
The class of �1 � � ��r is z and z 2 Rx. The class z0 of �01 � � ��
0
r0 is in

Lz and Rx. As z 2 Lz \ Rx, z = z0. Thus [1; ir) under M and [1; i0r0)
under M 0 have the same Ehrenfeucht value. Thus Duplicator can respond
successfully to the at most t moves (including the initial move m) made in
these intervals. Thus Spoiler may as well play the remaining t � 1 moves
on M1 =< [ir; n];�; U > and M 0

1 =< [i0r0; n0];�; U 0 >. These intervals have

lengths n1 �
n
3 and n01 �

n0

3 respectively. But now M and M 0 are both nice
with respect to �1 = 3� - the sequence A1 � � �AR still appears inside every
interval of length �n � �1n1 in M and �1n

0
1 in M 0. Hence we can apply

the same argument for the second move - for convenience still looking at
Ehrenfeucht values with respect to the t move game. After t moves we still
have nice Mt;M

0
t with respect to �t � 10�2 so the arguments are still valid.

But at the end of t rounds Duplicator has won.
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su�ces to show that a �xed [y; y+ �
3n] has such a sequence. Generating the

k-intervals from 1 almost surely a k-interval ends after y and before y+ �
6n.

Now we generate a random sequence �1 � � � on an interval of length �
6n.

But constants do not a�ect the analysis of x2 and almost surely A1 � � �AR

appears.
Now on < [n];�; U > de�ne U r by U r(i) if and only if U(n+ 1� r). U r

is the sequence U in reverse order. Call U left nice if U r is right nice. Call
U nice if it is right nice and left nice. As all four conditions hold almost
surely, the random Un;p is almost surely nice.

Let U be nice and let �1 � � ��N and �r1 � � ��
r
Nr denote the sequences of k-

values for U and U r respectively and let Rx and Rxr denote their �R-classes
respectively. (Both exist since the sequences are persistent.)
Claim. The values Rx and Rxr determine the Ehrenfeucht value of nice U .

We �rst show that Theorem 2 will follow from the Claim. Let Rx; Rxr

be any two �R-classes. Let U be random and consider < [�n];�; U >. The
sequence of k-values lies in Rx with probability P [Rx] + o(1). The same
holds for U r on [�n]. But U r examines U on [(1 � �)n; n] so as � < :5
the values of the �R-classes are independent and so the joint probability of
the values being Rx and Rxr respectively is P [Rx]P [Rxr ] + o(1). Given the
Claim < [n];�; U > would then have a value v = v(Rx; Rxr). AsX

P [Rx]P [Rxr ] =
X

P [Rx]
X

P [Rxr ] = 1� 1 = 1

this would give a limiting distribution for the Ehrenfeucht value v on <
[n];�; U >.

Now for the claim. Fix two models M =< [n];�; U > and M 0 =< [n0];�
; U 0 >, both nice and both with the same values Rx; Rxr . Consider the t-
move Ehrenfeucht game. For the �rst move suppose Spoiler picks m 2 M .
By symmetry suppose m � n

2 . Let [ir�1; ir) be one of the k-intervals with,
say, :51n � ir � :52n. We allow Duplicator a \free" move and have him
select ir. Let �1 � � ��N and �01 � � ��

0
N 0 be the sequences of k-values for M and

M 0 respectively. Let z be the class of �1 � � ��r. Since U is nice this sequence
already contains A1 � � �AR and hence is persistent so z 2 Rx. Let z0 be the
class of �r+1 � � ��N . By the same argument z0 is persistent. In M 0 inside of,
say, [:5n; :51n] we �nd the block A1 � � �AR. By the universality property we
can split this block into a segment in Lz and another in Rz0 . Adding more
to the left or right doesn't change the nature of this split. Thus there is
an interval [i0r0�1; i

0
r0) so that �01 � � ��

0
r0 2 Lz and �0r0+1 � � ��

0
N 0 2 Rz0 . Spoiler

plays i0r0 in response to ir.
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4 The Linear Model.

We have already remarked in x1 that Zero-One Laws generally do not hold
for the linear model < [n];�; U > and that P. Dolan has characterized those
p = p(n) for which they do. Our main object in this section is the following
convergence result.
Theorem 2. Let k be a positive integer, and S a �rst order sentence. Then
there is a constant c = ck;S so that for any p = p(n) satisfying

n�
1

k � p(n) � n�
1

k+1

we have
lim
n!1

Pr[Un;p j= S] = c

Again we shall �x the quanti�er depth t of S and consider Ehrenfeucht
classes with respect to that t. For each � 2 Pk let c� be the constant de�ned
in x2 as the limiting probability that a k-interval has k-value �. Let M be
the set of equivalence classes of �Pk , a Markov Chain as de�ned in x3, and
for each �R-class Rx let P [Rx], as de�ned in x3, be the probability that a
random sequence �1�2 � � � eventually falls into Rx.

