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SUMMARY

Overlapping Schwarz methods are considered for mixed finite element approximations of linear

elasticity, with discontinuous pressure spaces, as well as for compressible elasticity approximated

by standard conforming finite elements. The coarse components of the preconditioners are based on

spaces, with a number of degrees of freedom per subdomain which is uniformly bounded, which

are similar to those previously developed for scalar elliptic problems and domain decomposition

methods of iterative substructuring type, i.e., methods based on non-overlapping decompositions of the

domain. The local components of the new preconditioners are based on solvers on a set of overlapping

subdomains.
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2 C. R. DOHRMANN AND O. B. WIDLUND

In the current study, the dimension of the coarse spaces is smaller than in recently developed

algorithms; in the compressible case all independent face degrees of freedom have been eliminated

while in the almost incompressible case five out of six are not needed. In many cases, this will result

in a reduction of the dimension of the coarse space by about one half compared to that of the

algorithm previously considered. In addition, in spite of using overlapping subdomains to define the

local components of the preconditioner, values of the residual and the approximate solution need

only be retained on the interface between the subdomains in the iteration of the new hybrid Schwarz

algorithm. The use of discontinuous pressures makes it possible to work exclusively with symmetric,

positive definite problems and the standard preconditioned conjugate gradient method.

Bounds are established for the condition number of the preconditioned operators. The bound for

the almost incompressible case grows in proportion to the square of the logarithm of the number of

degrees of freedom of individual subdomains and the third power of the relative overlap between the

overlapping subdomains, and it is independent of the Poisson ratio as well as jumps in the Lamé

parameters across the interface between the subdomains. Numerical results illustrate the findings.

Copyright c© 2000 John Wiley & Sons, Ltd.

key words: domain decomposition, overlapping Schwarz, preconditioners, iterative methods,

almost incompressible elasticity, mixed finite element methods

1. INTRODUCTION

We recently considered overlapping Schwarz algorithms for almost incompressible elasticity

problems in [1]. Earlier theory for overlapping Schwarz methods for elasticity was restricted to

the compressible case in which the Poisson ratio ν is bounded away from its maximum value

of 1/2; see [2, Section 8]. A relatively rich coarse space was used in our recent study, which

effectively accommodates all positive values of ν < 1/2. It is an extension of a component of

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37
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HYBRID DOMAIN DECOMPOSITION ALGORITHMS 3

iterative substructuring methods developed about fifteen years ago for scalar elliptic problems;

see [3] and also [2, Algorithm 5.16]. These domain decomposition methods are hybrids in that

they borrow components of the preconditioners from two main families of algorithms; see [2,

Chapters 3 and 5]. Recent applications of such extended coarse spaces to a variety of different

problem types appear in [4], and similar algorithms have already been used successfully as

part of a production-level iterative solver in the parallel structural dynamics code Salinas [5].

In this study, we will only consider problems in three dimensions. In that case, the coarse

space of our recent study uses three degrees of freedom for each subdomain vertex, five or six

for each subdomain edge, and six degrees of freedom for each subdomain face. In this paper,

we will show that almost equally strong results can be obtained after switching to a coarse

space with only one independent degree of freedom for each subdomain face and that, in fact,

all of them can be eliminated in the compressible case. We will also demonstrate that the

overlapping subdomains and a particular type of hybrid Schwarz method, that together with

the coarse space define the preconditioner, can be chosen so that the residuals and iterates need

only be retained on the interface of the partitioning of the domain into subdomains. In this

respect, our algorithms resemble early work by Barry Smith, see [6, 7] and [2, Algorithm 5.5].

We note that his algorithm uses a conventional finite element space on a coarse triangulation

of the domain for the coarse component of the preconditioner.

In our analysis, we can focus on our new coarse spaces while the estimates for the local

contributions to the preconditioner require fewer new arguments; we can borrow much of what

is needed from our recent paper, in particular, from [1, Subsection 5.3]. We also note that,

as in [1], our approach does not require access to individual subdomain matrices, i.e., we can

work directly with a globally assembled matrix; this can be an advantage in finite element

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37

Prepared using nmeauth.cls

Page 3 of 44

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

4 C. R. DOHRMANN AND O. B. WIDLUND

practice.

An early application of overlapping Schwarz methods to mixed formulations of linear

elasticity and incompressible Stokes problems is given in [8]. In that work, the coarse spaces

were based on the same mixed finite element methods on coarse meshes and both continuous

and discontinuous pressure spaces were considered. An analysis of these methods was not

provided, but their performance was shown to be quite competitive with block diagonal and

block triangular preconditioners, see [9].

Related iterative substructuring methods as in [2, Chapter 6], for incompressible or almost

incompressible problems appear in [10, 11, 12, 13]. For each of these methods, special care

is required to ensure that the coarse space is properly constructed. As a result, standard

coarse spaces for compressible problems must be modified and enriched to accommodate

incompressible or almost incompressible cases.

In this paper, we again restrict our attention to finite elements with discontinuous pressure

interpolation. By doing so, it is possible to eliminate the pressure unknowns at the element

level. Since the assembled matrix is symmetric and positive definite, an important consequence

is that the same solution algorithm, as for compressible elasticity, can be used for the almost

incompressible case and that the method of preconditioned conjugate gradients can then be

used to accelerate the iteration.

The remainder of this paper is organized as follows. In Section 2, we review the equations

of linear elasticity, focusing on the almost incompressible case. We also introduce mixed

finite element approximations and then describe the algorithms, discuss their parallel

implementation, and formulate the main results in Section 3. These results are proven in

Section 4; the rest of the paper can also be read independently and that section can therefore

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37
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HYBRID DOMAIN DECOMPOSITION ALGORITHMS 5

be bypassed. Results of numerical experiments are given in Section 5.

2. ELASTICITY AND MIXED AND STANDARD FINITE ELEMENTS

Let Ω ⊂ R
3 be a domain and let ∂ΩD be a nonempty subset of its boundary ∂Ω and introduce

the Sobolev space V := {v ∈ H1(Ω) : v|∂ΩD = 0}. Here H1(Ω) := H1(Ω)3. The linear

elasticity problem consists in finding the displacement u ∈ V of the domain Ω, fixed along

∂ΩD, and subject to a surface force of density g, along ∂ΩN = ∂Ω \ ∂ΩD, and a body force f :

2
∫

Ω

μ ε(u) : ε(v) dx +
∫

Ω

λ div u div v dx = < F,v > ∀v ∈ V. (1)

Here λ(x) and μ(x) are the Lamé parameters, εij(u) = 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
) the linearized strain

tensor, and two inner products are defined by

ε(u) : ε(v) =
3∑

i=1

3∑
j=1

εij(u)εij(v), < F,v > =
∫

Ω

3∑
i=1

fivi dx +
∫

∂ΩN

3∑
i=1

givi dA.

The Lamé parameters can be expressed in terms of the Poisson ratio ν and Young’s modulus

E:

λ =
Eν

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
.

The domain Ω is partitioned into non-overlapping subdomains Ωi. We assume, for simplicity,

that the Lamé parameters are constant in each subdomain. Since our analysis will be carried

out for one subdomain at a time, we can then work with problems with constant coefficients.

The bound for the condition number of our algorithm will be independent of the values of all

these parameters.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37
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6 C. R. DOHRMANN AND O. B. WIDLUND

2.1. A saddle point formulation

In the compressible case, we can use standard finite element approximations. However, when

the material becomes almost incompressible, the Poisson ratio ν approaches the value 1/2 and

λ/μ = 2ν/(1−2ν) approaches infinity. In such cases, finite element discretizations of this pure

displacement formulation will increasingly suffer from locking and very slow convergence of

the finite element solution.

A well-known remedy is based on introducing the new variable p = −λdiv u ∈ U ⊂ L2(Ω),

that we will call pressure, and replacing the pure displacement problem (1) with a mixed

formulation: find (u, p) ∈ V × U such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2
∫

Ω

μ ε(u) : ε(v) dx −
∫

Ω

div v p dx = < F,v > ∀v ∈ V

−
∫

Ω

div u q dx −
∫

Ω

1/λ pq dx = 0 ∀q ∈ U ;

(2)

see Brezzi and Fortin [14] or Brenner and Scott [15].

In the case of homogeneous Dirichlet boundary conditions for u on all of ∂Ω, we will choose

U := L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω

qdx = 0}, since it follows from the divergence theorem that the

pressure will have a zero mean value. For nonzero Dirichlet boundary data, the same is true if

the net flux satisfies
∫

∂Ω
u ·n ds = 0, where n is the outward normal. If, on the other hand, the

boundary conditions are mixed (part essential and part natural), then there is always a unique

solution with a pressure component in U = L2(Ω). Rather than discussing two somewhat

different cases, we will, from now on, focus on the case with homogeneous Dirichlet boundary

conditions on all of ∂Ω.

