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Abstract. A number of conjugate gradient methods are considered for a class of linear systems
of real algebraic equations. This class includes all symmetric and certain special nonsymmetric
problems, which give rise to three-term recursions. All the algorithms are characterized vari-
ationally. This makes it possible to derive error estimates systematically in terms of certain
polynomial approximation problems. Bounds are obtained, which are functions of the extreme
eigenvalues of the basic iteration operator.
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1 Introduction

It is the purpose of this survey article to present some standard and not-so-standard
conjugate gradient methods in a common framework. We consider iterative methods for
solving n X n linear systems of real algebraic equations

(1.1) Az =b.

We will focus our attention on general symmetric, not necessarily definite, and special
nonsymmetric problems where

(1.2) A=I-K, K'=-K.
Throughout the paper I denotes the identity matrix and K7 the transpose of K. We
concentrate on the variational formulation of these methods, i.e. the fact that the iterates

satisfy certain minimization criteria over a given subspace, even if the algorithms were not
originally designed from this point of view. We use these properties to derive error bounds.
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This framework also has a computational aspect, since it indicates how to choose the basis
for the subspaces so that the iterates can be obtained from the previous by adding only
one or two vectors.

Many of the results presented here have been known to the authors and specialists
in the field since the late seventies and most have already appeared in the literature.
However, we know of no previous survey covering all these topics systematically.

In their pioneering work, Hestenes and Stiefel [26] developed a theory for the positive

definite, symmetric case. They also noted that any linear system with a nonsingular
matrix can be transformed into a positive definite system by using the normal equations.
Thus, in the terminology of Faddeev and Faddeeva [12], the first (left) Gauss transform
can be used to obtain
(1.3) AT Az = ATb.
The matrix—vector multiplication required in each iteration of a conjugate gradient method
can be carried out by multiplying the vector with A and the resulting vector by AT. The
fact that such a factored form can be used was noticed already by Hestenes and Stiefel.
The conjugate gradient method applied to the normal equations (1.3) is sometimes re-
ferred to as Craig’s method; see, e.g. Faddeev and Faddeeva [12], or as CGNE; see, e.g.
Elman [10]. The second (right) Gauss transform

(1.4) AATy = b,
z = ATy

can also be used to transform (1.1) into a different positive, definite symmetric problem.
For the symmetric and special nonsymmetric cases considered in this paper, the coefficient
matrices in (1.3) and (1.4) become A% and I — K2, respectively. Since frequently the main
computational cost of a conjugate gradient step is the matrix-vector multiplication, the
use a Gauss transform increases the cost per step considerably. If the positive definite
product matrix is not formed, the cost per step can be expected to approximately double;
if it is formed, the product of A and AT is usually less sparse than A.

* The spectrum of the iteration operator affects the rate of convergence of the iterative
methods; generally the convergence slows with an increase in the condition number. It
is therefore desirable to avoid systems obtained by using the Gauss transforms since the
condition number of ATA can be much worse than that of A. We therefore consider
conjugate gradient type methods which produce a new approximation after only one
matrix-vector multiply involving the original matrix, and with convergence rates that
depend on the spectrum of A rather than ATA. As we will see, there will be some
disappointments.

In the absence of roundoff, the conjugate gradient method terminates in n steps or
less. Because of this finite termination property, this method was originally viewed as a
direct method; cf. Hestenes and Stiefel [26]. Reid [36] is credited with the revival of the
algorithm as an iterative method. If the system is well conditioned, much fewer than n
iterations can produce a very good approximation to the solution. For a detailed historical
review of the conjugate gradient method for the period 1948-1976, see Golub and O’Leary
[18]. .

In this paper, we will not attempt to discuss the effect of roundoff on the error
bounds. We only note that this issue was first treated by Paige [32] and Reid [36] and
that recent results by Greenbaum [21] shed new light on the issue of the reliability of the
error bounds, which are obtained while ignoring roundoft.

The preconditioning idea, which goes back at least to Hestenes [25], consists of
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replacing “the system given by another system with the same solution but with a different
coefficient matrix A of smaller condition number”; see Rutishauser [37, p.38]. Thus, the
preconditioned system is expected to have better convergence properties. We can use
positive definite, symmetric preconditioners for all the methods considered for symmetric
problems with virtually no change in the theory; see further Sections 2 and 4.

Many methods of conjugate gradient type can be derived variationally. This can
be done systematically by selecting an expanding set of subspaces, known as the Krylov
subspaces, and by defining a sequence of approximate solutions in these subspaces by
using a Galerkin condition, or by minimizing the norm of the residual. For a special
choice of the subspace, an approximate solution, which minimizes the Euclidean norm
of the error, can also be computed. By exploiting the special form of A, we show in
Section 2 that the Krylov subspaces can be defined in terms of Lanczos vectors, which
satisfy a three-term recurrence relationship. As a consequence, the iterates obtained using
these subspaces satisfy similar simple recursions; cf. Section 3. Faber and Manteuffel [11]
have shown that the matrices for which it is possible to obtain such simply structured
algorithms essentially are of the form A = (T + igI), where i := /=1, 6 and o are
real, and T is Hermitian. This paper covers these cases when the matrix A is real. An
analysis of the complex case can be found in a recent paper by Freund [15].

For completeness, we include a derivation of the algorithms for the positive definite
case. We use an approach quite similar to that of Paige and Saunders [33]. This sets the
stage for a description of their algorithms SYMMLQ and MINRES, which were introduced
in the same paper to solve indefinite symmetric problems. The main result of Subsection
3.3 shows that the auxiliary vectors, introduced by Paige and Saunders in the SYMMLQ
algorithm in order to make the computation stable, are minimum error solutions; cf. also
Fletcher {13]. An underlying variational formulation therefore makes it possible to derive
error bounds for one of the sequences of solutions provided by the SYMMLQ algorithm
using techniques very similar to the standard case; cf. Section 4.

The special nonsymmetric problems considered here naturally arise from linear sys-
tems with coefficient matrices with a positive definite symmetric part. In some appli-
cations, it is preferable to repeatedly solve a linear system with the symmetric part as
coefficient matrix rather than solving the original system directly. There are also inter-
esting applications with a series of problems with different coeflicient matrices but with
the same symmetric part; cf. Rapoport [35]. The symmetric part of the coefficient matrix
serves as a preconditioner and the problem is reduced to the special nonsymmetric form.
We use the splitting

(1.5) A=M-—N,
where
(1.6) M = (A+AT)/2

is the symmetric, positive definite and
~N = (A-A")/2

is the skew-symmetric part of A; see Concus and Golub [4] and Widlund [49]. The
operator

(17) K = M_lN

plays a central role in the algorithm and in our analysis. It is easy to see that K is
skew-symmetric with respect to the M-inner product defined by

(1.8) (u,v)p = (u,Mv) := u’ Mo.
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The results of the analysis of the algorithm obtained by using a Galerkin condition, known
as the CGW algorithm, and of the alternative minimal residual algorithm given in the
thesis of Rapoport [35], are disappointing. As first shown by Young [50], cf. Hageman,
Luk and Young [22], the CGW algorithm is directly related to a doubling algorithm; we
show in Subsection 3.5 that the CGW algorithm can be obtained using a Gauss transform.

