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DOMAIN DECOMPOSITION FOR LESS REGULAR SUBDOMAINS:
OVERLAPPING SCHWARZ IN TWO DIMENSIONS∗
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Abstract. In the theory of domain decomposition methods, it is often assumed that each
subdomain is the union of a small set of coarse triangles or tetrahedra. In this study, extensions to
the existing theory which accommodate subdomains with much less regular shapes are presented;
the subdomains are required only to be John domains. Attention is focused on overlapping Schwarz
preconditioners for problems in two dimensions with a coarse space component of the preconditioner,
which allows for good results even for coefficients which vary considerably. It is shown that the
condition number of the domain decomposition method is bounded by C(1 + H/δ)(1 + log(H/h))2,
where the constant C is independent of the number of subdomains and possible jumps in coefficients
between subdomains. Numerical examples are provided which confirm the theory and demonstrate
very good performance of the method for a variety of subregions including those obtained when a
mesh partitioner is used for the domain decomposition.

Key words. domain decomposition, overlapping Schwarz, preconditioners, iterative methods,
irregular subdomains, John domains

AMS subject classifications. 65F10, 65N30, 65N55

DOI. 10.1137/070685841

1. Introduction. In the theory for overlapping Schwarz domain decomposition
methods, we typically assume that each subdomain is quite regular, e.g., the union
of a small set of coarse triangles or tetrahedra; see, e.g., [28, Assumption 4.3]. How-
ever, this is often unrealistic, especially if the subdomains result from using a mesh
partitioner. The subdomain boundaries might then not even be uniformly Lipschitz
continuous; i.e., the number of patches required to cover the boundary of the region,
in each of which the boundary is the graph of a Lipschitz continuous function, might
not be uniformly bounded independently of the finite element mesh size. We note
that the existing theory for iterative substructuring establishes bounds on the conver-
gence rates of the algorithms which are insensitive to even large jumps in the material
properties across subdomain boundaries as reflected in the coefficients of the problem.
The theory for overlapping Schwarz methods is less restrictive as far as the subdomain
shapes are concerned (see, e.g., [28, Chapter 3]) but relatively little has been known
about the effect of large changes in the coefficients; see, however, [25] and recent work
reported in [13, 26].

The purpose of this paper is to begin the development of a theory under much
weaker assumptions on the partitioning; a companion study for iterative substruc-
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turing methods, by Rheinbach and the second and third authors of this paper, has
also been completed [16]. Our results in this paper concern an overlapping Schwarz
algorithm which combines a coarse space adopted from an iterative substructuring
method (see [28, Algorithm 5.16] and [11]) with local preconditioner components se-
lected as in classical overlapping Schwarz methods, i.e., based on solving problems on
overlapping subdomains. This choice of the coarse component will allow us to prove
results which are independent of coefficient jumps. We note that there are earlier
studies on multilevel methods [10, 24] in which the coarsest components are similarly
borrowed from iterative substructuring algorithms.

We will use nonoverlapping subdomains and denote them by Ωi, i = 1, . . . , N , as
well as overlapping subdomains Ω′

j , j = 1, . . . , N ′. The interface between the Ωi will
be denoted by Γ.

So far, complete results have been obtained only for problems in the plane. To
simplify our presentation, we will also confine ourselves to scalar elliptic problems of
the following form:

(1.1) −∇ · (ρ(x)∇u(x)) = f(x), x ∈ Ω ⊂ R
2,

with a Dirichlet boundary condition on a measurable subset ∂ΩD of ∂Ω, the boundary
of Ω, and a Neumann condition on ∂ΩN = ∂Ω \ ∂ΩD. The coefficient ρ(x) is strictly
positive and assumed to be a constant ρi for x ∈ Ωi. We use piecewise linear, contin-
uous finite elements and triangulations with shape-regular elements and assume that
each subdomain is the union of a set of elements. The weak formulation of the elliptic
problem is written in terms of the bilinear form

a(u, v) :=

N∑
i=1

ai(u, v) :=

N∑
i=1

ρi

∫
Ωi

∇u · ∇vdx.

Our study requires the generalization of some technical tools used in the proof
of a bound of the convergence rate of this type of algorithm. Some of the standard
tools, such as those collected in [28, section 4.6], are no longer available, and we
therefore also have to modify the reasoning in the proof of our main result. Three
auxiliary results, namely, a Poincaré inequality, a Sobolev-type inequality for finite
element functions, and a bound for certain edge terms, will be required in our proof;
see Lemmas 2.2, 3.2, and 3.4. We will work with John domains, introduced in section
2, and will be able to express our bounds on the convergence of our algorithm in terms
of a few geometric parameters.