In < [n];�; U > let �1 � � ��N denote the sequence of k-values of the
successive k-intervals, denoted [1; i1); [i1; i2); . . ., from 1.

Set, with foresight, � = 10�23�t.
We shall call U on [n] right nice if it satis�es two conditions. The �rst is

simply that all the �1; . . . ; �N described above are persistent. We know from
x2 that this holds almost surely. The second will be a particular universality
condition. Let A1 � � �AR be a speci�c sequence in �Pk with the property
that for every Rx and Ly there exists a q so that

A1 � � �Aq 2 Ly and Aq+1 � � �AR 2 Rx

(We can �nd such a sequence for a particular choice of Rx and Ly by taking
speci�c sequences in �Pk in those classes and concatenating them. The full
sequence is achieved by concatenting these sequences for all choices of Rx

and Ly . Note that as some A1 � � �Aq 2 Ly the full sequence is persistent.)
The second condition is that inside any interval [x; x + �n] � [1; n] there
exist R consecutive k-intervals [iL; iL+1); . . . ; [iL+R; iL+R+1) whose k-values
are, in order, precisely A1; . . . ; AR. We claim this condition holds almost
surely. We can cover [1; n] with a �nite number of intervals [y; y+ �

3n] and it
su�ces to show that almost always all of them contain such a sequence, so it
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cycle to a linear structure ai � � �aua1 � � �ai�1 of the form < [u];�; f > with
an Ehrenfeucht value x = xi. Two cycles are equivalent if they yield the
same set of values xi 2M .

For every persistent x 2 M let (by (3)) p = px; q = sx be such that
x = px+y+sx for all y 2M . Let Px and Sx be �xed sequences (i.e., elements
of �A) for these equivalence classes and let Rx be the sequence consisting
of Sx in reverse order followed by Px. If the cycle a1 � � �au contains Rx

as a subsequence then selecting ai as the �rst element of Px gives a linear
structure beginning with Px and ending with Sx, hence of value px+y+sx =
x.

Let R 2 �A be a speci�c sequence given by the concatenation of the
aboveRx for all persistent x 2M . Then we claim R is a universal sequence in
the sense that all a1 � � �au 2 �A (for any u) that contain R as a subsequence
are equivalent. For every persistent x 2 M there is an ai so that ai � � �ai�1
has value x. Conversely every ai belongs to at most one of the Rx creating R
(maybe none if ai isn't part of R) and so there will be an Rx not containing
that ai. Then in ai � � �ai�1 the subsequence Rx will appear as an interval.
Hence the value of ai � � �ai�1 can be written w1+x+w2, which is persistent.
That is, the values of ai � � �ai�1 are precisely the persistent x and hence the
class of a1 � � �au in the circular t+ 1-Ehrenfeucht game is determined.

3.6 Recursion on Cycles.

Again let A be a �nite alphabet, M the set of equivalence classes in �A and
specify someB �M . Suppose a cycle a1 � � �au onA may be decomposed into
intervals s1; . . . ; sr with Ehrenfeucht values b1 � � �br. Then the Ehrenfeucht
value of the cycle b1 � � �br determines the Ehrenfeucht value of a1 � � �au. The
argument is the same as for recursion on intervals. Let a1 � � �au and a01 � � �a

0
u0

be decomposed into s1 � � �sr and s01 � � �s
0
r0 with Ehrenfeucht values b1 � � �br

and b1 � � � b
0
r0 . Spoiler picks x in some si. In the game on cycles over B

Duplicator can respond b0i0 to bi. Then Duplicator picks an x0 2 s0i0 so that
he can win the subgame on si and s0i0 .

We apply this is x2 with A = f0; 1g and B = Pk. Here the � 2 Pk
may have more information than the Ehrenfeucht value but this only helps
Duplicator.
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A random walk on M , beginning at O, will with probability one eventu-
ally reach a minimal closed set Rx and then it must stay in Rx forever. Let
P [Rx] denote the probability that Rx is the closed state reached.

3.4 Recursion.

Again let A be a �nite alphabet, M the set of equivalence classes of �A and
now specify some B �M . As B is also a �nite set we can de�ne equivalence
classes (with respect to the same constant t) on �B, let M+ denote the set
of such classes. Now let b1 � � �bu and b1 � � �b

0
u0 be equivalent sequences of

�B. We claim that

b1 + . . . + bu = b01 + . . . + b0u0

as elements of M . Let s1; . . . ; su; s
0
1; . . . ; s0u0 be speci�c elements of �A in the

repective bi or b0i classes. It su�ces to give a strategy for Duplicator with
models s1 + . . . + su and s01 + . . . + s0u0 . Suppose Spoiler picks an element
x in, say, some si. In the game on �B we know Duplicator has a winning
reply to bi of some b0i0 . Now Duplicator will pick some x0 in s0i0 . To decide
the appropriate x0 in s0i0 to pick Duplicator considers a subgame on si and
s0i0 . As these are equivalent Duplicator will be able to �nd such x0 for the at
most t times that he is required to.