In the final section, we collect the error bounds known to us. The analysis is based on
best polynomial approximation problems on the spectrum of the operator which defines
the Krylov subspaces. Such a result is well known for the positive definite case; cf. Daniel
[5] and Luenberger [30]. The other cases are now also well understood primarily because
of the efforts of Freund [14, 15] and Freund and Ruscheweyh [16].

We also note that there are other conjugate gradient-type methods for general non-
symmetric problems that can be characterized variationally, but for which no three-term
recurrence is possible. We refer to Dennis and Turner [6], Eisenstat, Elman and Schultz
[9], Elman [10], Hageman and Young [23], Saad and Schultz [39], Young and Jea [51] and
the references given therein, for descriptions of such methods. In particular, in Eisen-
stat, Elman and Schultz [9]and Elman [10] connections are established between minimum
residual methods for the special matrices (1.2) and methods for general nonsymmetric

matrices such as Orthomin, GCR and GMRES.

2 Krylov Spaces, Lanczos Vectors and the
Restriction of the Operators to the Subspaces

2.1 The Symmetric Case

The approximate solutions zx of (1.1) are constructed using expanding affine spaces of the
form zo + S*, which are of dimension k = 1,2,... The Krylov subspace, S* = S*(A,v,),
is spanned by the first k vectors of the Krylov sequence

(2,1) 'U],A'U],...,Ak—l’l)l,...

We note that for any constant a, S*(A + al,v;) = S¥(A,v;). We also ignore the
normalization of the element vy and regard S*(A, Bv;), B # 0, as the same as S¥(A, v,).
The operator A and the initial element v; completely determine these spaces. The Krylov
sequence (2.1) was apparently introduced over half a century ago by Krylov [27], see also
Faddeev and Faddeeva [12], but we do not know who first attributed Krylov’s name to it.

In this subsection, we assume that A is symmetric. The system (1.1) can be precon-
ditioned, from the left, by a positive definite matrix M. Preferably M should be close
to A in the sense that the generalized eigenvalues of the pencil defined by A and M are
close to each other; see Section 4. The transformed equation,

M Az = M~ ',

is then solved using the Krylov subspaces S*(M ' A, v;). The operator M~ A is symmetric
with respect to the M-inner product (1.8). This inner product has to be used in the
formulas which provide the parameters for the Lanczos vectors and the iterative methods,
instead of the Euclidean inner product. Just as there are left and right Gauss transforms,
there are left and right preconditioners. We can thus also transform equation (1.1) into

(2.2) AM™y=b, z=M7y.

In this case, the use of the inner product u” M~1v is appropriate.
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The initial element v; of the Krylov sequences, which is relevant in this work, is
the initial residual ry := b — Axg, where z¢ is the initial guess, or in the case of a left
Gauss transform, Arg. For the left preconditioner, the initial element can be chosen as
vy = M7 1rg or as M~'AM~'ry,. To simplify the notations, we will, except in the special
nonsymmetric case, only discuss the case when no preconditioner is used.

The Lanczos vectors v;, 7 = 1,2,..., provide an orthonormal basis for the subspaces
S*¥, cf. Lanczos [28]. They are defined recursively, are unique up to sign and are obtained
by a Gram-Schmidt orthogonalization process:

Normalize vy,

k
(2.3) Brs1vesr = Ave—Y bxv;, k=1,2,...,

i=1
where Si41 is chosen so that vy, has unit norm. Since the vectors are orthonormal,
(2.4) 6ik = (Avk,v;), ‘t _<_ k
The Lanczos vectors depend on the operator A and the direction of the initial vector.
They are uniquely defined by the Krylov sequence and the inner product used in (2.4).
We show that in the cases considered in this paper, equation (2.3) reduces to a three-
term recurrence similar to those of the classical theory of orthogonal polynomials. This

means that 6; = 0,7 < £ — 1. It is convenient to change our notations and let oy := 8k,
and g 1= 6x=1-

Lemma 2.1. Let A be symmetric, let vg := 0, let v; be a given unit vector, and let
(2.5) ﬂk+1vk+1 = A’Uk — QU — YkVk-1-

If a = (Avk,ve), Brs1 := (Avk,vkt1) and v, := (Avg,vk—1), then (vg41,v;) =0, j < k,
ie. vp1LS¥, for k =1,2,... The vectors have unit length, and B = v, fork=2,3, ...

Proof. The fact that Bx = y follows directly from the symmetry of A.

For the orthogonality, we proceed by induction. The case of k = 1 is trivial. Assume
that the conditions are valid for j < k. We find that Biq1(vetr1,vk) = (Avg,ve) — ar = 0.
Using the symmetry of A and the induction hypothesis, we find that )

Bi+1(Vk41, Ve-1) = (Vk, AVk-1) — a(v, k1) — Y = B — 7 = 0.
Finally, for j < k - 2,
Bes1 (v, vj) = (vr, Avj) — an(vr, v;) — Th(Vr-1, ;).
Since v; € =2, Av; € S*~! and all three terms vanish by the induction hypothesis.
Finally, since Bxt1(vit1, ves1) = (Avk,Ukt1) = Yrt1, it follows that vgy; has unit

length. O
We can therefore write the three-term recurrence (2.5) as

(2.6) Bre1vesr = Ave — ok — Prvi_1.
Let
(27) ‘/}c = [vlaUZa”'avk]

be the n x k matrix with the first k¥ Lanczos vectors as columns. Then equation (2.6)
gives

(2.8) AV = Vil + ﬂk+1vk+1€a)-
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Here ea) := (0,...,0,1) and T is the k x k symmetric tridiagonal matrix
[ o B2 ]
B2 oz Bs
Ty := -
k Bi o Bin
L Br ]

By the orthogonality of the Lanczos vectors,
(2.9) VIAV, = Ty,

i.e. Ty is a matrix representation of the restriction of the operator A to the subspace
Sk = Sk(A,v,) using the convenient basis provided by the Lanczos vectors.

2.2 The Skew-Symmetric Case

We will now consider the special nonsymmetric case (1.5)-(1.6) with M positive definite. If
the operator A is skew-symmetric, the Lanczos vectors can be constructed quite similarly
to the symmetric case just considered.