The net fluxes
∫

∂eΩ u ·n dA, across the boundary ∂Ω̃, of subsets Ω̃ of individual subdomains,

will be important in our analysis; see Lemma 3. Only if they vanish, are there divergence-free

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37

Prepared using nmeauth.cls

Page 6 of 44

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

HYBRID DOMAIN DECOMPOSITION ALGORITHMS 7

extensions of the boundary values for which the bilinear form
∫

eΩ
λ div u div v dx will then

vanish.

In our analysis, we will work only with the restrictions of the equations (2) to individual

subdomains Ωi, or subsets of such subdomains. In such cases, we can factor out the constants

μi and 1/λi and we will use the notation ai(u,v), bi(v, p), and ci(p, q) for the three resulting

bilinear forms associated with the subdomain Ωi.

In the absence of essential boundary conditions, the elasticity operator has zero energy

modes, which are the rigid body modes. There are six of them; they are given in Section 3.

By letting λi/μi → ∞, we obtain the limiting problem for incompressible linear elasticity

and also a formulation of the Stokes system for incompressible fluids. A penalty term, as in the

compressible case, could also originate from stabilization techniques or penalty formulations

for Stokes problems.

A Korn inequality for the subspace orthogonal to the rigid body modes establishes an

equivalence between the square of the semi–norm in H1(Ωi) and the bilinear form

ai(u,u) = 2
∫

Ωi

ε(u) : ε(u)dx;

see further Lemma 4. This will make it possible to use many tools and results developed in

studies of scalar elliptic problems. We will work with the scaled H1(Ωi)−norm defined by

‖u‖2
H1(Ωi)

:= |u|2H1(Ωi)
+ (1/H2

i )‖u‖2
L2(Ωi)

,

where Hi is the diameter of the subdomain Ωi.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37
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8 C. R. DOHRMANN AND O. B. WIDLUND

2.2. Mixed finite element methods with discontinuous pressures

We assume that the domain Ω is decomposed into N non-overlapping subdomains Ωi. The

interface of this decomposition is given by

Γ :=

(
N⋃

i=1

∂Ωi

)
\ ∂Ω.

To simplify the discussion, we will assume, as in [2, Assumption 4.3], that each subdomain is

the union of shape-regular tetrahedral elements of a global conforming coarse mesh and that

the number of such tetrahedra forming any individual subdomain is uniformly bounded. We

note that this assumption makes the subdomains shape regular, i.e., they have bounded aspect

ratios. This assumption makes it possible to use technical tools developed in [2, Section 4.6]

in the analysis. Each subdomain is further partitioned into many shape-regular elements. We

assume that the nodes match across the interface between the subdomains and we denote the

set of elements by Th. We note that recent advances in the analysis of domain decomposition

methods defined on quite irregular subdomains would allow us to extend all our results, in

the case of two dimensions, to very irregular subdomains that are only John domains; see [1,

Section 6] and [16, 17].

In our experimental work, we have chosen to work primarily with the Q2(h) − P1(h) finite

elements: the displacement space is Vh := (Q2(h))3 (continuous tri-quadratics), while the

pressure space consists of discontinuous, piecewise linear functions:

Uh := {q ∈ U : q|T ∈ P1(T ) ∀T ∈ Th} .

The two spaces are defined on the same hexahedral mesh. This mixed finite element method

satisfies a uniform inf-sup condition:

sup
v∈Vh

bi(v, q)
ai(v,v)1/2

≥ βci(q, q)1/2 ∀q ∈ Uh
i ∩ L2

0(Ωi), β > 0. (3)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37
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There are optimal O(h2) error estimates for both displacements and pressures for this mixed

finite element method provided that that unmapped linear functions are used for the pressure

space; see Boffi and Gastaldi [18]. The parameter β depends on the domain and, in particular,

it varies inversely with the aspect ratio of the domain; these matters are discussed at length in

[1, Subsections 5.2 and 5.3]. This is the origin of two of three factors of H/δ in our condition

number bound in the almost incompressible case; see Theorem 1.

We note that while finite element methods based on hexahedra and quadrilaterals enjoy

popularity, our theory applies equally well to any stable mixed method, e.g. one based on

tetrahedral elements, as long as the pressure space is discontinuous.

In matrix form, the mixed finite element approximation of (2) for subdomain Ωi will

contribute the stiffness matrix ⎡⎢⎢⎣ μiA
(i) B(i)T

B(i) (−1/λi)C(i)

⎤⎥⎥⎦ . (4)

Given that the pressure approximation is discontinuous, we can write the matrix C(i) in block

diagonal form with the size of the blocks equal to the number of pressure degrees of freedom

in an individual element. Therefore, at the expense of solving a few small linear systems of

equations for each element, we can eliminate the pressure unknowns and obtain a reduced,

positive definite, symmetric subdomain matrix

Ã(i) = μiA
(i) + λiB

(i)T C(i)−1B(i). (5)

Just as in the compressible case, these submatrices can be assembled into Ã, which represents

the energy of the entire system. The corresponding bilinear forms are denoted by ãi(·, ·) and

ã(·, ·).

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37
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3. THE ALGORITHM AND THE MAIN RESULTS

We will describe and analyze our algorithm as a two-level Schwarz method, as in [2, Chapters

2, 3, and 5], defined in terms of a set of subspaces. We focus on the more complicated almost

incompressible case; the compressible case needs only to be discussed briefly. In the almost

incompressible case, we will work with the displacement variables only and the positive definite

formulation (5) obtained after that all pressure degrees of freedom have been eliminated.

3.1. The subspaces of the Schwarz algorithm

We will use a smaller coarse space V0 than in our recent study [1], and a pair of local spaces Vi

and Viδ associated with each subdomain Ωi. This choice and the selection of a special hybrid

Schwarz algorithm will make it possible to retain only the interface values of the residuals for

the conjugate gradient iterations.

As the subdomains, which define the local components of the overlapping Schwarz

preconditioner, we will use the nonoverlapping subdomains Ωi into which the given domain Ω

has been divided. We note that the Dirichlet solvers on these subdomains, which are needed to

compute local corrections, are also used to compute the coarse basis functions of our algorithm

from their boundary values. Additionally, we will also use boundary layer subdomains Ωiδ

constructed as the union of layers of elements on both sides of the local interface Γi := ∂Ωi∩Γ;

see Fig. 1, right, for a three-dimensional picture. Each of these subdomains is characterized by

a parameter δi, which is the distance from Γi to ∂Ωiδ \ ∂Ω. We note that for a small overlap,

δi, the factorization of the stiffness matrices for the Ωiδ can be considerably less expensive

than that for the subdomain Ωi.

We note that domain decomposition preconditioners of interface-strip type have been

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37
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considered in [19, 20]. The global components of these preconditioners are obtained from

solvers of problems defined on the union of all the Ωiδ and they therefore differ from ours.

We build the local components of our Schwarz preconditioner by restricting the original

problem to the subdomains Ωi and Ωiδ, in the customary way, and by solving Dirichlet

problems with zero boundary data to obtain the related local corrections.

All elements of the coarse space are discrete saddle-point harmonic functions in the sense

that they are minimal energy extensions of values given on the interface; in the almost

incompressible case they can be computed by solving Dirichlet problems for each Ωi, using

matrices obtained from Ã(i).

Definition 1. The discrete saddle-point harmonic function for boundary data wΓ has the

vector representation

wsh =

⎡⎢⎢⎣ wI

wΓ

⎤⎥⎥⎦ ,

where

Ã
(i)
II w

(i)
I = −Ã

(i)
IΓw

(i)
Γ .

Here, Ã
(i)
II is a leading principal minor of Ã(i), if the interior variables are all ordered ahead

of those of the interface, Ã
(i)
IΓ represents the coupling between the interface and the interior of

the subdomain Ωi, etc.

To introduce the coarse space V0, we first decompose the local interfaces Γi into faces F ij ,

edges E ik, and vertices V i�. A face is an open subset of Γi and an edge is an open subset of the

boundaries of several faces. A node on F ij is common to the boundaries of two subdomains

Ωi and Ωj while those on an edge typically are common to more than two. The vertices are

endpoints of the edges. For an additional discussion of how to define these sets, even for very

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37
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irregular subdomains, see [21, 22, 23].