2. A Poincaré inequality and John domains. In any analysis of any domain
decomposition method with more than one level, we need a Poincaré inequality. This
inequality is closely related to an isoperimetric inequality; see [12, 20, 18, 21, 22].

Lemma 2.1 (isoperimetric inequality). Let Ω ⊂ R
n be a domain—an open,

bounded, and connected set—and let u be sufficiently smooth. Then

inf
c∈R

(∫
Ω

|u− c|n/(n−1) dx

)(n−1)/n

≤ γ(Ω, n)

∫
Ω

|∇u| dx

if and only if

(2.1) (min(|A|, |B|))1−1/n ≤ γ(Ω, n)|∂A ∩ ∂B|.

Here A ⊂ Ω is an arbitrary open set, and B = Ω \ Ā; γ(Ω, n) is the best possible
constant, and |A| is the measure of the set A, etc.
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We note that the domain does not need to be star-shaped or Lipschitz. A small
value of γ(Ω, n) is desirable for our purposes. Thus, the domain cannot be very thin,
and its boundary should not have very pointed parts.

For two dimensions, we immediately obtain a standard Poincaré inequality by
using the Cauchy–Schwarz inequality. The best choice of c is ūΩ, the average of u
over the domain.

Lemma 2.2 (Poincaré’s inequality). Consider a domain Ω ⊂ R
2. Then

‖u− ūΩ‖2
L2(Ω) ≤ (γ(Ω, 2))2|Ω|‖∇u‖2

L2(Ω) ∀u ∈ H1(Ω).

For n = 3, a similar bound is obtained by using Hölder’s inequality several times.
In Lemma 2.2, we then should replace |Ω| by |Ω|2/3.

Throughout, we will use weighted H1(Ωi)-norms defined by

‖u‖2
H1(Ωi)

:= |u|2H1(Ωi)
+ 1/H2

i ‖u‖2
L2(Ωi)

:=

∫
Ωi

∇u · ∇udx + 1/H2
i

∫
Ωi

|u|2dx.

Here Hi is the diameter of Ωi. The weight originates from a dilation of a domain with
diameter 1. We will use Lemma 2.2 to remove L2-terms from full H1-norms.

We will also use another variant of the Poincaré inequality; in fact we will use it
only in the simple case when the region is a circular disk.

Lemma 2.3 (Poincaré, L1-variant). Consider a domain Ω ⊂ R
2. Then

‖u− ūΩ‖L1(Ω) ≤ γ(Ω, 2)|Ω|1/2‖∇u‖L1(Ω) ∀u ∈ W 1,1(Ω).

Proof. By the Cauchy–Schwarz inequality,

‖u− ūΩ‖L1(Ω) ≤ |Ω|1/2‖u− ūΩ‖L2(Ω).

The proof is then completed by using Lemma 2.1.
We next give a definition of a John domain; see [14] and the references therein.
Definition 2.4 (John domain). A domain Ω ⊂ R

n is a John domain if there
exists a constant CJ ≥ 1 and a distinguished central point x0 ∈ Ω such that each x ∈ Ω
can be joined to it by a rectifiable curve γ : [0, 1] → Ω such that γ(0) = x0, γ(1) = x,
and distance(γ(t), ∂Ω) ≥ C−1

J |x− γ(t)| for all t ∈ [0, 1].
This condition can be viewed as a twisted cone condition. We note that certain

snowflake curves with fractal boundaries are John domains and that the length of
the boundary of a John domain can be arbitrarily much larger than its diameter; see
Figure 5.1. We also note that, by restricting the refinement to the neighborhood of a
point, the contribution to the length of the boundary from a small neighborhood of
the point can be made to dominate. A John domain can have cusps facing inwards but
not outwards; this means, however, that there can be no cusps on the interface since
any cusp would face outwards for one of two neighboring subdomains; see [21, 22] for
further information.

We note that, for any choice of the point x0, there is a point x ∈ Ω at a distance
of at least diameter(Ω)/2. We find that diameter(Ω) ≤ 2CJrΩ, where rΩ is the radius
of the largest ball inscribed in Ω and centered at x0.