Lemma 2.2. Let A be skew-symmetric, let vo := 0, let v, be a given nonzero vector, and
let
ﬂk+1vk+1 = Avg — YiUk-1.
If v = (Avg,vk-1)/(vk-1,Vko1), k > 2, then (vig1,v;) = 0, j <k, ie. ve LS*, k =
1,2,...
Note that Bky; is not yet defined, i.e. the norm of the vector vyy; has not been

chosen. In the derivation of the CGW algorithm, cf. Subsection 3.4, it is convenient to
use a special normalization of the vectors and we adopt this normalization from the start:

(2.10) B2=1 Prrit+tm=1 k22

Proof of Lemma 2.2. We again use an induction proof. The case of £ = 1 is easy, since
the operator is skew symmetric, i.e. (v, Av) = 0 for all v. The orthogonality of vy, and
v also follows from this formula and the induction hypothesis, and that of vgy; and vi_s
from the formula for 7. The orthogonality of veyy and v;, 7 < k—2, is established almost
exactly as in the proof of Lemma 2.1. O

Lemma 2.2 applies directly to the operator K defined in (1.7) if the M-inner product
(1.8) is used throughout. Thus,

(2.11) Ye = (Kvk,vk—1)m/ (Vk-1, ve—1)m = (Nvk, ve—1)/(vk—1, Mog_y),
and the vectors defined by

(2.12) Br41vr+1 = Kvg — Yxv-1,

are M-orthogonal. Since the system (1.1) can be written as

(2.13) (I-K)x=M"b,

the initial residual is M~'b — (I — K)zg = M~'ry and the relevant Krylov subspaces are
Sk = Sk(I - K, ’Ul) = Sk(K, ’U]), with m = M_IT‘().

The following results will be used in Subsection 3.5.
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Lemma 2.3. Let ¢, and ¢, be odd and even polynomials, respectively. Then
(e(K ), ¢po(K)v)ar = 0, for all v.
Proof. The operator ¢.(K) is symmetric with respect to the M-inner product. Therefore,

(¢e(K)v, $o(K)v)ar = (v, 6e(K)bo(K)v) -

Since ¢.(K)¢o(K) is an odd polynomial in K, it is skew-symmetric and the expression
vanishes. O

Lemma 2.3 directly implies the following
Corollary 2.1. S%*(K,v;) = S*(K? v1) ®m S*(K? Kv,), where ®p denotes a direct
sum of M-orthogonal subspaces.

Let
(2.14) e = (Vk,vk)M.
From (2.12), it follows

Brt1prs1 = (vk+1, Kve)m = (Vkgr, Nog).
Similarly from (2.11),

Yepr—1 = (Nvg,vp1) = —(vk, Nog_q).

Therefore,
(2.15) Ve = —Brpr/pr-1-
If the coefficients B are chosen as in (2.10), they satisfy the recurrence relation
(2.16) Ba=1, Brr1 =1+ Belpr/pr-1).
Let Vi be defined as in (2.7). Then from (2.12), it follows that
(2.17) KVi = Vidk + Bres1Vrs1€),
where Ji is the tridiagonal matrix
' ' [ 0 7 ]
Bz 0 73
Je = ;
* Bi 0 Y
I B 0
Therefore,
(2.18) VIAV: = VI(M — N)Vi = VIM(I — K)Vi = Re(I — J),

where R; is the diagonal matrix with entries py, p2, ..., px; see (2.14). By using (2.15)
and (2.16), we see that the parameters 3; > 0 and 4; < 0 and that the matrix Ji is similar
to a skew-symmetric tridiagonal matrix, via the diagonal similarity transformation Ri/ 2,

3 The Basic Algorithms

3.1 The Standard Positive Definite Case

In this subsection, we derive the standard conjugate gradient, the minimum residual
and the minimal error methods for the solution of (1.1), where A is symmetric, positive
definite. The resulting approximate solutions belong to the k-dimensional affine subspaces
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zo+S*(A, o) or zo+S*(A, Arg). We choose to present the algorithms from the variational
point of view, i.e. developing the formulae directly from the optimality conditions. We
prefer this to the usual presentation of the conjugate gradient algorithm, in which the
formulae are given first and the variational properties deduced later; see e.g. Golub and
Van Loan [19] or Stoer and Bulirsch [42].

The conjugate gradient iterates z§ minimize the A-norm of the error. Thus,

(3.1) llzf —2*(|% = minlz — 2|4, = € 2o+ 5*(4,r0) .
Here ro = b — Azo , z* is the solution of (1.1) and |ly||% = (v, Ay). The expression (3.1)
can also be written as the square of the A~!-norm of the residual.

The minimal residual solution is determined by minimizing the Euclidean norm of
the residual over the same affine subspace while the minimal error solution is determined
by minimizing the Euclidean norm of the error over a different affine subspace, namely
zo + S*(A, Arp). We first discuss the standard conjugate gradient method in some detail.

Since
(3:2) e — "I = (z, A) — 2(2,8) + (2%, b),
the minimization problem (3.1) is, after dropping a constant term, equivalent to

min [(z, Az) — 2(z,b)], = € 3o+ S¥(A, 7o)
and to
min [(z — zo, A(z — 20)) — 2(z — Zo,70)], T € zo+ S*(A,70) .
By setting the gradient to zero, it follows that the same solution is obtained from
the Galerkin equation

(3.3) (b— Az,v) = 0, for all v € S*(A,ry),
which can also be written as
(3.4) (A(z — zo),v) = (ro,v), for all v € §*(A, o),

In the last two equations, we solve for z € zo + S*(4, ro).

We now represent z§ in terms of the Lanczos vectors, i.e. we use the Lanczos vectors
as the basis in which we represent S*(A,r,). Thus,
(3.5) zy — zo = Viyk,

where V; is defined in (2.7) and y§ := (nfk),ngk), .. .,n£k))T.
Substituting this expression into the Galerkin equation (3.4), we obtain

(3.6) VI AVig = Vire.
By (2.9) and Biv; = ro, this is equivalent to the tridiagonal system
(3.7 Tyi = Breqys

where €(;) := (1,0,...,0)T.
The residual
ry = b— Az}
is a multiple of the Lenczos vector vgy; and the residuals are therefore orthogonal. To
see this, we use (2.8) and obtain
Aka)C, = Vkayi + ,Bk+lvk+1 e(T,,)yi-
By using that Syv1 = ro, (3.5) and (3.7), we find that

(3.8) S e
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Thus, by Lemma 2.1,
(3.9) ri L S¥(A,m0) .
Orthogonality also follows immediately from the Galerkin condition (3.3). If Bxy, = 0,
then Az{ =b.

Following Paige and Saunders [33], we now provide further algorithmic details.
Cholesky’s method can be used to solve (3.7). The coefficient matrix is factored

(3.10) T. = E.DiE],

where Dy is a diagonal matrix with elements 81, 82, . . ., 8, and Ey is a unit lower bidiagonal
matrix with off-diagonal elements A;, As, ..., Ax. These elements are obtained by using
the recursions

(3.11) 51 = Oy, /\j =,3j/5j_1, 6j=aj-,3j/\j, j=2,...,k.
Here the a4 and f; are the coefficients of the three-term recurrence (2.6). The matrices
Ey_1, Dy are the (k—1) x (k—1) principal minors of the matrices Ey, Dy, respectively.
In step k of the algorithm, the new elements Ag, é; are computed using only the values
ak, Br and 8;_;.