The smaller coarse component space is similar to that of the algorithm studied in [1]. In

turn, it was adapted from older iterative substructuring algorithms described in [2, Section

5.4] and first developed for scalar elliptic problems in [3]. Because of the larger null space of

the elasticity operator, the coarse space must be enriched to make it work for elasticity; see [2,

Sections 8.3 and 8.4]. This is related to the well-known null space property, which is necessary

to obtain scalability, i.e., a bound on the convergence, which does not depend on the number

of subdomains; see the discussion in [24] or [25].

The rigid body modes are three translations

r1 :=

⎡⎢⎢⎢⎢⎢⎢⎣
1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ , r2 :=

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ , r3 :=

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎥⎥⎥⎦ , (6)

and three rotations

r4 :=
1
Hi

⎡⎢⎢⎢⎢⎢⎢⎣
0

−x3 + x̂3

x2 − x̂2

⎤⎥⎥⎥⎥⎥⎥⎦ , r5 :=
1

Hi

⎡⎢⎢⎢⎢⎢⎢⎣
x3 − x̂3

0

−x1 + x̂1

⎤⎥⎥⎥⎥⎥⎥⎦ , r6 :=
1

Hi

⎡⎢⎢⎢⎢⎢⎢⎣
−x2 + x̂2

x1 − x̂1

0

⎤⎥⎥⎥⎥⎥⎥⎦ , (7)

where x̂ ∈ Ωi can be chosen as a midpoint of an edge or face. The shift of the origin makes

this basis for the space of rigid body modes well conditioned, and the scaling and shift make

these six functions scale in the same way with Hi. This ensures that norms of the six functions

are comparable.

We will now recall the coarse basis functions of our previous algorithm. Linear combinations

of them will then be used to define the basis functions for the smaller coarse space of the new

algorithm.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37
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The coarse basis functions for the algorithm in [1] can be defined by using cutoff functions

θFij , θEik , and θVi� . The face function θFij equals 1 at all the nodes of the face and vanishes at

all other nodes on the interface. The edge functions θEik and vertex functions θVi� are defined

similarly.

For each face, we can use the finite element interpolant of the product of this face cutoff

function and the rigid body modes to obtain six linearly independent functions Ih(θFijrk); we

extend the resulting boundary values into the interior of the subdomains as discrete saddle-

point harmonic functions. Here, Ih is the interpolation operator, which maps onto the finite

element space Vh. The boundary values for these functions, which are all used as coarse basis

functions in [1], can also be obtained by restricting the rigid body modes to the nodes of F ij

and setting the values at all other interface nodes to zero.

Similarly, for a straight subdomain edge, we obtain five linearly independent rigid body

modes since, as is easy to see, a rigid body mode representing a rotation, with the edge as its

axis, is invisible on the edge; for a detailed discussion of the case of curved edges, for which we

use six degrees of freedom, see [22]. In [1], we thus use coarse basis functions associated with

the edge which are given on Γ by Ih(θEikr) where r ∈ RB.

For each vertex, finally, we have three degrees of freedom representing the displacement at

that point.

We will now modify this coarse space and eliminate most of the independent face coarse

degrees of freedom. The construction is inspired by earlier work on wire basket based methods

and in particular by [26] which in turn builds on [27, 28]; see also [2, pp. 222-223]. We will use

modified coarse basis functions θm
Eik and θm

Vi� associated with subdomain edges and vertices,

respectively, and with a specific rigid body mode rm. For each such subdomain edge and vertex,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37

Prepared using nmeauth.cls

Page 13 of 44

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

14 C. R. DOHRMANN AND O. B. WIDLUND

there will be contributions given in terms of the face functions described above for each face

with a boundary that contains the edge or vertex in question.

Thus, we obtain the modified edge coarse basis function θm
Eik by extending its values to the

faces which have this edge in common. Let us consider one face F ij , one edge E ik ⊂ ∂F ij , and

one rigid body mode rm, which defines one of the edge coarse basis functions given above.

The face contributions to this modified edge function are of the form

6∑
n=1

αik
nmIh(θFijrn).

To determine the coefficients αik
nm, for the modified edge coarse basis function θm

Eik , we solve a

linear least squares problem:

min
αik

nm

‖Ih(θEikrm) −
6∑

n=1

αik
nmrn‖2

L2(∂Fij).

Here, L2(∂F ij) = L2(∂F ij)3.

Since the rigid body modes are linearly independent and all of order 1, it is easy to see

that the matrix of the normal equations is well conditioned and that all its elements are of

order Hi. The elements of the right hand side are also of order Hi being defined by integrals

of functions of order 1 over the edge, which has a length of order Hi. Therefore all the αik
nm

will be uniformly bounded.

The modification of the subdomain vertex coarse basis functions, by adding the same type

of face contributions, proceeds similarly by solving least squares problems. There are two

differences. There are only three such functions for each vertex and in the least squares problem

Ih(θEikrm) is replaced by Ih(θVi�rm), m = 1, 2, 3. While the matrix of the normal equations

remains the same, the components of the right hand side will be on the order of hi since the

vertex functions vanishes at all but one node on Γ.
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We have thus established the following result:

Lemma 1. The coefficients αnm of the modified coarse edge basis function θm
Eik are all O(1)

and those of the modified coarse vertex basis functions θm
Vi� are all O(hi/Hi).

We use these estimates and the following bounds

|Ih(θFijrk)|2H1(Ωi)
≤ C(1 + log(Hi/hi))Hi k = 1, . . . , 6, (8)

which are obtained by a small modification of the proof of [2, Lemma 4.25]. (We use the fact

that the rigid body modes rk, have components which are linear functions which are uniformly

bounded with gradients bounded by C/Hi.) In addition, we use the fact that

|Ih(θEikrm)|2H1(Ωi)
≤ CHi, (9)

and

|Ih(θVi�rm)|2H1(Ωi)
≤ Chi; (10)

these are elementary bounds obtained by estimating the energy of the trivial extensions of

these functions. We find:

Lemma 2. The modified coarse edge basis function θm
Eik satisfies

|θm
Eik |2H1(Ωi)

≤ C(1 + log(Hi/hi))Hi

and

‖θm
Eik‖2

L2(Fij) ≤ CH2
i .

The modified coarse vertex basis function θm
Vi� satisfies

|θm
Vi� |2H1(Ωi)

≤ C(1 + log(Hi/hi))hi

and

‖θm
Vi�‖2

L2(Fij) ≤ ChiHi.
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We note that the energy of these modified basis functions exceed those of the original edge

and vertex functions by a factor (1 + log(H/h)); cf. (9) and (10).

It is clear from our construction that, when restricted to an interior subdomain, this coarse

space will contain all the rigid body modes. As previously noted, this is a requirement for

obtaining a scalable algorithm; see, e.g., [2, Section 8.2].

We note that in practice we can find good weights, α�m, to define the extension of the edge

and vertex coarse basis functions to the interior nodes of the face, by replacing the L2−norm

over the boundary of the face by an 
2−norm over the values at the nodes of the same set.

Lemmas 1 and 2 are still valid.

We have now constructed a complete coarse space for the compressible case. For the almost

incompressible case, we will add one independent coarse basis function for each face. For a flat

face, we choose a face bubble function θFijnFij where nFij is a unit normal to the face. We

note that this function is linearly independent of the edge and vertex basis functions since it

vanishes on the entire boundary of the face while the modified edge and vertex functions do

not.

We can also define a suitable average normal direction for a curved face by first constructing

a matrix with three columns and where each row contains the three coordinates of a node on

F ij . We then shift the origin of the coordinate system so that the average of the elements of

each of the columns vanishes. By computing the singular value decomposition UΣV T of this

matrix, we will, in particular, find the orthogonal matrix V of order 3. Its third column, the

right singular vector associated with the smallest singular value, will be our choice. It is the

normal to the plane through the origin, after the shift, for which the sum of the squares of

the distance of the nodes on the curved face to the plane is minimized. We note that this

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37

Prepared using nmeauth.cls

Page 16 of 44

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

HYBRID DOMAIN DECOMPOSITION ALGORITHMS 17

construction, related to principal component analysis, has been known since 1901; see [29].

3.2. A hybrid Schwarz algorithm

We also need to specify the Schwarz method used. We note that [2, Chapter 2] provides an

introduction to the abstract theory of Schwarz methods. We will recall the definition of the

projections from which a Schwarz method is built; for simplicity, we will assume that exact

solvers are used for the local problems defined on the overlapping subdomains as well as for

the global, coarse problem. We also recall that ã(·, ·) is the displacement-only bilinear form

for the entire domain Ω and that ãi(·, ·) is that for the subdomain Ωi. We also use ãiδ(·, ·)

obtained similarly for the boundary layer subdomain Ωiδ.