It is known that any simply connected plane domain with a finite Poincaré pa-
rameter γ(Ω, 2) is a John domain; see [7]. It is also known (see [2]) that any John
domain has a bounded Poincaré parameter γ(Ω, n). Since we have been unable to
find a simple estimate of γ(Ω, n) in terms of CJ in the literature, we have chosen to
express our results in terms of both of these geometric parameters.
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2156 C. R. DOHRMANN, A. KLAWONN, AND O. B. WIDLUND

3. The algorithm, technical tools, and the main result. The domain Ω ⊂
R

2 of the elliptic problem is decomposed into nonoverlapping subdomains Ωi, each of
which is the union of elements, and with the finite element nodes on the boundaries
of neighboring subdomains matching across the interface Γ, which is the union of the
parts of the subdomain boundaries which are common to at least two subdomains.
The interface Γ is composed of edges and vertices. An edge E ik is an open subset of
Γ, which contains the nodes which are shared only by the boundaries of a particular
pair of subdomains Ωi and Ωk. The subdomain vertices V� are end points of edges
and are typically shared by more than two; see [17, Definition 3.1] for more details
on how these sets can be defined for quite general situations. We denote the standard
finite element space of continuous, piecewise linear functions on Ωi by V h(Ωi) and
assume that these functions vanish at the nodes on ∂Ωi ∩ ∂ΩD.

We will view our algorithm as an additive Schwarz method, as in [28, Chapters
2 and 3], defined in terms of a set of subspaces. To simplify the discussion, we will
use exact solvers for both the coarse problem and the local ones. All that is then
required for the analysis of our algorithm is an estimate of a parameter in a stable
decomposition of any function in the finite element space; see [28, Assumption 2.2
and Lemma 2.5]. Thus, we need to estimate C2

0 in

a(u0, u0) +

N ′∑
j=1

aΩ′
j
(uj , uj) ≤ C2

0a(u, u) ∀u ∈ V h,

for some decomposition {uj}, such that

u =

N ′∑
j=0

RT
j uj , uj ∈ Vj .

Here aΩ′
j
(u, v) is the bilinear form obtained by integrating only over the subdomain

Ω′
j , and RT

j : Vj −→ V h is an interpolation operator from the space of the jth

subproblem Vj into the space V h. The local spaces Vj , j = 1, . . . N ′, are defined as

(3.1) Vj = V h(Ω′
j) ∩H1

0 (Ω′
j),

except for subdomains with a boundary which intersects ∂ΩN . In the latter case, the
functions of the local space are constrained to vanish only at the nodes of ∂Ω′

j \∂ΩN .
This is the same standard choice as in [28, Chapter 3]. We will assume that each Ω′

j

has a diameter comparable to those of the subdomains Ωi which it intersects.
Associated with each local space Vj is a projection Pj defined by

aΩ′
j
(P̃ju, v) = a(u,RT

j v) ∀v ∈ Vj , and Pj = RT
j P̃j .

The coarse space V0 is spanned by vertex and edge functions extended as discrete
harmonic functions into the interiors of the subdomains Ωi. The discrete harmonic
extensions minimize the energy; see [28, section 4.4]. There will be one basis function
θV�(x) for each subdomain vertex; it is the discrete harmonic extension of the interface
values of the standard nodal basis function. For each edge E ik there is also a basis
function θEik(x) ∈ V h, which equals 1 at all nodes on the edge and vanishes at all
other interface nodes. The vertex and edge functions provide a partition of unity on
the interface Γ. We will use a projection P0 onto V0, which is defined by

(3.2) a(P0u, v) = a(u, v) ∀v ∈ V0.

D
ow

nl
oa

de
d 

07
/3

1/
13

 to
 2

16
.1

65
.9

5.
76

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DOMAIN DECOMPOSITION FOR LESS REGULAR SUBDOMAINS 2157

The additive Schwarz operator, the preconditioned operator used in our iteration,
is given by

Pad =

N ′∑
j=0

Pj .

By using [28, Lemmas 2.5 and 2.10], we find that the condition number κ(Pad)
of the additive Schwarz operator can be bounded by (NC + 1)C2

0 , where NC is the
minimal number of colors required to color the subdomains Ω′

j such that no pair of
intersecting subdomains have the same color.

The overlap between the subdomains is characterized by parameters δj , as in [28,
Assumption 3.1]; δj is the minimum width of the subset Ωj,δj of Ω′

j which is also
covered by at least one neighboring overlapping subdomain.

We can now formulate our main result, which is also valid for compressible elas-
ticity with piecewise constant Lamé parameters, with jumps only across the interface,
provided that the coarse space is enriched to include all rigid body functions; see [8].
The extension to the case of linear elasticity requires a Korn inequality; see [1, 17], and
[28, Chapter 8]. We note that there are also recent results on almost incompressible
elasticity discretized by mixed finite elements with discontinuous pressure spaces; see
[9].