Similarly, sx = (&, ---,&)T, the solution of the lower triangular system

(3.12) EyDyse = Bieqy,

has the same k — 1 first components as sx_1; cf. (3.7). The component & is obtained by
the formula

(3.13) & = —bk—1 A klk—1/ bk,
with £; = B1/a;. On the other hand, the vector
(3.14) yi = E; sy,

changes completely from one step to the next. It is therefore more convenient to work
with an additional, A-orthogonal, basis for S*. Asin (3.5) let

(3.15) z — zo = Prsi,
where
(3.16) Pi = [p1,p2, - o] == VBT,
ie.
k
(3.17) zf = 2o+ )_&pi = iy + ki
=1

It follows from equation (3.16) that the vectors p; can be computed directly from the v;
by the recursion

(3.18) pL=vi, pj=v;i—Ajpi-, J 22
By using (3.9), we find that
(319) (Thpj) = 07 .7 S k.

Equations (3.17) and (3.18) show that the approximate solution z§ can be computed
directly from the previous iterate z§_,, and that the Lanczos vectors need not be saved.

In summary, a step of the conjugate gradient method proceeds by computing new
values of @ and f using the formulas in Lemma 2.1, a new Lanczos vector using (2.6),
new values of § and A using (3.11), a new component ¢ of s using (3.13), a new vector
p using (3.18) and finally a new approximation to the solution using (3.17). In this
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* implementation only five vectors of storage are necessary. The matrix A is only needed
in terms of a subroutine which produces the matrix-vector product and, as previously
pointed out, this makes the algorithm quite independent of the choice of data structures,
etc.

The following computation shows that the vectors p; are conjugate, i.e. A-orthogonal,

PTAP, = EL'VIAVLELT = BTV E;T = D,.
The vectors p; are often called search directions, since by (3.17), we move in the direction
of pr when we go from z§_; to z§. By using the conjugacy of the search directions, it is
easy to show that z§ can be obtained by solving
a5 — =1 = min | (25, + #pe) — =7
By setting the derivative with respect to s equal to zero, we obtain an alternative formula
for &
(3.20) & = (P, r-1)/(Px, Apr)-
From (3.17) it also follows that
Tk — Ti-1 = EkPe-

By using formulas (3.8) and (3.18), we obtain

Eehn(@han — 20) = ~(1Bren) e = & A (2 — 710),
and thus
i1 = 25 — Eear (1 Bra) 7 (rk + & Mewr ) B (5 — 251))-

It follows from (3.14) that n,(:k) = k. From (3.13) and (3.11) we then obtain the form of
the algorithm, which is associated with Rutishauser [37],
(3:21) Tipr = T + (1/6k1)(r + M1 Bria (23 — 75_1))-

We now turn to the minimal residual algorithm. As we have previously noted, this
solution is defined by minimizing the Euclidean norm of the residual over the same affine

subspace that is used for the standard conjugate gradient method. By quite similar
arguments, we obtain a five diagonal linear system of equations,

(3.22) VI AWyl = VT Arg.
By further straightforward computations using (2.8), we can rewrite this equation as
(3.23) (T} + Bryrewyelny)vi = a1Breqy + BiBae(a).

We will return to a more detailed discussion of equation (3.23) in the next subsection.

In a similar way, we can derive a pentadiagonal linear system for the minimal error
solution. This solution has the form
(3.24) zi = zo + AViyi.
The resulting linear system has the same coefficient matrix as (3.23), but a different right
hand side. The system has the form

' Vi AWyt = Vilro,

or
(3.25) (T2 + Brrremeln)vi = Breq).

These pentadiagonal linear systems of equations, which are nonsingular if A is nonsin-
gular, can also be solved by Cholesky’s method. A typical row of the resulting triangular
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“matrices has two nonzero off-diagonal elements and the search directions can be computed
recursively from the two previous search direction vectors and one Lanczos vector. We will
return to a study of the minimal residual and minimal error solutions since they can be
computed in a stable manner for any problem with an arbitrary nonsingular, symmetric
but not necessarily positive definite, coefficient matrix.

3.2 The Indefinite Symmetric Case

In this and the next subsection, we consider the case where A is symmetric, nonsingular
but indefinite. The Lanczos vectors and the Krylov spaces are defined exactly as in the
positive definite case. The quadratic form (3.2) no longer has a minimum, but we can
use the Galerkin condition (3.3) to try to find a unique saddle point. As in the previous
subsection, we then obtain the tridiagonal system of equations (3.7). The coeflicient
matrix is the restriction of an indefinite operator to a subspace and the tridiagonal matrix
can therefore be singular. If it is almost singular, the solution of equation (3.7) can have
a very large norm and catastrophic cancellation then makes the procedure, as developed
for the positive definite case, numerically unstable. On the other hand, an elementary
argument shows that if the tridiagonal matrix T} is singular, then Ty, is not, unless the
off-diagonal element Bx4; = 0. By Lemma 2.1 and (3.8), this happens only if the residual
rx = 0. Because of these difficulties, it is natural to consider an alternative algorithm of
solving equation (3.7).

We follow Paige and Saunders [33] and use an LQ factorization. Other possibilities
have been explored in the literature. Thus Chandra [3] developed an alternative algorithm,
SYMMBK, in which the tridiagonal matrix T} is factored using both 1 x 1 and 2 x 2 pivots,
as in the algorithm by Bunch and Kaufman [2]. Simon [40], on the other hand, proposed
that the tridiagonal matrix and the norm of the residuals be computed first, without
generating the iterates, and that when the norm of the residual is sufficiently small, the
linear system (3.7) be solved by a stable method. Finally, the solution is assembled
by refrieving the Lanczos vectors from secondary storage or by regenerating them; cf.
Parlett [34]. Both, in the SYMMBK algorithm and in Simon’s method, only the standard
conjugate gradient approximation z§ is produced, while the SYMMLQ algorithm of Paige
and Saunders also provides an additional sequence of approximate solutions which we
further characterize.

Early on, Fridman [17] proposed that the minimum error approximations to the
solution of (1.1) in the subspace $*( A4, Aro) be used. As we will see, the choice of this initial
element of the Krylov space is crucial. Let v;,i = 1,2..., be the Lanczos vectors spanning
S*(A, Arp). Fridman’s main observation was that the minimum error approximation can
be written as R

5 =0+ Y p;v; , where p; = (z* — z0,v;).
i=1
By the orthogonality of the Lanczos vectors, it is also true that ¢x = (z* — z§_;,vx). By
using (2.6), we find that

wk = (2% — T_y, Akt — Qh-1Vk-1 — Br-1vk-2)/ Bk -
Since z* — z%_, is orthogonal to S*~1(A, Ar), we find that for k > 1
wor = (A(x* — 51 ), ve-1)/ Bk = (Th=1,v6-1)/ Bx -

Similarly, since the initial element of the Krylov sequence is Ary,
¢1 = (2" — z0,v1) = (A(z" — z0),70)/[| Aro|| = (ro,70)/|| Aro|.
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Fridman’s method is numerically unstable; see Paige and Saunders [33] or Stoer and
Freund [43]. In the next subsection, we show that the additional sequence of approximate
solutions of the SYMMLQ algorithm provides a stable computation of the minimum error
solution. This appears not to have been known to Paige and Saunders.