For any i ≥ 1, we use an extension operator RT
i : Vi → Vh; this is a simple extension by

zero to the nodes not in Ωi. Extension operators RT
iδ are defined similarly and RT

0 imbeds V0

into Vh.

Associated with the coarse space is a projection P0 : Vh → V0; it is orthogonal with

respect to the ã(·, ·)−inner product. For the local spaces Vi and Viδ, there are projections

Pi : Vh → RT
i Vi and Piδ : Vh → RT

iδViδ defined by

Pi = RT
i P̃i with P̃i defined by ãi(P̃iu,v) = ã(u, RT

i v) ∀v ∈ Vi,

and

Piδ = RT
iδP̃iδ with P̃iδ defined by ãiδ(P̃iδu,v) = ã(u, RT

iδv) ∀v ∈ Viδ.

In this study, we use a Schwarz method of hybrid type; cf. [2, Subsection 2.5.2]. An early

example of such a hybrid method is the Neumann–Neumann algorithm as described in [30]

and [2, Section 6.2]. In that algorithm, a coarse space correction is computed in the first and

third of three fractional steps, while the rest of the corrections are handled as in an additive
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Schwarz method. Here, we will instead consider the Schwarz method based on the polynomial

Phyb := (I −
N∑

i=1

Pi)(P0 +
N∑

i=1

Piδ)(I −
N∑

i=1

Pi). (11)

We note that this hybrid Schwarz polynomial, together with the full specification of the coarse

and local spaces, fully define our domain decomposition algorithm. See, Subsection 3.3 for a

discussion of some implementation details.

Just as in the case discussed in [2, Subsection 2.5.2], the first factor is a projection; this

follows from the observations that the Pi are projections and that since Ωi and Ωj do not

intersect PiPj = 0, i �= j. The application of the third (and first) factor of (11) eliminates all

residuals interior to the subdomains Ωi resulting in piecewise discrete saddle-point harmonic

functions and thus fully defined by their values on the interface Γ. By eliminating all residuals

in the interior of the subdomains initially, all the residuals of the conjugate gradient iteration

can be made discrete saddle-point harmonic. We also note that from the second iteration on,

we only need to apply the projection (I −
∑N

i=1 Pi) once in each step of the iteration.

The main effort in deriving a bound for the condition number of the operator Phyb is to

provide an estimate of the parameter C2
0 in a decomposition lemma:

ã(u0,u0) +
N∑

i=1

ãi(ui,ui) +
N∑

i=1

ãiδ(uiδ,uiδ) ≤ C2
0 ã(u,u) ∀u ∈ Vh, (12)

for some choice of {ui}N
0 ,ui ∈ Vi and {uiδ}N

1 ,uiδ ∈ Viδ, such that

u =
N∑

i=0

RT
i ui +

N∑
i=1

RT
iδuiδ; (13)

cf. the standard Schwarz theory, as developed in [2, Section 2.3]. A lower bound on C−2
0

provides a lower bound for the additive Schwarz operator, based on these subspaces; see [2,

Lemma 2.5]. It is also known, and easy to show, that the lower bound of Phyb is at least as

good as that of the additive method; see [31] or [2, Lemma 2.15].
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An upper bound of the norm of P0 +
∑N

1 Piδ is obtained by a standard coloring argument

as in [2, Subsection 2.5.1]. Since the first and third factors of Phyb are projections, they do

not contribute to the bound of the norm of our hybrid Schwarz operator. Thus, we obtain a

constant upper bound for Phyb and an upper bound for the condition number of Phyb in terms

of an upper bound for C2
0 .

Our main result, obtained by estimating C2
0 , is:

Theorem 1 (Almost incompressible elasticity) The condition number of our domain

decomposition method, which uses one independent face coarse degree of freedom for each face

of Γ, satisfies

κ(Phyb) ≤ C(H/δ)3(1 + log(H/h))2.

Here C is a constant which is independent of the number of subdomains and their diameters,

the mesh size, and the values of the Lamé parameters. It depends only on the shape regularity

of the elements and the subdomains.

As in many domain decomposition results, H/h is shorthand for maxi(Hi/hi), where hi is

the smallest diameter of the elements of Ωi. Similarly, H/δ is the largest ratio of Hi and δi.

Remark 1. This result is weaker than the main result in [1] in that we have a factor

(1 + log(H/h))2 instead of (1 + log(H/δ))(1 + log(H/h)). The origin of this loss is the bound

of the coarse component u0 associated with the subdomain edges; see (20) and (22). Our

experiments indicate that the bound of Theorem 1 is not sharp while those in [1] are. In

particular, the three powers of (H/δ) in the main theorems of both papers cannot be improved.

We also have a result for the compressible case:
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Theorem 2 (Compressible elasticity) The condition number of our domain decomposi-

tion method, without any independent coarse face degrees of freedom, satisfies

κ(Phyb) ≤ C(H/δ)(1 + log(H/h))2.

Here C is a constant, independent of the number of subdomains and their diameters and the

mesh size. It depends only on the shape regularity of the elements and the subdomains and the

Poisson ratios νi.

3.3. Implementation of the Schwarz algorithm

We recall that Ã(i) denotes the stiffness matrix and let fi be the load vector for Ωi after that

all pressure degrees of freedom have been eliminated. The vector of unknowns for the closure

of Ωi is given by Rix, where each row of Ri has a single nonzero entry of unity and x is the

global vector of unknowns. The assembled stiffness matrix Ã and load vector f are then given

by

Ã =
N∑

i=1

RT
i Ã(i)Ri, f =

N∑
i=1

RT
i fi.

A vector in the coarse space can be expressed as RT
0 q, where RT

0 is the coarse space matrix

and q is a vector of coarse degrees of freedom. Columns of the matrix RT
0 can be obtained as

described earlier in this section. Let RiI , RiΓ, and Riδ select the components of x for the interior

of Ωi, the boundary of Ωi, and the interior of the boundary layer region Ωiδ, respectively, and

define

Ã
(i)
II = RiI ÃRT

iI , Ã(iδ) = RiδÃRT
iδ.

Given the linear system Ãx = f , the first step is to calculate an initial approximation x0 and

residual r0,

x0 =
N∑

i=1

RT
iI Ã

(i)−1
II RiIf, r0 = f − Ãx0.
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We can verify that RiΓx0 = 0 and RiIr0 = 0 for i = 1, . . . , N , i.e., x0 vanishes on all subdomain

boundaries and r0 is zero in each subdomain interior.

The linear system Ãy = r0 can be solved iteratively using preconditioned conjugate gradients

given that Ã is symmetric and positive definite. Once y is obtained, the solution of the original

linear system is given by x0 + y.

The action of our preconditioner on a residual vector r is calculated as follows:

1. Calculate the local boundary layer correction z1 =
∑N

i=1 RT
iδÃ

(iδ)−1Riδr.

2. Calculate the coarse correction z2 = RT
0 (R0ÃRT

0 )−1R0r.

3. Update the residual r̃ = r − Ã(z1 + z2) and calculate a static condensation correction

z3 =
∑N

i=1 RT
iI Ã

(i)−1
II RiI r̃.

4. Calculate the preconditioned residual z = z1 + z2 + z3.

Since RiIr = 0, the static condensation correction in Step 3 ensures that the preconditioned

residual z satisfies RiI Ãz = 0. Accordingly, we only need to store residuals on subdomain

interfaces during the conjugate gradient iterations. This is true for the other vectors used in

the conjugate gradient iterations as well. Steps 1 and 3 can be done easily in parallel, but

Step 2 may not. If the coarse problem size becomes too large, then approximate solutions for

Step 2 can be obtained by applying a preconditioner for the coarse correction matrix, similar

to the one described here.

4. PROOFS OF THE MAIN RESULTS

We first note that for the case of the richer coarse space considered in [1], there is little new

to prove in case we use the subdomains Ωiδ and the original subdomains Ωi to define the local
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components of the preconditioner; see further Subsection 4.2. We will therefore focus on the

effects of the smaller coarse space and derive an interpolation formula onto that space based

on the discussion and results of Subsection 3.1. In our proofs, we will use that the length of

each subdomain edge is bounded from below by cHi and that the area of each subdomain face

by cH2
i , where c is a positive constant; these bounds follow from the assumptions made on our

subdomains.

As in the theory for iterative substructuring algorithms, see [2, Chapters 4, 5, and 6], the

analysis can be carried out for one subdomain Ωi only and variations in the values of the Lamé

parameters between subdomains will therefore not enter our bounds. Thus, we first derive a

bound on the contributions, from an individual subdomain, to the different terms in (12) and

we then assemble the resulting inequalities in a way very similar to how subdomain matrices

are assembled into the system matrix for an entire finite element problem.