Theorem 3.1 (condition number estimate). Let Ω ⊂ R
2 be partitioned into

nonoverlapping subdomains Ωi, which are John domains, each with a shape-regular
triangulation. The condition number of our domain decomposition method then sat-
isfies

κ(Pad) ≤ C (1 + H/δ)(1 + log(H/h))2,

where C > 0 is a constant which depends only on the John and Poincaré parameters
of the subdomains, the number of colors required for the overlapping subdomains, and
the shape regularity of the elements.

As in many domain decomposition results, H/h is shorthand for maxi(Hi/hi),
where hi is the diameter of the smallest element of Ωi. Similarly, H/δ is the largest
ratio of Hi and the smallest of the δj of the overlapping subregions that intersect Ωi.

The logarithmic bound of our main result can be improved to a first power if
all of the subregions have boundaries which are uniformly Lipschitz. This is true, in
particular, if they satisfy [28, Assumption 4.3]. If, in addition, the coefficients do not
have any large jumps across the interface and the coarse space is enriched to contain
all piecewise linear functions on a coarse mesh as in [28, Assumption 4.3], we can
also eliminate the logarithmic factors altogether by using ideas from the proof of [28,
Theorem 3.13].

To prove Theorem 3.1, we need two auxiliary results, in addition to Poincaré’s
inequality. The first is a discrete Sobolev inequality.

Lemma 3.2 (discrete Sobolev inequality). Let Ωi be a John domain in the plane
with diameter H. Then

(3.3) ‖u− ūΩi‖2
L∞(Ωi)

≤ C(1 + log(H/h))|u|2H1(Ωi)
∀u ∈ V h(Ωi).

The constant C > 0 depends only on the John parameter CJ(Ωi), the Poincaré pa-
rameter γ(Ωi, 2), and the shape regularity of the elements.

We note that this lemma is well-known in the theory of iterative substructuring
methods. Proofs for domains satisfying an interior cone condition are given in [4] and
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in [6, section 4.9]; see also [3]. For a different proof, see [28, Lemma 4.15]. For a proof
that this inequality is sharp, see [5].

In preparation for our proof of this result for John domains, we will formulate
and prove a lemma which is directly inspired by a paper by Haj�lasz [14]. We first
introduce a set of open circular disks. We consider a John domain Ωi with diameter
H and with a triangulation using a mesh size h. Let γ(t) be a John curve from a
central point x0 ∈ Ωi to an arbitrary point x. A family of circular disks Bi, i ≥ 0,
is introduced as follows: the first disk is B0 := B(x0,dist(x0, ∂Ωi)/4), the open disk
centered at x0 and with radius r0 = dist(x0, ∂Ωi)/4. We will assume that x lies outside
2B0, the concentric disk with twice the radius of B0; the other case is trivial. The
other disks are defined similarly as Bi := B(xi, ri), centered at xi and with radius
ri := |x− xi|/4CJ , i ≥ 1. All of the xi’s lie on the John curve, and all of the Bi’s are
clearly subsets of Ωi. Given Bi, we select xi+1 ∈ ∂Bi as the last point of exit of γ(t)
from Bi.

Several properties of the Bi can now be established.
Lemma 3.3. There exists a constant M = M(CJ) such that
1. no point in Ωi belongs to more than M of the Bi (finite covering);
2. |Bi ∪Bi+1| ≤ M |Bi ∩Bi+1|;
3. ri → 0 and xi → x as i → ∞;
4. the number of xi that are at a distance larger than r from x can be estimated

by M log(H/r).
Proof. Our proof will rely heavily on arguments developed in [14], in particular,

on the proof of Theorem 10 of that paper, which we will reproduce in part; see also
references to earlier contributions in that paper.

Let a point y belong to Bk, Bk+1, . . . Bk+p. Then

|x− y| ≤ |x− xk+m| + |xk+m − y| ≤ (4CJ + 1)rk+m, m = 0, . . . , p.

Similarly,

4CJrk+n = |x− xk+n| ≤ |x− y| + |y − xk+n| ≤ |x− y| + rk+n, n = 0, . . . , p.

Therefore, we have

(4CJ − 1)rk+n ≤ (4CJ + 1)rk+m, m, n = 0, . . . , p.

Since no center of a disk belongs to any other disk, it is then easy to show that, for
m = n,

(3.4) |xk+n − xk+m| ≥ (4CJ − 1)/(4CJ + 1)rk,

which provides a uniform bound on p since only a finite number of such xi can satisfy
(3.4) while being within ri of the common point y.

The second statement now follows easily by using the bound on the ratio of the
radii of the two circles and elementary geometry.