Adopting the notations of Paige and Saunders [33], we factor T
(3.26) T = LkQx,
where Qy is orthogonal and L, is lower triangular. To fully understand the derivation
of the SYMMLQ algorithm, we need to examine L and Qi in some detail. The LQ
factorization is computed recursively. The orthogonal matrix @y is the product of k — 1
elementary orthogonal matrices Q_1 k- - - @1,2- In the first step an elementary symmetric,
orthogonal matrix @2 is used to eliminate the (1,2) element of the tridiagonal matrix T.
This orthogonal matrix is block diagonal with all diagonal elements equal to one, except
for a leading 2 x 2 diagonal block of the form

(3:27) [ s e ] :

with ¢? + s? = 1. It is easy to see that if T is multiplied from the right by @ changes
occur only in the two first columns and that a nonzero element is introduced in the (3,1)
position. In the second step (and in the steps that follow), the elements of the first row
and first column are not changed, while the elements in the three first rows and two first
columns of what remains of the matrix are changed by multiplying by an elementary
orthogonal matrix (23, constructed similarly to @ .. Note that this (k — 1) x (k — 1)
matrix involved in the second step is initially tridiagonal. A similarly situated element
below the diagonal becomes nonzero but there is no further loss of sparsity. In the second
step, which only affects the second and third column, the (2,2) element is changed a
second and final time. By the same arguments, the matrix L; differs from the k x &
leading minor of Ly, only in the (k, k) element. After k — 1 steps, the lower triangular
matrix L is obtained. It has nonzero elements in positions at a distance up to two from
the,diagonal. This matrix is singular if and only the matrix T} is singular. By simple
matrix algebra, using the orthogonality of Q4, it is also easy to see that Ly is a, possibly
singular, Cholesky factor of T2.

As in the positive definite case, we can in principle obtain the conjugate gradient
solution, for those k for which it exists, by setting

(328) Z‘; — I = Wkik.

Here z; is the solution of

(3.29) Lizk = Breqy,

and

(3.30) Wi = [wi,wa, ..., 5% = ViQT;

cf. (3.12), (3.15) and (3.16). By using the product form of Qx given above, we see that
only the k'* column of Wy changes when we update it to produce Wi,1. Since the z¢
iterates do not always exist or can be quite susceptible to roundoff, Paige and Saunders
work with a different sequence zk from which z{ can be computed upon demand. The
sequence zf is obtained by replacing Ly by Ly, the k x k leading minor of L1, and Wy
by Wi, the first k£ columns of Wi, ;. Thus

(3.31) zF — o = Wiz,

where z; is the solution of

(3.32) Lz = preq).
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The first k — 1 components of 2z coincide with z;_; since all but the first component of
the right hand side is zero. In the update step the k** row of Ly is calculated to obtain
(x, the new element of 2;. A new approximation z¥ is given by the formula

(3.33) oy = Tf_y + Cews;

cf. (3.17). By using the fact that only the last rows of Ly and L; differ and (3.28)-(3.33),
it is easy to see that the conjugate gradient approximation satisfies

(3.34) i1 = 2% + GerrBean,

where {1 is the last component of Zx,1.

The SYMMLQ algorithm returns either z¥ or ¢, depending on which one has the
smallest residual norm, once a prescribed tolerance has been met. The residual norms are
computed at a cost of a few scalar operations from quantities already available; see Paige
and Saunders [33].

In the same paper, Paige and Saunders also discuss MINRES, the minimum residual
algorithm. The Cholesky factorization of the matrix in equation (3.23) is
(3.35) T + Brprewelsy = LeLli + Biyrewelsy = LeLi -

This Cholesky factor is the same matrix as in (3.32). This follows from the fact that Lj
is the k x k leading minor of Liy:.

The vector y], defined by equation (3.23), changes completely from one step to the
next. Therefore, in a way similar to the conjugate gradient solution, cf. (3.15)-(3.17), let

(3.36) T} — To = My,

where

(3.37) My = [my,mg,...,my] = Vil7T
and ty = (1,-.., 'rk)T is the solution of

Ltk = cnfreqy + BrBzea)-
The first ¥ — 1 components of t; coincide with ¢4_; since all but the first two components
of the right hand side are zero. We obtain,
Iy = Tp_; + TeMg.
Since the last row of L, has nonzeros only in the last three positions, the search direction
my can be computed recursively from the Lanczos vector v, mg_y and my_.

We also show how to obtain the conjugate gradient solution from the minimal residual
solution. From (3.35), it follows that Ly and L; differ only in the (k, k) position. Let Ci
be the diagonal matrix with entries 1,...,1,¢; such that Ly = LyCi. The quantity ¢
appears on the diagonal of the 2 x 2 matrix (3.27) of Qi_14.

Premultiplying (3.6) by T = ViT AVi, we see that y§ satisfies

Tyi = LiCEL{y; = Vi Aro,
while y} satisfies
LeLiyy, = Vil Aro,
and t, = L¥y]. Thus,
CRL{YE = t.
We rewrite (3.5) using (3.37) as
z8 — 2o = Vil TLTyE = M C%t.
From (3.36) and the form of Cy, we finally obtain
25 =z} + Mi(Ci? ~ Dt =z} + 7u(c? — 1)my.
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3.3 Variational Formulation of the SYMMLQ Algorithm

Paige and Saunders introduced the second sequence of iterates zf primarily to obtain
a stable algorithm. They also noted that zf is a better approximation than z§ of z*
in the ly-norm. This follows from (3.34) since from (3.30), W w41 = 0. Fletcher [13]
rediscovered Fridman’s method independently, while considering a class of biconjugate
gradient methods, and showed that the resulting iterates are the same as z£. Here we
present a different proof of this fact. It follows then, that since one of the iterative
sequences can be characterized variationally, it is possible to derive an error bound for

the SYMMLQ Algorithm; see Subsection 4.2.

Theorem 3.1. The sequence z¥ of the SYMMLQ algorithm is the minimum error ap-
prozimation in the subspace S*(A, Arg).

Proof. By using equations (3.25), (3.24), (3.35), (3.31) and (3.32), we see that the theorem
follows by showing that

(3.38) Wi = AV L7 7.

The matrix Wy, consi_sts of thg first k£ columns of Wk+1 = VH,QZH. Postmultiplying the
m x (k + 1) matrix Wiy by LT, ,, we obtain, cf. (3.26),

Vk+1 Tk+1 = AVk+1 .