We recall that the coarse space, restricted to an individual subdomain that does not touch

∂Ω, will contain all rigid body modes and that we have constructed a basis for the coarse

space in terms of these modes and cutoff functions associated with the faces, edges, and

vertices of the subdomain Ωi. When constructing the coarse space component u0, by a specific

interpolation procedure, we will make sure that all rigid body modes are reproduced and also

that the remainder, w := u−u0, will have a zero net flux across all the faces of the interface.

Our construction and estimates can be used both for interior subdomains and for those with a

boundary that intersects ∂Ω since our interpolation procedure will reproduce the zero Dirichlet

boundary condition on ∂Ωi ∩ ∂Ω.

To assure that the zero net flux condition holds, in the almost incompressible case, we will,

in a final step, introduce and estimate a face correction in terms of the remaining, independent
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coarse face basis functions. The correction is of the form

uf
0 =

∑
ij

βijθFijnFij , (14)

where the βij will be chosen so that

βij

∫
Fij

θFij dA =
∫
Fij

(u− uv
0 − ue

0) · nFij dA. (15)

Here uv
0 and ue

0 are the vertex and edge components of u0. We then obtain u0 as the sum of

the three terms, i.e., u0 = uv
0 + ue

0 + uf
0 .

The coarse interpolant u0 is chosen so that we can estimate ãi(u − u0,u − u0) in terms of

ai(u − u0,u − u0), by using the following lemma, which has a constant which is uniformly

bounded, for any inf-sup stable mixed finite element method, for all values of the potentially

large parameters λi.

Lemma 3. Let ush denote the discrete saddle-point harmonic function with the same

boundary data as u on ∂Ωi and which satisfies the zero net flux condition∫
∂Ωi

u · nds = 0.

Then,

ãi(ush,ush) ≤ 4
(

1 +
n/2

μi/λi + β2

)
μiai(u,u) ∀u ∈ Vh. (16)

This result follows directly from [1, Lemma 3.3] by noting that a second term on the right

hand side of the inequality of that lemma vanishes in case of a zero net flux. By using this

estimate, we can essentially reduce our work to issues for a compressible elasticity problem.

4.1. The coarse component of the decomposition

The construction of u0 begins by setting u0(V i�) = u(V i�) at all vertices of the subdomain.

While u−u0 will vanish at all subdomain vertices, we have to estimate the contributions from

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37

Prepared using nmeauth.cls

Page 23 of 44

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

24 C. R. DOHRMANN AND O. B. WIDLUND

the modified vertex coarse basis functions θm
Vi� , which differ from zero on the faces next to a

vertex. We use an inverse inequality for finite element functions given in [2, Formula (4.16)]:

‖uh‖2
L∞(Ωi)

≤ (C/hi)‖uh‖2
H1(Ωi)

,

to estimate the three components of u0(V i�), which are the coefficients for the modified coarse

vertex basis functions θm
Vi� , m = 1, 2, 3, in the representation of uv

0. Combining this estimate

with Lemma 2, we find that, with uv
0 the sum of the vertex functions of all the vertices of Ωi,

|uv
0|2H1(Ωi)

≤ C(1 + log(Hi/hi))‖u‖2
H1(Ωi)

. (17)

We also find that,

‖uv
0‖2

L2(Fij) ≤ CHi‖u‖2
H1(Ωi)

. (18)

We next recall that the restriction of the modified coarse edge basis functions to an edge are

rigid body modes. We determine the coefficients for the modified coarse edge basis functions

to ue
0 associated with E ik, one of the edges of ∂F ij , by solving

inf
r∈RB

‖Ih(θEik(u− r))‖2
L2(Eik). (19)

Clearly, ‖ue
0‖L2(Eik) ≤ ‖u‖L2(Eik) + ‖Ih(θEiku)‖L2(Eik) ≤ C‖u‖L2(Eik). Given that

‖rm‖2
L2(Eik) ≥ cHi, we find that the square of the coefficients of the modified coarse edge

basis functions ue
0 are bounded by (C/Hi)‖u‖2

L2(Eik). By using Lemma 2, we then find that,

with ue
0 the sum of the contributions of all the edges of Ωi,

|ue
0|2H1(Ωi)

≤ C(1 + log(Hi/hi))
∑

k

‖u‖2
L2(Eik). (20)

Here the sum is over all the edges of Ωi. Similarly, we find that

‖ue
0‖2

L2(Fij) ≤ CHi

∑
k

‖u‖2
L2(Eik).
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In the right hand side, we now sum over all the edges of ∂F ij .

We can estimate the right hand sides of these two inequalities by using [2, Lemma 4.16]:

‖u‖2
L2(Eik) ≤ C(1 + log(Hi/hi))‖u‖2

H1(Ωi)

and we obtain, by also using (17) and (20),

|uv
0 + ue

0|2H1(Ωi)
≤ C(1 + log(Hi/hi))2‖u‖2

H1(Ωi)
, (21)

and similarly,

‖uv
0 + ue

0‖2
L2(Fij) ≤ C(1 + log(Hi/hi))Hi‖u‖2

H1(Ωi)
. (22)

We also have to estimate βijθFijnFij , the correction term given in terms of the remaining

independent face coarse degree of freedom on F ij . Turning to formula (15), we find, that the

integral on the left hand side is on the order of H2
i , since the face F ij has an area of that order

and θFij = 1 at all nodes of the face. By using the Cauchy-Schwarz inequality, the square of

the right hand side of (15) can be estimated by C‖u− uv
0 − ue

0‖2
L2(Fij)H

2
i . Thus,

|βij |2 ≤ C/H2
i ‖u− uv

0 − ue
0‖2

L2(Fij),

and by using (8), we find that

|βijθFijnFij |2H1(Ωi)
≤ C/Hi(1 + log(Hi/hi))‖u− uv

0 − ue
0‖2

L2(Fij).

We can now use an elementary trace theorem, see [32, Theorem 1.2], and a scaling argument

to show that

1/Hi‖u‖2
L2(Fij) ≤ C‖u‖2

H1(Ωi)
.

Combining this estimate with (22) and (21), we can conclude that

|u − u0|2H1(Ωi)
≤ C(1 + log(Hi/hi))2‖u‖2

H1(Ωi)
. (23)
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We also find that

‖u− u0‖2
L2(Fij) ≤ C(1 + log(Hi/hi))Hi‖u‖2

H1(Ωi)
. (24)

We now consider ãi(u − u0,u − u0). Since the net flux across ∂Ωi of u − u0 vanishes by

construction, we can use Lemma 3 to obtain

ãi(u − u0,u− u0) ≤ 4
(

1 +
n/2

μi/λi + β2

)
μiai(u− u0,u− u0).

By using the elementary estimate

ai(v,v) = 2
∫

Ωi

ε(v) : ε(v)dx ≤ 2|v|2H1(Ωi)
,

we also have

ãi(u− u0,u− u0) ≤ 8
(

1 +
n/2

μi/λi + β2

)
μi|u− u0|2H1(Ωi)

.

Our recipe for u0 will clearly reproduce any rigid body mode. We can therefore replace the

square of the norm on the right hand side of (23) by infr∈RB ‖u− r‖2
H1(Ωi)

. We then use the

following lemma:

Lemma 4. Let Ωi be a Lipschitz domain. Then, there exists a constant C = C(Ωi), invariant

under dilation of the subdomain, such that

inf
r∈RB

‖v − r‖2
H1(Ωi)

≤ Cai(v,v).

This is [1, Lemma 5.2]; it is obtained by using Korn’s second inequality and a Poincaré

inequality. Using this result and (23), we find

ãi(u − u0,u− u0) ≤ C(1 + log(Hi/hi))2μiai(u,u).

We can then return to the ãi−norm by using the elementary inequality μiai(v,v) ≤ ãi(v,v).
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A bound for ãi(u0,u0) follows from

ãi(u0,u0) ≤ 2ãi(u− u0,u− u0) + 2ãi(u,u)

and a bound,

ã(u0,u0) ≤ C(1 + log(H/h))2ã(u,u), (25)

then results by adding the contributions from all the subdomains and using the bound for the

contributions from the subdomains.