We next consider a circle, centered at x, which covers all of Ωi. We decompose this
circle into annuli with a fixed ratio between the outer and inner circles of any annulus.
It is easy to see that the number of xi contained in each annulus will be uniformly
bounded since the radii of the disks associated with an annulus are determined by
the distance to x. This shows that ri → 0 and also that we can, by a simple covering
argument, bound the number of xi’s that are at a distance larger than r from x by
M log(H/r).
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Proof of Lemma 3.2. We will now confine x to be a centroid of an element K; by
following [6, Formula (4.9.6)] we can then easily obtain our estimate for any x ∈ K.
We denote by N = N(h) the index of the first Bi which lies entirely inside K.

We will work with averages ūBi of sufficiently smooth functions over the circular
disks. We note that the average of a linear function over a circular disk Bi coincides
with the value at its center if Bi ⊂ K.

Then, by following [14] and using the triangle inequality, we find that

|u(xN ) − ūB0 | ≤
N−1∑
i=0

|ūBi − ūBi+1 |

≤
N−1∑
i=0

(|ūBi
− ūBi∩Bi+1

| + |ūBi∩Bi+1
− ūBi+1

|).(3.5)

The expression ūBi − ūBi∩Bi+1 is invariant under a shift of u by a constant. By
replacing u by u− ūBi

, we therefore find that

|ūBi
− ūBi∩Bi+1

| ≤ 1

|Bi ∩Bi+1|

∫
Bi∩Bi+1

|u− ūBi
|

≤ 1

|Bi ∩Bi+1|

∫
Bi

|u− ūBi
| =

|Bi|
|Bi ∩Bi+1|

−
∫
Bi

|u− ūBi
|.

Here −
∫
Bi

v denotes the average of v over the disk Bi. The second term of (3.5) can
be estimated similarly, and we can now use the second statement of Lemma 3.3 to
obtain

|u(xN ) − ūB0
| ≤ (2M)

N−1∑
i=0

−
∫
Bi

|u− ūBi
|.

By using Lemma 2.3 for the disks Bi, we obtain

−
∫
Bi

|u− ūBi | ≤ C

∫
Bi

|∇u(z)|
ri

dz.

We now use the Cauchy–Schwarz inequality and obtain

|u(xN ) − ūB0 |2 ≤ CN

N−1∑
i=0

∫
Bi

|∇u(z)|2dz.

By using the finite covering property—the first statement of Lemma 3.3—this sum
can be estimated by

∫
Ωi

|∇u(z)|2dz.
Given that BN is the first disk which is a subset of K and that xN lies on the

boundary of BN−1, we find that dist(xN , ∂K) ≤ 2rN−1. We also know that

rN−1 ≤ 4CJ + 1

4CJ − 1
rN and that rN =

|x− xN |
4CJ

.

Since

dist(x, ∂K) ≤ |xN − x| + dist(xN , ∂K),
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we see that |x − xN | is bounded from below by c(CJ)h, where c(CJ) > 0 and h is
the diameter of the element K. We can now use the logarithmic estimate of N—the
fourth statement of Lemma 3.3—and find that

|u(xN ) − ūB0
|2 ≤ C(1 + log(H/h))

∫
Ωi

|∇u(z)|2dz.

It is also elementary to estimate |ūB0
− ūΩi

|. We find that

|ūB0
− ūΩi

| ≤ |B0|−1‖u− ūΩi
‖L1(B0) ≤ |B0|−1‖u− ūΩi

‖L1(Ωi).

We complete the argument by using the Cauchy–Schwarz inequality, Lemma 2.2, and
the fact that there is a bound on |Ωi| in terms of |B0|. We note that this term does
not require any logarithmic factor.

We then have a bound for one point in the element K, and, as already indicated,
we can easily estimate the difference between the values at any pair of points in the
element K as in [6, Formula (4.9.6)].

A second important tool provides estimates of the edge functions.
Lemma 3.4. The edge function θEik can be bounded as follows:

(3.6) ‖θEik‖2
H1(Ωi)

≤ C(1 + log(Hi/hi)),

and

(3.7) ‖θEik‖2
L2(Ωi)

≤ CH2
i (1 + log(Hi/hi)).

Here the constant C depends only on the John parameter CJ(Ωi). We can remove the
logarithmic factor from (3.7) if all angles in the triangulation are acute, i.e.,

(3.8) ‖θEik‖2
L2(Ωi)

≤ CH2
i .

A proof of this lemma is given in [16].