The first k£ columns of AVi,; coincide with AV,. The matrix L,:T is upper triangular and
is the k x k principal minor of I_/;L. Being upper triangular, the last row of i,:}:l has
a nonzero only in the (k + 1,k + 1) position. Therefore, AViL; T consists of the first k
columns of AVI=+1Z;31 and (3.38) is established. O

3.4 The Special Nonsymmetric Case

If the matrix A in (1.1) is skew-symmetric, the Lanczos vectors, which span the Krylov
subspaces are constructed as in Lemma 2.2. Similarly, as we have seen in Sections 1 and
2.2, if the matrix A is nonsymmetric but can be split as in (1.5)-(1.6) with M positive
definite, then the matrix K = M~1N is skew-symmetric with respect to the M-inner
product and the relevant Krylov space is S¥(K,v;), where

(339) v = M_lTo = M_lb— (I - K).’Eo

In this case, the Galerkin procedure works and gives invertible linear systems of
equations and approximations for which error bounds can be derived. We first describe
the method developed by Concus and Golub {4] and Widlund [49], which is commonly
known as the CGW method. The Galerkin condition has the form (3.4) and, as in the
symmetric, positive definite case, it is satisfied by =} — zo = Viy{, where y{ is the solution

of

(3.40) VT AViyl = Vo,
From (2.14), (2.18) and (3.39), it follows that (3.40) is equivalent to
(3.41) Rk(I — Jk)yi = ple(l).

We note that p; = (v1, Mv;) is the first element of the diagonal matrix Ry and that we
therefore can simplify equation (3.41) to
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With the normalization given by (2.10), the LU factorization of (I — Ji) = LiUy
becomes exceptionally easy, requiring no arithmetic; this is the reason for choosing f; in
this way. The factors are

1 ( Bz ~72
-1 1 Bz -3

Bi —i

11 L Br+1 |
It is also easy to see that
Liepy = ey,
where E(Tk) := (1,1,...,1)T. The triangular system
Uryi = )
remains to be solved. We wish to obtain yf = U, &) directly from yf_,. Using block
Gaussian elimination, we find that since
0
U1 :
Up = 0o |
Yk
0 | Ben

its inverse is
-1
U-! = Uk—l (7k/ﬂk+l)uk—l
k

L 0 | 1/Bin
where ug_y := Uk__lle(k_l), ex-1) := (0,...,0, )T, Thus,

1. [ -y | Ui €k - g
yi = Ul: 1('Z(k) = Uk ! [ e(kl 1) = [ k-16(k 1)1‘|/'ﬂ(;7+l-cl/ﬂk+l)uk 1 } = [ ylb_l ] + Uk,

where u = [ (7"/1'[72:)1“‘_1 ] = Uk_le(k). We can therefore obtain y; and uy directly
+1

from y;_, and ug_;. The Galerkin solution is then
(3.43) ] —mo = Viyl = VkUk_lé(k) = Viciyi_, + Vius.

The first term on the right in (3.43) is z]_; — 7y = Vk_1y{_, while the second is Az} :=
zl — z}_, = Viug. We can therefore write (3.43) as

Yk 1 e 1
3.44 Azl = —Visjup 1+ —vpe = —Azd_ + —v;.
(3.44) T B T T Bt ¢ B F B
Since by (2.10), 7 = 1 — Bk,
: Y _ 1 _1
Brsr  Brar

Only the parameter
(3.45) we = 1/Bky1,

is needed and we rewrite (3.44) as

Az] = (wp — )AZI_; + wyvy,
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or equivalently
(3.46) Ty = Thop + wi(Vk + Th_y — THoy)-
Lemma 3.1. Let v, be the Lanczos vectors constructed as in Lemma 2.2 with the initial
vector given by (3.39), and the normalization (2.10). Let the residuals of the CGW method
bery :=b— Az]. Then viy1 = M7'ry, k=10,...
Proof. We use induction. From (3.39) the assertion holds for £ = 0. Let z_; = 0. From
(3.46),

= b— Az] = ri_y — wp(Avk — rr—1 + Th—2)-
Premultiplying by M~!, we obtain

M'lrk = M_lrk_g — wk((I - K)‘Uk — M-lrk—l + M—l’f‘k_z),

which by the induction hypothesis is

M—lT‘]c = Up_1 — wk((I - K)’Uk — v+ 'Uk—l)
(3.47) = wirKvr + (l — wk)vk_l.

The lemma follows from (3.43) and (2.10), and by comparing (3.47) with (2.12). O

A consequence of Lemma 3.1 is that py = (vk,r%-1); cf. (2.14). Also note that from
(2.16), 1/wk = 1 + (pr/pr—1)/wk-1, k > | and this is how wy is actually computed.

We conclude the subsection with a brief description of the algorithm developed by
Rapoport [35] in his 1978 dissertation, which is the minimal residual analog to the CGW
algorithm. The algorithm is derived, straightforwardly, by minimizing the M~!-norm of
the residual of the equation (1.1) over the same affine subspace. Just as in the symmetric
case, cf. (3.22)-(3.23), a pentadiagonal linear system results. As noted by Rapoport, all
elements next to the diagonal vanish. However, it does not seem to be possible to realize
any direct savings by using this structure. We cannot see any convincing reason to prefer
this method over the CGW algorithm.

3.5 Variational Formulation of the CGW Algorithm

We conclude this section by showing that the approximations produced by the CGW
algorithm with even and odd indices, {z};} and {z},,,}, also can be generated by applying
the standard conjugate gradient method to the system obtained after using the second
Gauss transform and the initial guesses zo and z}, respectively. This result is closely
related to Corollary 2.1 and greatly simplifies the error analysis, given in the next section,
since the theory for the standard symmetric, positive definite case applies.

It is disappointing that the CGW algorithm offers so little new and that the error
bound depends on the spectrum of I — K2. However, as in the SYMMLQ algorithm, the
CGW algorithm provides two subsequences, the odd and even. There are cases when one
of them converges appreciably faster than the other and in such cases the CGW algorithm
can be faster than if only one of the subsequences were used.

The result can be derived from a result by David Young [50], who appears to have
been the first to observe a relationship between the CGW algorithm and a standard
algorithm using the operator I — K2, His result is presented in a context different than ours
in Hageman, Luk and Young [22]. Further results are given in two papers by Eisenstat
[7] [8]- Connections with the symmetric system obtained by using the second Gauss
transform were established in these papers; see also Elman [10] and Freund [14].