4.2. The local components of the decomposition

We will now show how certain constructions and estimates provided in [1, Subsection 5.3]

can be modified so as to find the local components ui ∈ Vi, i ≥ 1 and uiδ ∈ Viδ in the

decomposition of w = u−u0 and to complete an estimate of the parameter C2
0 in (12). As in

our previous paper, [1], we can focus on the contributions of one subdomain Ωi and show how

to partition the restriction of w to Ωi. In working out our estimates, we will use the bilinear

form ãi(·, ·) even when deriving bounds for ãiδ(uiδ,uiδ) in (12); we can bound this latter

expression in terms of
∑

j ãj(uiδ,uiδ) where the sum is over all subdomains Ωj which intersect

Ωiδ. Similarly, we will derive estimates in the H1(Ωi)−norm for functions which vanish outside

the boundary layer subdomain Ωiδ.

In our analysis, we will use alternative face and edge cutoff functions ϑδ
Fij and ϑδ

Eik ,

introduced in [1, Subsection 5.3], and which are supported in the closure of Ωiδ. Together

with the nodal basis functions for the subdomain vertices, they provide a partition of unity on

Γi.

For each face F ij of Ωi, we consider the intersection Ωiδ ∩ Ωjδ ∩ Ωi. The alternative face
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cutoff function, ϑδ
Fij , is supported in the closure of this set and satisfies the following bounds:

|Ih(ϑδ
Fiju)|2H1(Ωi)

≤ C(Hi/δi)(1 + log(Hi/δi))(1 + log(Hi/hi))‖u‖2
H1(Ωi)

, (26)

and

|Ih(ϑδ
Fijrm)|2H1(Ωi)

≤ C(Hi/δi)(1 + log(Hi/δi))Hi, m = 1, . . . , 6; (27)

see [1, Lemma 5.4].

We can now provide a bound for |Ih(ϑδ
Fij w)|2H1(Ωi)

. We do so by writing w = u − u0 and

by first using (26) to estimate the norm of Ih(ϑδ
Fiju). We next note that Ih(ϑδ

Fij θFijrk) =

Ih(ϑδ
Fijrk) on Γi. Therefore, we can use (27) and the bound for the square of the coefficients

of Ih(θFijrk) in the representation of u0 to bound Ih(ϑδ
Fiju0). We recall from Subsection 4.1

that there are three types of contributions to that coefficient and that the square of all of them

are bounded by

C/Hi(1 + log(Hi/hi))‖u‖2
H1(Ωi)

. (28)

We can therefore obtain

|Ih(ϑδ
Fijw)|2H1(Ωi)

≤ C(Hi/δi)(1 + log(Hi/δi))(1 + log(Hi/hi))‖u‖2
H1(Ωi)

.

The alternative edge cutoff function, ϑδ
Eik , is supported in the closure of the intersection of

the Ωjδ which contain the edge E ik. We have the following bounds:

|Ih(ϑδ
Eiku)|2H1(Ωi)

≤ C(1 + log(Hi/hi))‖u‖2
H1(Ωi)

, (29)

and

|Ih(ϑδ
Eikrm)|2H1(Ωi)

≤ CHi, m = 1, . . . , 6; (30)

see [1, Lemma 5.5]. We can use (29) directly and what remains is to estimate the norm of

Ih(ϑδ
Eiku0). We partition this function by using θFij , θFi� , and θEik , where F i� is the other face
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of Ωi with E ik a part of its boundary. The estimate for the coefficients of the face contributions,

(28), plays the same role as before. In addition, we can bound the norm of Ih(θFij ϑδ
Eik) in

the same way as in (8) resulting in a bound with a factor (1 + log(Hi/hi))2. For the edge

contribution, Ih(θEikϑδ
Eiku0), we note that Ih(θEikϑδ

Eik) = θEik . The coefficient for this term

can then be estimated by ‖u‖L2(Eik) and we find,

|Ih(ϑδ
Eiku0)|2H1(Ωi)

≤ C(1 + log(Hi/hi))2‖u‖2
H1(Ωi)

.

We also have to estimate certain correction terms as in [1, (5.18)]; their purpose is to create

face and edge contributions which individually have no net flux. There are no new difficulties

in obtaining a bound consistent with that of Theorem 1; in this work we can use (24). As in [1,

Subsection 5.3] a function wFij can be constructed, which satisfies the no net flux condition

across the face F ij and vanishes on the interface Γ outside this face. We then allocate (1/2)wFij

to each of ui ∈ Viδ and uj ∈ Vjδ and we can then use a bound similar to one established in

[1]:

ãi(wFij ,wFij ) ≤ C(Hi/δi)3(1 + log(Hi/hi))2ãi(u,u). (31)

For the components of w associated with the subdomain edge E ik, we can proceed as in [1]

and construct a function wEik , with zero net flux. This function, for which there is a bound

of the same quality as (31), then contributes, in equal part, to the elements ujδ ∈ Vjδ of (12)

for the Ωjδ which contain that edge. We note that this construction provides elements in the

subspaces Vjδ which are continuous if the same recipes are used in all subdomains Ωj .

The sum of these face and edge functions for the subdomain Ωi equals w on ∂Ωi; we

recall that w vanishes at the subdomain vertices. We can therefore choose as ui ∈ Vi, in the

decomposition of w, what remains of w after that all these face and edge functions have been

subtracted from it. We can then find a bound of the same quality for ãi(ui,ui) as for the
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contributions to the other local subspaces by using the triangular inequality.

Combining the resulting estimates with the estimate of ã(u0,u0), as given in (25), we have a

bound for C2
0 , and have thus completed the proof of the lower bound for the Schwarz operator

Phyb, and the proof of Theorem 1.

4.3. The compressible elasticity case

The proof of Theorem 2 essentially only requires arguments that have been used previously

to analyze Schwarz methods based on overlapping subdomains; see, e.g., [2, Chapter 3]. A

variant of these arguments are used in [16] in which the older theory is extended to the case

with large variations of the coefficients across the interface. We note that the logarithmic factor

in Theorem 2 originates from the bound for u0.

We also note that we can establish the same result as in Theorem 1 in case we use a

conventional finite element model for subdomains, where the material is compressible, and a

mixed finite element method for those which are almost incompressible. All that is required

is that the finite element meshes and degrees of freedom match across the interface and that

we use an extra independent coarse face degree of freedom as in (14) for each face of the

subdomains which are almost incompressible.

5. NUMERICAL RESULTS

Results are presented in this section to confirm the theory and to demonstrate the usefulness of

our algorithm. Attention is restricted primarily to meshes of inf-sup stable Q2−P1 hexahedral

elements, but we also consider lower-order Q1 − P0 elements in some cases. The Q1 − P0

element is not inf-sup stable and could have convergence issues for Poisson ratios close to 1/2,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37

Prepared using nmeauth.cls

Page 30 of 44

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

HYBRID DOMAIN DECOMPOSITION ALGORITHMS 31

but it is often used in practice for reasons of convenience. We note that it is equivalent to a

standard displacement-based Q1 elasticity element with selective reduced integration of bulk

strain energy; see, e.g., [33, Section 4.4]. Pressure unknowns can be eliminated at the element

level for both Q2 − P1 and Q1 − P0 if the Poisson ratio is less than 1/2.

Unless specified otherwise, the results presented are for linear systems of equations with

random right hand sides solved to a relative residual tolerance of 10−8 using the conjugate

gradient method. Iteration counts and condition number estimates of the preconditioned

operator are denoted by iter and cond, respectively, in the tables.

Selected results are also presented for two variants of the preconditioner. Variant 1 uses a

multiplicative coarse correction rather than an additive one; see, e.g., [25, Section 3.2.1]. In

this case, the Schwarz method is based on the polynomial

Pv1 = (I − P0)(I −
N∑

i=1

Pi)(
N∑

i=1

Piδ)(I −
N∑

i=1

Pi)(I − P0).

Comparing Pv1 with Phyb, we see that the coarse correction is now applied in a first and final

step. In practice, however, it is only necessary to apply the coarse correction once for each

iteration after an initialization step. Variant 2 is identical to Variant 1 with the exception that

Piδ in the expression above for Pv1 is replaced by

Piwδ = RT
iδP̃iwδ with P̃iwδ defined by ãid(P̃iwδu,v) = ã(u, RT

idD
−1v) ∀v ∈ Viδ,

where D is a diagonal matrix; the value of v at a node is divided by the number of boundary

layer subdomains to which it belongs. Variant 2 basically scales right hand sides prior to

applying local solvers. This results in a nonsymmetric preconditioner, and thus the standard

conjugate gradient algorithm can no longer be used. Nevertheless, by using a Krylov method

which minimizes the energy of the error, just as conjugate gradients does, we find that
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the number of iterations can be reduced significantly. A related preconditioning strategy is

described in [34, Remark 2.7]. We note that we can prove the same bounds for the Schwarz

method based on Pv1 as for Phyb, but that we do not know how to analyze Variant 2. We also

note that the range of these two variants of the original hybrid operator also belongs to the

space of discrete saddle-point harmonic functions.