4. Proof of Theorem 3.1. As in many other proofs of results on domain de-
composition algorithms, we will work with one subdomain Ωi at a time. With local
bounds, there are now no difficulties in handling variations of the coefficients across
the interface.

We recall that the coarse space is spanned by the θV� , the discrete harmonic
extensions of the restrictions of the standard nodal basis functions to Γ, and the
edge functions θEik . The coarse space component u0 ∈ V0 in the decomposition of an
arbitrary finite element function u(x) can be chosen as

(4.1) u0(x) =
∑
�

u(V�)θV�(x) +
∑
ik

ūEikθEik(x).

Here ūEik is the average of u over the edge. This interpolation formula is a two-
dimensional analog of [28, Formula (5.13)].

Since the operator defined by (4.1) reproduces constants, we can replace u by
u− ūΩi and u0 by u0 − ūΩi . We now estimate the terms of the right-hand side of the
resulting formula term by term. The energy of the vertex basis functions is uniformly
bounded, and the values of u(V�)− ūΩi are bounded by using Lemma 3.2. Turning to
the edge terms, we use Lemma 3.4 to estimate the energy of the edge basis functions.
The coefficient ūEik − ūΩi is bounded by ‖u− ūΩi‖L∞(Ωi). Thus,

(4.2) |u0|2H1(Ωi)
= |u0 − ūΩi |2H1(Ωi)

≤ C(1 + log(H/h))2|u|2H1(Ωi)
,
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and we find that

a(u0, u0) ≤ C(1 + log(H/h))2a(u, u).

Remark 1. If the subdomains Ωi have Lipschitz boundaries, we can estimate
the edge averages by using the Cauchy–Schwarz inequality and an elementary trace
theorem; see Nečas [23, Theorem 1.2]. This eliminates one of the two logarithmic
factors.

Similarly, we can prove that

(4.3) ‖u− u0‖2
L2(Ωi)

≤ C(1 + log(H/h))2H2
i |u|2H1(Ωi)

.

If all angles of the triangulation of Ωi are acute, then by using (3.8) of Lemma 3.4
we can remove one of the logarithmic factors, and if the subdomain boundaries are
Lipschitz, no logarithmic factors are required on the right-hand side of (4.3); see [28,
Lemma 4.25] for a three-dimensional result for regular subdomains.

Remark 2. In the case of linear elasticity, we must include the restriction of all
rigid body modes to the edges in the coarse space; see [19] or [27] for a discussion of
the necessity of this null space property. In this case, we should extend the values
given on the interface into the subdomains by solving homogeneous discrete elasticity
problems.

We now turn to the estimate related to the local spaces. Again, we will carry out
the work on one subdomain Ωi at a time. Let w := u − u0, and define a local term
in the decomposition by uj = Ih(θjw). We can borrow extensively from [28, sections
3.2 and 3.6]. Thus, Ih interpolates into V h, and the θj ∈ RT

j Vj provide a partition
of unity. These functions vary between 0 and 1, and their gradients are bounded by
|∇θj | ≤ C/δj and vanish outside the regions of overlap Ωj,δj .

We note that the number of Ω′
j that intersect Ωi is uniformly bounded; we will

consider only the contribution from one of them, Ω′
j . As in our earlier work [28,

section 3.5], the only term that requires a careful consideration is ∇θjw. We cover the
set Ωj,δj ∩ Ωi by square patches with sides on the order of δj and note that on the
order of Hi/δj of them will suffice. Just as in the proof of [28, Lemma 3.10], we have

∫
Ωi

|∇θjw|2 ≤ C/δ2
j (δ

2
j |w|2H1(Ωi)

+ (Hi/δj)δ
2
j ‖w‖2

H1(Ωi)
).

The proof is completed by combining this inequality with the bounds in (4.2) and
(4.3).

Remark 3. Should the overlap between the subdomains be more generous in
places, we can modify the relevant θj by making them vary from 0 to 1 over a distance
of δj , effectively making the set Ωj,δj more evenly wide.

5. Numerical examples. Numerical examples are presented in this section for
the three different types of subdomains shown in Figure 5.1. Type 1 subdomains have
a square geometry and are partitioned into square bilinear elements. Type 2 sub-
domains also consist of square bilinear elements, but their boundaries have a ragged
shape. For type 3 subdomains, we employ equilateral linear triangular elements, and
the edges of the subdomains have both straight-line and fractal segments. Numerical
examples are also presented for subdomains obtained from a mesh partitioner; see
Figure 5.5.

