Some Remarks on the Theory of Graphs

BAMS 1947

Theorem 1. Let £ > 3. Then

2k/2 < f(k k) < Opp_n gy < 4F71

[...] Let N < 2k/2  Clearly the number of dif-
ferent graphs of N vertices equals 2NV(N=1)/2
[...] The number of different graphs con-
taining a given complete graph of order k is
clearly 2N(N=1)/2 jok(k=1)/2  Thys the number
of graphs of N < 2k/2 yertices containing a

complete graph of order k is less than



SN(N=1)/2  pkoN(N—-1)/2 5N(N-1)/2
ONK R D2 < o D2 < 2

(1)
since by a simple calculation for N < 2%/2 and

k>3
ONF < g1ok(k=1)/2

But it follows immediately from (1) that there
exists a graph such that neither it nor its com-
plementary graph contains a complete subgraph
of order k, which completes the proof of The-

orem 1.



Graph Theory and Probability. II,
Canad J Math 1961

Lemma 1. AlImost all G, have the property
that for every G(*) there is an edge eq . CON-
tained in both G2 and G(), which is not con-
tained in any triangle whose edges are in G

and whose third vertex is not in G(*).



Lemma 5. Almost all G have the property
that for every G(*) there are more than %(g)
edges of G(*) which do not occur in any trian-
gle, the other two sides of which are in G, and

whose third vertex is not in G().



Paul Erdds and Alfred Rényi
Magyar Tud Akad Mat Kut Int Kozl 1960

ON THE EVOLUTION OF RANDOM GRAPHS



The study of the evolution of graphs leads to
rather surprising results. For a number of fun-
damental structural properties A there exists
a function A(n) tending monotonically to 4o

for n — 400 such that
N(n) __

O if limp—eo Ty = 0
lim P A) = (n)
B PN =00 e i, Ay =

(1)
If such a function A(n) exists we shall call it a

“threshold function” of the property A.



If a graph G has n vertices and N edges we
call the number % the “degree’ of the graph.
[...] If a graph G has the property that G
has no subgraph having a larger degree than GG

itself, we call G a balanced graph.



THE DOUBLE JUMP

There is however a surprisingly abrupt change

in the structure of '), y with N ~ ¢cn when ¢

1
2 .

surpasses the value
This double “jump” of the size of the largest
component when %”) passes the value 1/2 is

one of the most striking facts concerning ran-

dom graphs.



On a Combinatorial problem, I.

Nordisk Mat Tidskr 1963

Hajnal and I [2] recently published a paper on
the property B and its generalizations. One
of the unsolved problems we state asks: What
is the smallest integer m(p) for which there
exists a family F of finite sets Al,...,Am(p),
each having p elements, which does not pos-

sess property B?



Theorem 1. Let {A;}, 1 <i<k be a family F
of finite sets, |A;| =a; > 2. If

1 1
< — 3
20 — 2 (3)

1=

[...] holds, then F' has property B.

Ngho

Put U;=1A; =T, |T|=n. [...] Denote by Fp
the family of sets S for which
SCT,AANS#*0,A, 5 1<i<lk (6)

We have to show that if (3) holds then |Fp| > 0
(since this implies that the family of sets {A4;}

satisfying (3) has property B.)
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Denote by F; the family of sets § satisfying

SCcT, A, cSorANS=10 (7)

Clearly an S C T is in the family Fp if it is in
none of the families F;, 1 < i < k (that is, it
satisfies (6) if it does not satisfy (7) for any ¢,
1 <1< k. By a simple sieve process we thus

have

k
|Fp| >2" = ) |F|+1 (8)
i=1
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[...] We evidently have
|Fy = 2ot (9)

since clearly there are 2"~ % sets S C T satisfy-
ing A; C S and 2"~ % sets satsfying A; NS = 0.
From (8)and (9) we have |Fp| > 1 if (3) is

satisfied.
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Now one can ask the following problem which
I cannot answer: Let {A;} be a finite or infinite
family of finite sets which does not have prop-
erty B and for which |A;| > p > 2 for all . What
is the upper bound c(P) of [[;(1—27%) and the
lower bound C) of }>,27%. [...] Probably

lim ¢ =0, lim Cp =
p—00 p—00

13



On a Combinatorial problem, II.

Acta math Acad Sci Hungar 1964
Theorem 1. m(n) < n22n+1

Theorem 1 thus implies limn—oo m(n)l/? = 2.
[...] It would be interesting to improve the
bounds for m(n). A reasonable guess seems to

be that m(n) is of the order n2".
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Paul Erdds and John Moon
On Sets of Consistent Arcs in a Tournament

Canad Math Bull 1965

foy < =50 (2)

In a tournament T}, there are n! ways of re-
labelling the nodes and N = @) pairs of dis-
tinct nodes. Hence, there are at most n'(],X)
such tournament whose largest set of consis-
tent arcs contains k arcs. So, an upper bound
for the number of tournaments 7, which con-
tain a set of more than (1 4+ ¢)N/2 consistent
arcs is given by

n! Z

k>(14¢€)N/2

(N

k) << p2Ne=€N/A (3)
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[...] But for all sufficiently large n the last
quantity in (3) is easily seen to be less than 2V,
the total number of tournaments with n nodes.
Hence, there must be at least one tournament
Ty, which does not contain any set of more than

(1 +¢)N/2 consistent arcs.
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The argument employed in the preceding para-
graph illustrates the usefulness of probabilistic
methods in extremal problems in graph theory,
for while we can easily infer the existence of
a tournament with a certain required property
we are unable to give an explicit construction
actually exhibiting such a tournament in gen-

eral.
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With a more careful analysis of inequality (3)

this argument actually implies that

F) < 5(0) + G + o) logm)/2  (4)

It would be desirable to obtain a better esti-

mate for f(n).
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