We present results for incompressible elasticity in the final example even though our theory

does not apply directly to this case; a more thorough treatment will appear elsewhere. It is

no longer possible to eliminate pressure unknowns at the element level, and we augment the

coarse space with a constant pressure for each subdomain. Thus, the coarse space dimension

increases by the number of subdomains, and the coarse problem is a saddle-point system rather

than a positive definite one. Right preconditioned GMRES [35, Section 9.3.2] is used as the

Krylov subspace method.

5.1. Example 1

The first example is for a unit cube domain decomposed into 64 smaller cube subdomains

as shown in Fig. 1. Here we use Q2 − P1 elements, and include a single layer of elements on

either side of subdomain boundaries for the boundary layer subdomains (see Fig 1 right). The

Poisson ratio ν is the same in each of the subdomains, and Young’s modulus E equals σ in

the red (light) subdomains and 1 in the blue (dark) subdomains. We note for σ �= 1 that this

checkerboard distribution of material properties is not quasi-monotone, cf. [36]. Results with

essential boundary conditions, on different subsets of the boundary ∂Ω, are given in Table I.

The results in Table I exhibit similar trends whether all six sides of the cube are constrained

or just one. For values of ν not too close to the incompressible limit of 1/2, the coarse spaces
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Figure 1. Domain decomposition of cube domain for Example 1 (left) and an example boundary layer

subdomain taken from the left side of the cube and magnified (right).

with and without an independent degree of freedom for each subdomain face lead to very

similar results. In contrast, results are insensitive to changes in ν near 1/2 only for the coarse

space that includes independent face degrees of freedom. We also see that the results are fairly

insensitive to jumps in the material property σ as predicted by theory.

5.2. Example 2

We now fix ν = 0.3 in the previous example, and vary the ratio H/h while keeping the overlap

ratio H/δ = 4 fixed. In addition, Q1 − P0 elements are used instead of Q2 − P1 elements in

order to allow us to confirm a condition number estimate for larger values of H/h. Results

are shown in Table II for the coarse space based on corners and edges only (c+e) and the

richer coarse space of [1] based on corners, edges, and faces (c+e+f). A logarithmic plot of

these results in Figure 2 suggests for the c+e coarse space that the exponent p of the factor

(1 + log(H/h))p in the condition number estimate is no greater than 2 for both σ = 1 and
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Table I. Example 1 results for H/h = 7 and H/δ = 7. The number of unknowns, Poisson ratio, and

number of coarse degrees of freedom are denoted by ndof , ν, and ncdof , respectively.

corners + edges + face bubble for coarse space, ncdof = 765

all sides constrained, ndof = 499, 125 left side only constrained, ndof = 545, 832

ν σ = 1 σ = 100 σ = 10, 000 σ = 1 σ = 100 σ = 10, 000

iter cond iter cond iter cond iter cond iter cond iter cond

0.3 38 19.6 56 35.3 57 38.0 51 25.4 87 74.0 95 98.3

0.4 42 20.6 59 38.6 61 41.6 53 27.5 93 79.8 100 104

0.49 49 30.5 70 53.3 74 58.2 63 35.7 109 105 115 128

0.499 50 35.3 71 60.9 77 65.7 67 39.3 113 116 121 139

0.4999 52 37.3 70 65.5 77 66.4 68 40.4 115 120 123 147

corners + edges only for coarse space, ncdof = 621

0.3 40 20.3 62 48.9 64 53.4 52 26.8 118 125 131 171

0.4 44 22.9 68 56.8 70 62.8 56 29.2 128 143 141 191

0.49 66 60.7 91 103 104 136 82 63.9 162 232 181 281

0.499 82 113 107 153 123 205 101 110 181 284 211 471

0.4999 88 132 113 186 126 183 108 124 190 313 217 432

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37

Prepared using nmeauth.cls

Page 34 of 44

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

HYBRID DOMAIN DECOMPOSITION ALGORITHMS 35

Table II. Example 2 results for ν = 0.3, H/δ = 4, and left side only constrained.

σ = 1 σ = 100

H/h ndof c+e+f c+e c+e+f c+e

iter cond iter cond iter cond iter cond

4 13,872 31 13.5 37 15.9 35 15.0 71 55.0

8 104,544 39 17.6 43 19.9 45 19.5 88 72.2

12 345,744 42 19.9 45 22.3 49 22.1 91 84.2

16 811,200 44 21.5 47 24.0 51 23.9 95 93.1

20 1,574,640 46 22.7 49 25.4 53 25.2 100 100

24 2,709,792 47 23.7 50 26.4 55 26.2 104 106

σ = 100. Indeed, for σ = 1 we observe p ≈ 1 and p is only slightly greater than 1 for σ = 100.

These results suggest it may be possible to reduce p from 2 to 1 in our current theory, at least,

for quasi-monotone coefficient distributions. Consistent with the theory for the unreduced

coarse space [1], the exponent p appears to be bounded above by 1 for c+e+f for both values

of σ; we note that a factor in the bound in [1] has been improved from (1 + log(H/h))2 to

(1 + log(H/h))(1 + log(H/δ)) in the final version of that paper.

5.3. Example 3

The next example is used to demonstrate the scalability of our algorithm with respect to the

number of subdomains. Here again, we consider a unit cube decomposed into smaller cubic

subdomains having H/h = 7 and H/δ = 7, but now both E and ν are constant. The results

in Table III show that only the coarse space with face degrees of freedom leads to a scalable

algorithm as ν approaches 1/2. Both coarse spaces, however, are scalable for values of ν not

too close to 1/2.
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Figure 2. Logarithmic plot of Table II data. The two triangles in the figure have unit slopes.
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Table III. Example 3 results for N subdomains with H/h = 7 and H/δ = 7. The coarse space based on

corners and edges only is designated by c+e, while c+e+b denotes the same coarse space augmented

with a single degree of freedom for each subdomain face. All six sides of the domain are constrained.

Poisson ratio ν = 0.3 Poisson ratio ν = 0.4999

N ndof c+e+b c+e c+e+b c+e

iter cond iter cond iter cond iter cond

8 59,049 28 12.7 28 14.8 50 45.6 62 227

27 206,763 35 17.0 37 19.0 51 37.7 77 106

64 499,125 38 19.6 40 20.3 52 37.3 88 132

125 985,527 42 21.1 41 21.7 52 38.3 94 148

216 1,715,361 43 22.1 44 22.6 53 39.1 98 158

343 2,738,019 45 22.9 46 23.3 53 39.6 100 162

512 4,102,893 46 23.5 46 23.8 53 39.9 102 169

5.4. Example 4

In the fourth example, we fix H/h = 12 and vary H/δ for a unit cube domain decomposed into

64 smaller cube subdomains. We see a much stronger dependence on the overlap parameter

H/δ for values of ν near 1/2 as predicted by theory.

5.5. Example 5

Here we consider the two meshes and mesh decompositions shown in Figs. 3 and 4. The material

properties are constant throughout the structure in Fig. 3, while those for the structure in

Fig. 4 vary as described in the caption. Notice for the decomposition of Mesh 2 that material

properties are not constant in each subdomain. Although our theory does not cover this

important case, the algorithm appears to perform well for this problem. Nor does the theory
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Table IV. Example 4 results for 64 subdomains with H/h = 12. The left side of the domain is fixed and

there are 1,196,712 unknowns. The coarse space includes corners, edges, and one degree of freedom

for each subdomain face.

H/δ ν = 0.3 ν = 0.499

iter cond iter cond

3 46 23.0 62 35.5

4 49 25.4 65 38.7

6 54 28.2 73 44.0

12 61 33.0 120 136

apply to the Mesh 1 problem with constant material properties because it has irregular-shaped

subdomains. We also note that the theory does not apply for meshes of Q1 − P0 elements if ν

is close to 1/2 because this element is not inf-sup stable. Nevertheless, we observe satisfactory

performance of our algorithm in this case as well. Variants 1 and 2 of the preconditioner both

lead to noticeable reductions in iteration counts over all values of Poisson ratio for meshes of

Q2−P1 elements. The same does not necessarily hold for meshes of Q1−P0 elements near the

incompressible limit. The mesh decompositions for this example were obtained using a tool

based on the graph partitioning program Chaco [37].

