-bit number: -2"* through 2" —1.
— The most negative number (-2"1) has no positive

counterpart.
23 22 21 20 23 922 21 920
O 0 O O 0 1 0 0 O -8
O 0 O 1 1 1 0 0 1 -/
O 0 1 O 2 1 0 1 O -6
O 0 1 1 3 1 0 1 1 -5
O 1 0 O 4 1 1 0 O -4
O 1 0 1 S 1 1 0 1 -3
O 1 1 O 6 1 1 1 O -2
O 1 1 1 7 1 1 1 1 -1

Converting Binary (2’s C) to Decimal

1. If MS bit is one (i.e. number is
negative), take two’s complement to

>
N
S

get a positive number.

2. Get the decimal as if the number is
unsigned (using power of 2s).

3. If original number was negative,

add a minus sign. 128

256
512
1024

O © 0o ~NOo 0o A W DN P O
w
N

—_

Examples

X = 00100111,
= 25422421420 =3244+2+1 n|2n
= 39 (1) ;
2|4
X = 11100110, j 26
'X - 00011010 51|32
= 24423421=16+8+2 6 | 64
71128
= 264, 8 | 256
- . 9512
K = =264 10 | 1024

Shift Operations

e Left Shift: x << vy

| Argument x | 01100010
— Shift x left by y positions 0 =

 Throw away extra bits on left << 3 00010000

* Fill with o’s on right Log. >> 2 | 00011000

* Right Shift: X >> Y Arith. >> 2 | 00011000

— Shift x right v positions
* Throw away extra bits on right

— typel: Logical shift Argument x | 10100010

e Fill with o’s on left

' ic shi << 00010000
— type 2: Arithmetic shift (covered later) 3

* Replicate most significant bit on right Log.>> 2 | 00101000

* Undefined Behavior Arith. >> 2 | 11101000

— Shift amount < 0 or > size of x

Numeric Ranges

Example: Assume 16-bit numbers

Decimal Hex Binary
Unsigned| 65535 | FF FF | 11111111 11111111
Max
Signed 32767 7F FF | 01111111 11111111
Max
Signed -327/68 80 00 | 10000000 00OOOOOO
Min
-1 -1 FF FF (11111111 11111111
0 0 00 00 | 00000000 00OOOOOOO

Values for Different Sizes

W
8 16 32 64

Unsig. 255 65,535 4,294,967,295 18,446,744,073,709,551,615
Max

Signed 127 32,767 2,147,483,647 9,223,372,036,854,775,807
Max

Signed | -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
Min

m CProgramming

" #include <limits.h>

= Declares constants, e.g.,

INT_MAX
LONG_MAX
INT_MIN
UINT_MIN