The main purpose of this first set of numerical examples is to verify certain
estimates used in the proof of Theorem 3.1. For type 1 and 2 subdomains, the ratio
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Type 1

Type 2

H
(H−H

f
)/2

Type 3a

Fig. 5.1. Three types of subdomains used in the numerical examples. Two levels of mesh
refinement are shown, and the type 3 subdomains have a constant value of H/Hf = 5. For each
refinement of type 3 subdomains, every element edge on the fractal part of the boundary is first
divided into three shorter edges of 1/3 the length. The middle one of these edges is then replaced by
two other edges with which it forms an equilateral triangle. Thus, for fixed H/Hf , the length of the
fractal part of the boundary increases by a factor of 4/3 with each additional level of refinement.

H/h is increased by a factor of 2 with each additional level of mesh refinement. At
the ith (i ≥ 0) level of refinement for type 3 subdomains,

H/h = (H/Hf )3i+1,

where H/Hf = 5 is fixed for type 3a subdomains and H/Hf = 5 + 2i for type 3b.
We note that in the asymptotic limit the fractal segment lengths grow by a factor of
4/3 with each mesh refinement for both type 3 subdomains, whereas the straight-line
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Fig. 5.2. Rayleigh quotients for different subdomain types.

segment lengths remain bounded. The primary difference between type 3a and 3b
subdomains is that H/Hf is fixed in the former while H/Hf increases without bound
in the latter. Thus, for type 3b subdomains, the protruding regions bounded by
fractal segments decrease in area, while fractal segment lengths continue to increase
with mesh refinement.

We recall the estimates (4.2) and (4.3) from the proof of Theorem 3.1 and consider
the associated Rayleigh quotients

rH1 =
|u0|2H1(Ωi)

|u|2H1(Ωi)

and rL2
=

‖u− u0‖2
L2(Ωi)

|u|2H1(Ωi)

and also the Rayleigh quotient

rP =
|u|2H1(Ωi)

‖u‖2
L2(Ωi)

.

Stationary values of these Rayleigh quotients correspond to eigenvalues of generalized
eigenproblems. For example, a stationary value of rP is an eigenvalue λ of

Kφ = λMφ,

where K and M are the stiffness and mass matrices, respectively, of the finite element
discretization of Ωi with Neumann boundary conditions. We note in this case that
the reciprocal of the smallest positive eigenvalue provides an estimate of the constant
in Lemma 2.2. Maximum values of rH1 and rL2

, along with the smallest positive
stationary value of rP , are plotted versus 1 + log(H/h) in Figure 5.2. We observe
essentially the same dependence on log(H/h) for all four subdomain types. The
maximum value of rH1 appears to vary linearly with log(H/h) in the asymptotic
limit, whereas the maximum value of rL2 appears to be converging to a constant.
This behavior is consistent with (4.2) and (4.3), but the estimates do not appear to
be sharp for the different subdomain types and ranges of H/h considered. Consistent
with the isoperimetric inequality, the rightmost plot in Figure 5.2 suggests that the
smallest positive stationary value of rP is uniformly bounded from below. We have
yet to identify a subdomain shape with numerical behavior essentially different from
the regular-shaped case.

The next group of numerical examples are for the domain decompositions shown
in Figure 5.3. For type 3 subdomains, we fix H/Hf = 5. Homogeneous essential

D
ow

nl
oa

de
d 

07
/3

1/
13

 to
 2

16
.1

65
.9

5.
76

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2164 C. R. DOHRMANN, A. KLAWONN, AND O. B. WIDLUND

Fig. 5.3. Sample domain decompositions, corresponding to subdomains of type 1, 2, and 3a,
used in numerical examples. Subdomain boundaries are shown in red.

Table 5.1

Results for domain decompositions shown in Figure 5.3. Table headings iter, cond, and ndof
denote the number of iterations, condition number estimates, and the number of unknowns in the
problem, respectively. Material properties are the same for all subdomains.

Type H/h dj iter cond ndof
1 8 1 25 9.11 1056

16 3 29 11.07 4160
32 7 31 12.99 16,512
64 15 32 14.87 65,792
128 31 34 16.71 262,656

2 8 1 28 13.53 1056
16 3 30 15.70 4160
32 7 32 17.81 16,512
64 15 33 19.76 65,792
128 31 34 21.60 262,656

3 15 3 30 18.56 1830
45 11 34 22.79 16,290
135 35 36 26.66 146,070
405 107 37 30.14 1,313,010

boundary conditions are applied to the bottom edge of each domain, and ρi = 1 for
each subdomain. Preconditioned conjugate gradients are used to solve the associated
linear systems to a relative residual tolerance of 10−8 for random right-hand sides.
The amount of overlap is specified by the integer dj . If Ωi,h contains all of the nodes
in the closure of Ωi, then the nodes in overlapping subdomain Ω′

i are the union of Ωi,h

with all nodes a graph distance dj or less from one or more nodes in Ωi,h. We note that
nodes on the boundary of subdomain Ωi are also contained in Ωi,h; the designation
nonoverlapping refers to an element rather than to a nodal decomposition.