The use of the second Gauss transform amounts to a change of variables

(3.48) z=I+K)z.
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The system (2.13) becomes
(3.49) (I—K¥z=M"b.
When the standard conjugate gradient method, with the M-inner product, is applied to

(3.49) the relevant Krylov subspace is S¥(I — K2,v;) = S¥(K?,v,), where v, is the initial
residual given by

(3.50) vp=M1b~(I—-K2g=M"b—(I - K)zog= Mr,.
We also note that by a direct calculation using (3.46), with w; := 1 and z_, := 0, the
approximation after the first step of the CGW algorithm is given by
(351) :1:'1” =z + V-
By Lemma 3.1, the residual after the first step and the second Lanczos vector are given
by
(3.52) ry = MKry and v, = Kv;.
The main result is formulated as follows.

Theorem 3.2. Let {z¥'}, k =0,1,..., be the CGW approzimations to z* for the special
nonsymmetric problem (1.5)-(1.6). Let zo and z; be defined by zo0 = (I + K)zo and
z¥ = (I + K)z and consider the system obiained after the second Gauss transform

(3.53) (I-K3z=M"b.
Let z, be the conjugate gradient solution of (3.53) using the initial guess z5. Then the
approzimations with even indices, %, k = 0,1,..., coincide with (I + K)z;. The odd

subsequence can similarly be obtained by the conjugate gradient solution of the same system
using the initial guess z;.

Proof. By the Galerkin condition (3.4), the solution z} is the unique element in zo +
S?(K,v;) with a residual M~'b — (I — K)z¥, which is M-orthogonal to S?**(K,uv,).
Similarly, 24 is the unique element in zo + S*(K?,v;) such that the residual

' i = vy — (I — K?)(2k — 20)

is M-orthogonal to S*(K?2,v,). Since (I + K)(zx — 20) € (I + K)S*(K?,v,) and
(I+K)S*(K? v,) C S*(K,v), we can by Corollary 2.1 complete the proof of the theorem
for the even case by proving that 7, is M-orthogonal to all of S*(K,v,). Since 7 €
S*1(K?, v), this follows directly from Lemma 2.3. The result for the odd subsequence
is obtained in almost exactly the same way, by using the formulas given in (3.51)-(3.52).
[m]

4 Error Bounds

It is easy to see that any element of the Krylov space S*(A4,v;) can be represented as
ék_1(A)v1, where dr_1 € Pi_1, the space of polynomials of degree k — 1. The errors of
the conjugate gradient methods considered in this paper can be estimated from above in
terms of the solution of certain best polynomial approximation problems. This is well
known for the standard conjugate gradient method; cf. Daniel [5] and Luenberger [30].
As we will see, the same estimate can also be used for several other cases, but for others,
more complicated polynomial approximation problems arise. These problems are also
quite well understood, primarily because of the efforts of Freund [15] and Freund and
Ruscheweyh [16].
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Throughout, z* denotes the solution of (1.1). Two affine polynomial spaces of di-
mension k will be used. They are
P’?—l =1 + tpk__l,
in other words the polynomials of degree k that are equal to 1 at the origin, and
75,(:_1 = 1 + tzpk_l 3
or the polynomials of degree k£ + 1 that are equal to 1 at the origin and have zero first
derivative at the same point. It is easy to see that the natural bases of tPs_; and t?Pj_;

form so-called Haar systems; cf. Meinardus [31]. The existence and uniqueness of the so-
lution of the approximation problems that we are going to formulate follows immediately.

4.1 The Standard Estimate

We begin by reviewing the standard case. The conjugate gradient solution z§ of (1.1) is
the minimizing element for (3.1). Thus, the error e, := zf — z* satisfies

(4.1) eTAer =  min  (¢r_1(A)ro + eo)T A(pr-1(A)ro + €o).
Sk-1€Pk—1
Since 7y = — Aeg, (4.1) can be rewritten as
el Aey = min, (We-1(A)eo)T A(¥r-1(A)eo).
Yk-1€P)_,

By expanding the initial error eq in eigenvectors of A, it is easy to show that

T
e Ae )
E2E < min max vi_i(o:),

4.2
( ) C(T;AE() T ke E'P,‘:_l oi€a(A)

where o(A) is the spectrum of A.

We can now obtain an upper bound of (4.2) for the symmetric positive definite case;
see Daniel [5] and Luenberger [30].
Theorem 4.1. Let {zi}, k = 0,1,..., be the conjugate gradient approzimations to z*,
and let A = AT be positive definite. Let 0 < a := mino(A), 8 := maxo(A) , & := k(A) =
the condition number of A = B/a, and p = (/s +1)/(v/x — 1) . Then, the error e} :=
z§ — z* satisfies
s lela 2

lleolla = p*+ p~F

Proof. From (4.2), it follows that

||€k||A
leolla = wiepy_, 012[2§]|¢k—1(0)| :

This approximation problem has a known unique solution, namely, the normalized Cheby-
shev polynomial given by

Tk( —2§+ﬁ+a)
(4.4) Yi1(() =

Ao
T(5t2)
where Ti(n) = C(;s(k arccosn) is the k* Chebyshev polynomial. By using a standard
formula, see, e.g. Luenberger [30], we obtain the bound (4.3). O
By dropping a term in the denominator, we obtain a standard form of the bound

VE-1.
<o YED-

llex|la
lieol 4
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These upper bounds depend only on the condition number «. If more information
on the distribution of the eigenvalues of A is available, better bounds can be obtained;
see Axelsson [1], Greenbaum [20], Hayes [24], Lebedev [29], Saad [38], van der Vorst [47]
and Widlund [49]. See the discussion below of the symmetric indefinite case for a sample
argument of this kind.

The analysis of the algorithms based on the straightforward use of the first and
second Gauss transforms is very similar to the standard case. A direct calculation shows
that the resulting bounds, which compare the I norm of the residual and the error,
respectively, after k steps with the corresponding initial error measure, reduces to the
standard case. The same bounds based on Chebyshev polynomials result, except that the
relevant spectrum is that of AT A.

By Theorem 3.2, the CGW algorithm provides two subsequences of iterates, each of
which can be derived via the second Gauss transform. If A is the spectral radius of K, i.e.
o(K) C [—iA,iA], the condition number of the matrix in (3.53) is bounded by 1 + A% In
practical applications, either 0 € o(K), or there is an eigenvalue very close to zero. Thus,
we can assume that the condition number of I — K? is equal to 1 + A2

Theorem 4.2. Let {z}}, k = 0,1,..., be the CGW approzimations to z* for the spe-
cial nonsymmetric problem (1.5)-(1.6). Let A be the spectral radius of K, i.e. o(K) C
[—iA,iA]. Denote the error by ef := z} — z*. Then, the even subsequence satisfies
llezkllm 2

lleollar — p* + p*’

where p = (V1 + A2+1)/(v/1+ A2—1). The bound (4.5) also holds for ||eax+1||m/||ex]|ns-

Proof. By Theorem 3.2, ey = (I + K)(2zx — z*), where (I + K)z* = z* and 2 is the
conjugate gradient solution of (3.53) using the initial guess zp defined by (I + K)zg = zo.
Since K is skew-symmetric with respect to the M-inner product,

, (eax, eI = (zx— 2", (I — K)(I + K)(2k — 2%))ps -

Thus, by Theorem 4.1, the bound (4.5) holds for the even case. The odd case is completely
analogous. O

(4.5)

4.2 The Other Estimates

We first consider the minimal residual method for the special nonsymmetric case (1.2),
first considered in Rapoport [35]. It is easy to obtain an upper bound for the error in terms
of a comparison polynomial by using the same techniques as for the standard case. The
spectrum is confined to an interval 1+ ¢[—A, A]. This polynomial approximation problem
has been solved completely by Freund and Ruscheweyh [16]. The following bound is best
possible if we have no information except that the spectrum is confined to this interval.