5.6. Example 6

With reference to Examples 1 and 3, we now investigate the scalability of our method for the

incompressible case of ν = 1/2. In contrast to the previous examples, we do not eliminate

displacement and pressure unknowns in subdomain interiors. Moreover, we use standard

overlapping subdomains, as in [1], rather than the boundary layer subdomains. As was true for

compressible and almost incompressible cases, it is apparent in Table VI that the method has
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Table V. Example 5 results for meshes and decompositions shown in Figs. 3 and 4. M−1 denotes

the subject preconditioner of this study, while M−1
v1 and M−1

v2 are the two variants described at

the beginning of this section. The coarse space includes the additional degree of freedom for each

subdomain face, and two layers of elements on either side of subdomain boundaries are used for the

boundary layer (overlap) subdomains.

Mesh 1 results for 20 subdomains

Q2 − P1, ndof = 1, 196, 712 Q1 − P0, ndof = 155, 106

M−1 M−1
v1 M−1

v2 M−1 M−1
v1 M−1

v2

ν iter cond iter cond iter iter cond iter cond iter

0.3 87 159 79 137 48 87 153 73 120 51

0.4 97 199 88 171 57 96 196 82 153 59

0.49 143 520 137 444 92 156 581 136 437 105

0.499 175 867 165 711 112 206 1.13e3 184 821 159

0.4999 182 954 175 778 117 228 1.32e3 200 929 287

Mesh 2 results for 40 subdomains

Q2 − P1, ndof = 2, 046, 528 Q1 − P0, ndof = 261, 888

0.3 59 29.8 42 16.9 23 50 21.9 36 13.2 21

0.4 61 32.4 47 21.6 26 53 24.2 40 16.8 24

0.49 77 55.6 61 41.8 36 67 41.7 53 31.8 34

0.499 84 66.2 67 49.9 39 75 48.3 59 38.1 41

0.4999 85 69.8 69 52.8 40 88 55.5 78 51.5 54
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Figure 3. Mesh 1 for Example 5 and decomposition into 20 subdomains. Young’s modulus and Poisson

ratio are constant with E = 10e6 and ν given in Table V. All three degrees of freedom of nodes at the

bottom of the mesh are fixed.

very good scalability with respect to the number of subdomains. Condition number estimates

are not provided in Table VI because GMRES was used rather than conjugate gradients for

this example.
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Figure 4. Mesh 2 for Example 5 and decomposition into 40 subdomains. The material properties

in the inner(1), middle(2), and outer(3) cylindrical regions (see left figure) are (E1, E2, E3) =

(30e6, 15e6, 10e6) and (ν1, ν2, ν3) = (0.3, ν, 0.33), where ν is given in Table V. All three degrees of

freedom of nodes at the bottom of the mesh are fixed.
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includes the additional degree of freedom for each subdomain face.

σ = 1 σ = 100

N ndof M−1 M−1
v1 M−1

v2 M−1 M−1
v1 M−1

v2

8 70,025 41 41 25 37 32 23

27 243,807 48 43 33 51 38 30

64 586,933 50 44 35 60 39 34

125 1,157,027 51 45 36 62 40 35

216 2,011,713 52 44 36 64 40 36

343 3,208,615 52 44 36 65 40 37

512 4,805,357 52 44 37 65 40 37

Keyes D, Widlund O, Zulehner W (eds.), no. 60 in Springer-Verlag, Lecture Notes in Computational

Science and Engineering, 2007; 247–254.

5. Bhardwaj M, Reese G, Driessen B, Alvin K, Day D. Salinas - an implicit finite element structural dynamics

code developed for massively parallel platforms. 41st AIAA/ASME/ASCE/AHS/ASC SDM April 3-6,

2000/Atlanta, GA, AIAA 2000-1651, 2000.

6. Smith BF. An optimal domain decomposition preconditioner for the finite element solution of linear

elasticity problems. SIAM J. Sci. Stat. Comput. January 1992; 13(1):364–378.

7. Smith BF. Domain decomposition algorithms for the partial differential equations of linear elasticity.

PhD Thesis, Courant Institute of Mathematical Sciences September 1990. Tech. Rep. 517, Department of

Computer Science, Courant Institute.

8. Klawonn A, Pavarino LF. Overlapping Schwarz methods for mixed linear elasticity and Stokes problems.

Comput. Methods Appl. Mech. Engrg. 1998; 165:233–245.

9. Klawonn A, Pavarino LF. A comparison of overlapping Schwarz methods and block preconditioners for

saddle point problems. Numer. Lin. Alg. Appl. 2000; 7:1–25.

10. Dohrmann CR. Preconditioning of saddle point systems by substructuring and a penalty approach. Domain

Decomposition Methods in Sciences and Engineering XVI, Keyes DE, Widlund OB (eds.), no. 55 in Lecture

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37

Prepared using nmeauth.cls

Page 42 of 44

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

HYBRID DOMAIN DECOMPOSITION ALGORITHMS 43

Notes in Computational Science and Engineering, Springer-Verlag, 2006; 53–64. Proceedings of the 16th

International Conference on Domain Decomposition Methods, held in New York City, January 11–15,

2005.

11. Goldfeld P, Pavarino LF, Widlund OB. Balancing Neumann-Neumann preconditioners for mixed

approximations of heterogeneous problems in linear elasticity. Numer. Math. 2003; 95(2):283–324.

12. Li J. A dual-primal FETI method for incompressible Stokes equations. Numer. Math. 2005; 102:257–275.

13. Li J, Widlund OB. BDDC algorithms for incompressible Stokes equations. SIAM J. Numer. Anal. 2006;

44(6):2432–2455.

14. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer-Verlag, 1991.

15. Brenner SC, Scott R. The Mathematical Theory of Finite Element Methods. Springer-Verlag, Berlin,

Heidelberg, New York, 2008. Third edition.

16. Dohrmann CR, Klawonn A, Widlund OB. Domain decomposition for less regular subdomains: Overlapping

Schwarz in two dimensions. SIAM J. Numer. Anal. 2008; 46(4):2153–2168.

17. Klawonn A, Rheinbach O, Widlund OB. An analysis of a FETI–DP algorithm on irregular subdomains

in the plane. SIAM J. Numer. Anal. 2008; 46(5):2484–2504.

18. Boffi D, Gastaldi L. On the quadrilateral Q2-P1 element for the Stokes problem. Internat. J. Numer.

Methods Fluids 2002; 39(11):1001–1011.

19. Paz RR, Nigro NM, Storti MA. On the efficiency and quality of numerical solutions in CFD problems

using the interface strip preconditioner for domain decomposition methods. Internat. J. Numer. Methods

Fluids 2006; 52(1):89–118.

20. Quarteroni A, Sala M, Valli A. An interface-strip domain decomposition preconditioner. SIAM J. Sci.

Comput. 2006; 28(2):498–516.

21. Dohrmann CR. A preconditioner for substructuring based on constrained energy minimization. SIAM J.

Sci. Comput. 2003; 25(1):246–258.

22. Klawonn A, Rheinbach O. Robust FETI-DP methods for heterogeneous three dimensional linear elasticity

problems. Comput. Methods Appl. Mech. Engrg. 2007; 196(8):1400–1414.

23. Klawonn A, Widlund OB. Dual-Primal FETI methods for linear elasticity. Comm. Pure Appl. Math.

November 2006; 59(11):1523–1572.

24. Mandel J. Iterative solvers by substructuring for the p-version finite element method. Comput. Methods

Appl. Mech. Engrg. 1990; 80:117–128.

25. Smith BF, Bjørstad P, Gropp W. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–37

Prepared using nmeauth.cls

Page 43 of 44

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

44 C. R. DOHRMANN AND O. B. WIDLUND

Differential Equations. Cambridge University Press, New York, 1996.

26. Pavarino LF, Widlund OB. Iterative substructuring methods for spectral element discretizations of elliptic

systems. I. Compressible linear elasticity. SIAM J. Numer. Anal. 2000; 37(2):353–374.

27. Bramble JH, Pasciak JE, Schatz AH. The construction of preconditioners for elliptic problems by

substructuring. IV. Math. Comp. 1989; 53(187):1–24.

28. Smith BF. A domain decomposition algorithm for elliptic problems in three dimensions. Numer. Math.

1991; 60(2):219–234.

29. Pearson K. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 1901;

26:559–572.

30. Mandel J, Brezina M. Balancing domain decomposition for problems with large jumps in coefficients.

Math. Comp. 1996; 65(216):1387–1401.

31. Mandel J. Hybrid domain decomposition with unstructured subdomains. Domain Decomposition Methods

in Science and Engineering. Sixth International Conference of Domain Decomposition, Mandel J, Farhat

C, Cai XC (eds.), AMS, Contemporary Mathematics 157, 1994; 103–112. Como, Italy, June 15–19,1992.
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