This general recursion includes the previous statement that for all j; k �
s and any x 2 M we have jx = kx. Here B = fxg and this says that
Duplicator can win the t-move Ehrenfeucht game between a sequence of j x's
and a sequence of k x's; that is, that < [j];�> and < [k];�> are equivalent -
a basic result on Ehrenfeucht games. In our argument we apply it inductively
with A = Pk. We know, inductively, that all k-intervals having the same
k-value x 2 Pk have the same Ehrenfeucht value. Now the k + 1-interval
of i is associated with a sequence x1 � � �xu 2 �Pk and a \tail" yu+1 2 Tk.
We call two such k + 1-intervals equivalent if x1 � � �x

0
u0 and x01 � � �x

0
u0 are

equivalent in �Pk and yu+1 = y0u0+1. Now x1 + . . .+ xu = x01 + . . .+ x0u0 and
so the k + 1-intervals have equal Ehrenfeucht value.

3.5 Cycles.

Again let M be the set of equivalence classes on �A. Now consider cycles
a1 � � �au (thinking of a1 following au) with ai 2 A and consider equivalence
classes under the (t + 1)-move Ehrenfeucht game. Here we must preserve
the ternary clockwise predicate C(x; y; z). Any �rst move ai reduces the
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contain 101 and indeed all blocks of length three. We think of property (3) of
persistency as indicating that a persistent sequence is characterized by p, its
pre�x, and s, its su�x. There are properties such as 9xf(x) = 1^:9yy < x

that depend on the left side of the sequence, in this case the value f(1).
There are other properties such as 9xf(x) = 1 ^ :9yx < y which depend
on the right side of the sequence. There will be sequences with values p; s
for the left and right side respectively so that the Ehrenfeucht value of the
sequence is now determined, regardless of what is placed in the middle.

Remarks. Certain sentences Q have the property that if any a1 � � �au
satis�es Q then all extensions a1 � � �auau+1 � � �av satisfy Q. The sentence
that the �rst term of the sequence is 1 has this property; the sentence that
the last term of the sequence is 1 does not have this property. Call such
properties unrighteous, as they (roughly) do not depend on the right hand
side of the sequence. Sequences with Ehrenfeucht value in a given Rx all
have the same truth value for all unrighteous properties. Sequences with
Ehrenfeucht value in a given Lx would all have the same truth value for all
(correspondingly de�ned) unleftuous properties.

3.3 The Markov Chain.

Now consider a probability distribution overA, selecting each a with nonzero
probability pa. This naturally induces a distribution over Au, the sequences
of length u, assuming each element is chosen independently. This then leads
to a distribution over the equivalence classes M . For all u � 0, x 2 M let
Pu(x) be the probability that a random string a1 � � �au is in class x. On M
we de�ne a Markov Chain, for each x the transition probability from x to
x+ a being pa.

In Markov Chain theory the states x 2 M are split into persistent and
transient, a state x is persistent if and only if it lies in a minimal closed set.
We claim Markov Chain persistency is precisely persistency as de�ned by
(1); (2); (3). If C is closed and x 2 C then Rx � C and Rx is itself closed.
If x satis�es (1) then Ru = Rx for all u = x+ y 2 Rx so x is Markov Chain
persistent. Conversely if x is Markov Chain persistent then Rx must be
minimal closed so Ru = Rx for all u = x+ y 2 Rx and so x satis�es (1).

The Markov Chain M restricted to a minimal closed set Rx is aperiodic
since x + sa 2 Rx and (x + sa) + a = x + sa. Hence from Markov Chain
theory when x is persistent limu!1 Pu(x) exists.
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exists u6 with u5 +u6 = x. Then Rx + (u+u6) = fxg so that (3) holds with
p = x; s = u+ u6.

By reversing addition (noting that (3) is selfdual while the dual of (1)
is (2)) these arguments give that (3) and (2) are equivalent, completing the
proof.