The numbers of iterations and condition number estimates from conjugate gradi-
ent iterations are reported in Table 5.1. The condition numbers from Table 5.1 are
also plotted in Figure 5.4. Provided the overlap dj + 1 remains in a fixed proportion
to H/h, i.e., H/δ is constant, the growth in condition number appears to be bounded
by C(1 + log(H/h)) for all three subdomain types considered. These results are con-
sistent with Theorem 3.1 but suggest that the estimate in the theorem may not be
sharp.

The next group of examples is identical to the previous one, but we now set
ρi = 1 for the bottom two rows of subdomains and ρi = σ for the top two rows
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Fig. 5.4. Condition numbers versus 1 + log(H/h) for three different subdomain types.

Table 5.2

Results for domain decompositions shown in Figure 5.3. The bottom two rows of subdomains
have ρi = 1, and the top two rows have ρi = σ. Material property jumps are aligned with subdomain
boundaries.

Type H/h dj σ iter cond ndof

1 16 3 10−4 32 10.10 4160
10−2 29 10.16

1 29 11.07
102 30 11.45
104 32 11.45

2 16 3 10−4 33 11.86 4160
10−2 32 12.19

1 30 15.70
102 31 16.75
104 32 16.76

3 45 11 10−4 34 18.84 16,290
10−2 33 18.92

1 34 22.79
102 33 27.72
104 35 27.86

of subdomains in Figure 5.3. Consistent with the theory, the results in Table 5.2
suggest that condition numbers are bounded independently of material property jumps
between subdomains.

The final group of examples deals with subdomains generated by a mesh parti-
tioner. Consider a graph in which each vertex of the graph corresponds to a finite
element. There is an edge between two vertices in the graph if the corresponding finite
elements share an edge, i.e., they have two nodes in common. The graph partitioning
software Metis [15] is then used to decompose such graphs into N subdomains. Ex-
ample domain decompositions obtained in this manner are shown in Figure 5.5 for the
same square geometry as in the previous examples. Results in Table 5.3 suggest that
using a general-purpose mesh partitioner to generate subdomains does not degrade
performance significantly. Results are also shown in the table for problems in which
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16 Subdomains 36 Subdomains 65 Subdomains

Fig. 5.5. Sample domain decompositions obtained from a mesh partitioner.

Table 5.3

Results for square subdomains and subdomains obtained from a mesh partitioner, where N des-
ignates the number of subdomains. In the upper right quadrant of the square domain ρ(x) = σ, and
elsewhere ρ(x) = 1. For N = 64 and H/h = 16, the mesh partitioner generated one subdomain con-
sisting of two disconnected components. These two components were treated as distinct subdomains
resulting in N = 65. Results in the bottom part of the table are for a checkerboard arrangement of
material properties.

Square Mesh
subdomains partitioner

N H/h σ dj iter cond iter cond ndof

16 16 1 3 29 11.07 31 10.31 4160
32 7 31 12.99 33 11.96 16,512

36 16 3 31 11.87 36 14.05 9312
32 7 33 14.11 39 14.78 37,056

64/65 16 3 33 12.25 38 14.49 16,512
64 32 7 36 14.63 41 15.42 65,792

25 16 10−4 3 31 11.55 38 17.18 6480
10−2 31 11.55 38 17.18

1 30 11.56 37 17.15
102 34 14.34 38 17.14
104 34 14.58 38 17.14

5x5 checkerboard with (16 · 5)2 total elements

20 10−4 3 34 28.39 6480
1 36 14.39

104 41 32.53

25 10−4 3 26 9.40 46 46.87 6480
1 30 11.56 37 17.15

104 26 9.55 37 18.86

30 10−4 3 36 16.69 6480
1 34 13.09

104 43 24.44

ρ(x) = σ in the upper right quadrant of the square domain and ρ(x) = 1 elsewhere.
The bottom part of Table 5.3 shows results for a 5 × 5 checkerboard where ρ(x) = 1
in red squares and ρ(x) = σ in black squares. Except for the checkerboard problem
decomposed into 25 square subdomains, the subdomain boundaries are not aligned
with jumps in material properties. Although our theory does not apply to such cases,
good performance is evident for both regular and irregular domain decompositions.
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