Theorem 4.3. Let {z}}, £k = 0,1,..., be the minimum residual approzimations to z*
for the special nonsymmetric problem (1.5)-(1.6). Let A be the spectral radius of K, i.e.
a(K) C [—iA,iA]. Then, the residual ry := b — Az} satisfies

lIrkllar-1 2

lroloemr < 7557

where p = (V/1+ A2+ 1)/A.
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For large values of A this bound is asymptotically similar and as disappointing as the
bound in Theorem 4.2. For a proof of Theorem 4.3, we refer to Freund and Ruscheweyh
[16]. For the more general case of A = ¢*(T +ic1), § and o real, T Hermitian, Freund
[15] gives useful upper and lower bounds for the decay of the norm of the residuals. We
also note that Widlund [49] contains a result on superlinear convergence for cases with
clustered eigenvalues.

We now turn to the symmetric, indefinite case. We have shown in Theorem 3.1 that
one of the sequences produced by the SYMMLQ algorithm, z¥, is the minimum error
solution of the equation (1.1) and z¥ —z, € S¥(A, Aro). Therefore, the error & := zF — z*
satisfies

m_flfleigk_l((f’k—l(A)A"o + EO)T(d’k—l(A)AT‘o + &)

(4.6) = mif.lo (Xk—l(A)éo)T(Xk—l(A)éo)7

xk—1€P)_;

Er ey

Expanding & in the eigenvectors of A, we find that
EZék

. 2
07 = 10y, ity X
Fletcher [13] appears to have been the first to understand the relation between the mini-
mum error solution and SYMMLQ), but he did not use that result to produce error bounds.
The analysis above of the convergence of SYMMLQ was given by Widlund [48]; see also
Stoer and Freund [43], Szyld [44] and Szyld and Widlund [46].

If A is indefinite, its spectrum has both positive and negative eigenvalues. If we only
know that o(A) C [-8,—¢|U [a, 8], B8 > a > 0, we obtain the bound

llexll :
< min max -1lo
ool = wehy , B e ()
=  min  max_|¢g_,(7)],

Vi EPY_, @?<T<p?

where k:=[(k+1)/2] is the integer part of (k + 1)/2. The last equality follows from the
fact that the minimizing polynomial must be even, and from a change of variables 7 = o2.

Using Chebyshev polynomials as in Theorem 4.1, it follows that

Il (== 1)‘
4.7 <2 ,
(.7 ool < 2 \s 1

where k = #/¢; see Freund [14] and Stoer [41].

The bound (4.7) can be very pessimistic. A better bound is obtained if we assume
that o(A) C {A1,X2,- -+, Am} U [e, B], where );, ¢ = 1,---,m are negative eigenvalues
and § > a > 0. This is typical in many applications, e.g. for the linear systems of
inverse iteration; see Szyld [44, 45]. The bound obtained below is asymptotically similar
to that of the standard conjugate gradient method; cf. (4.3). This explains the excellent
convergence properties observed in practice for SYMMLQ. The relevant quantity & := 8/«
is sometimes called the reduced condition number of A.

Theorem 4.4. Let {zL}, k =0,1,..., be the auziliary sequence of SYMMLQ approzi-
mations to «*, obfained for a symmetric indefinite problem. Let 6(A) C

{A1,22,-++, Am} Ule, B], where A;, i =1,---,m are negative eigenvalues and 8 > a > 0.
Then, for k > m, the error & := zf — z* satisfies,

llexll 2

Jeall = % F e g

(4.8)



Variational analysis of some conjugate gradient methods 71

Here p = (VE +1)/(V& — 1), k = B/e, and Qi is a linear function of k, which is given
in the proof.
Proof. We use a construction due to Freund [14] to obtain a comparison polynomial in
P

Pm(0)q(0)Yk-m().
Here vk_m(0c) is the normalized Chebyshev polynomial (4.4) of degree k — m associated
with the interval [a, ], chosen so that 9x_,(0) = 1. The polynomial p,, (o) of degree m
vanishes at A; = 0,71 =1,---,m and p,(0) = 1, i.e.

m

pm(o) = H(l - /\_J)

i=1
The parameter g in the linear function g(o) = 14 po is chosen so that xj,,(0) = 0, which
leads to the formula

(8- a) Te-m(7)’
where v = (8 + a)/(8 — a). It can be shown that T}_,.(7)/Tk-m(7) < (k —m)/v/4¥ - 1.

Therefore,

m 2 T
#=Zr+ "—(7)
j=1"7

|l
max |pm(0)q(0)r_m(d)| = max |pm(c)q(o)r_m(o
L < o (0)a(o)on(9)] = s o 0)a(o Vim0
2
< max |p.(0)q(o)| max |Ym_i(o)| < QY —— ,
= s |P( )q( )lae[a,ﬂ]ldj k( )l k pk_m+pm_k

where
= (ﬁ(l—g)) (1—ﬂ§%+(k—m)\/§) .o

We remark that in the case when there are small isolated positive eigenvalues the
bound (4.8) can be improved using a similar comparison polynomial.

The MINRES algorithm, also considered by Paige and Saunders [33], only generates
one sequence of approximate solutions. Under the assumptions on the spectrum given in
Theorem 4.4, the decrease of the norm of the residuals satisfies the bound given in that
theorem, where

i’ B
0e=la-2)
j=1 Aj
is independent of k. This follows from a straightforward argument, since the comparison
polynomial need not satisfy the additional constraint of a zero derivative at the origin.

We end this section by mentioning an interesting polynomial approximation problem
related to the study of the minimum error solution for symmetric problems, in the positive
definite case. In a recent paper Freund identifies the optimal polynomial in terms of
certain Zolotarev polynomials. The optimal polynomial is given in terms of a parameter
which can be determined by solving a certain nonlinear equation; see Freund [15]. These
formulas are relatively complicated to use but Freund also provides the following bounds
for the decrease of the norm of the error in the positive definite case:

Iz =27l _ , (k= 1)bios(p) + kbilp)
llzo — 2| = bak-1(p) + (2k — 1)b:(p)’
where p = (/& + 1)/(v/% — 1) and bi(p) = (1/2)(p' — p~"). By considering the worst case,
it can also be shown that the best upper bound must exceed
2

pF+p
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