Let x be persistent and consider v = x+y. Let z be such that x+w+z =
x for all w. Then for all w v+w+(z+y) = (x+(y+w)+z)+y = x+y = v and
hence v is persistent. Dually,if x is persistent y + x is persistent. Together

If x is persistent then w1 + x + w2 is persistent

for any w1; w2 2M .
From (1) the relation x �R u de�ned by 9v(x+ v = u) is an equivalence

relation on the set of persistent x 2 M . We let Rx denote the �R-class
containing x so that

Rx = fx+ v : v 2Mg

From (2) the relation x �L u de�ned by 9v(v+x = u) is also an equivalence
relation on the set of persistent x 2 M . We let Lx denote the �L-class
containing x so that Lx = fv + x : v 2Mg. Let x be persistent and let p; s
(by (3)) be such that p+ z+ s = x for all x. Setting z = O, x = p+ s. Thus
for all z

x+ z + x = (p+ s) + z + (p+ s) = p+ (s+ z + p) + s = x

Let Rx; Ly be equivalence classes under �R;�L respectively. Then x+
y 2 Rx \ Ly. Let z 2 Rx \ Ly . Then there exist a; b with x = z + a and
y = b+ z so that x + y = z + (a+ b) + z. But as z is persistent the above
argument (with z as x and a + b as z) gives z + (a+ b) + z = z. Thus

Rx \ Ly = fx+ yg for all persistent x; y

Remarks. Let A = f0:1g. A sequence a1 � � �au is transient if and only if
there is a sentence Q of quanti�er depth at most t so that a1 � � �au fails Q
but there is an extension to a1 � � �auau+1 � � �av which satis�es Q such that
all further extensions a1 � � �avav+1 � � �aw also satisfy Q. For example, with
t = 4, let Q be the existence of a block 101. If a sequence does not satisfy
Q then the extension given by adding 101 does satisfy Q and all further
extensions will satisfy Q. Thus for a1 � � �au to be persistent for t = 4 it must
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Example. With A = f0; 1g we naturally associate sequences such as 101
with < f1; 2; 3g;�; f > with f(1) = 1; f(2) = 0; f(3) = 1. The addition of
101 and 1101 is their concatenation (in that order) 1011101. The �rst order
language has as atomic formulas x � y, x = y and f(x) = a for each a 2 A.
The sentence

9x9y9zf(x) = 1 ^ f(y) = 0 ^ f(z) = 1 ^ x < y ^ y < z

is satis�ed by 01110001 but not by 000111000 so these are in di�erent equiva-
lence classes with t = 3. We could also write that 101 appears as consecutive
terms with

9x9y9zf(x) = 1^f(y) = 0^f(z) = 1^x < y^y < z^:9w [(x < w^w < y)_(y < w^w < z)]

Informally we would just say 9xf(x) = f(x + 1) = f(x + 2) = 1 but the
quanti�er depth is four.

3.2 Persistent and Transient.

De�nition and Theorem. We call x 2M persistent if

8y9zx+ y + z = x (1)

8y9zz + y + x = x (2)

9p9s8yp+ y + s = x (3)

These three properties are equivalent. We call x transient if it is not persis-
tent.
Proof of Equivalence.

(3)) (1) : Take z = s, regardless of y. Then

x + y + z = (p+ y + s) + y + s = p+ (y + s + y) + s = x

(1)) (3) : Let Rx = fx+ v : v 2Mg. We �rst claim there exists u 2M

with jRx + uj = 1, i.e., all x + y + u the same. Otherwise take u 2 M
with jRx + uj minimal and say v; w 2 Rx + u. As Rx + u � Rx we write
v = x+u1; w = x+u2. From (1), with y = u1, we have x = v+u3 and thus
w = v + u4 with u4 = u3 + u2. Then

w + su4 = v + (s+ 1)u4 = v + su4

Adding su4 to R+u sends v; w to the same element so jR+u+su4j < jR+uj,
contradicting the minimality. Now say Rx + u = fu5g. Again by (1) there
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This sequence contains the sequence A1 � � �AR described in x3.5 . But this
implies (see x3.6) that the Ehrenfeuct value is determined, completing the
proof.

3 Background.

3.1 The Ehrenfeucht Game.

Let A be a �xed �nite alphabet (in application A is Pk or f0; 1g) and t a
�xed positive integer. We consider the space �A of �nite sequences a1 � � �au
of elements of A. We can associate with each sequence a model < [u];�; f >
where f : [u] ! A is given by f(i) = ai. For completeness we describe the
t-round Ehrenfeucht Games on sequences a1 � � �au and a01 � � �a

0
u0 . There are

two players, Spoiler and Duplicator. On each round the Spoiler �rst selects
one term from either sequencs and then the Duplicator chooses a term from
the other sequence. Let i1; . . . it be the indices of the terms chosen from the
�rst sequence, iq in the q-th round and let i01; . . . i0t denote the corresponding
indices in the second sequence. For Duplicator to win he must �rst assure
that aiq = a0i0q for each q, i.e. that he selects each round the same letter as

Spoiler did. Second he must assure that for all a; b

ia < ib , i0a < i0b and ia = ib , i0a = i0b

(It is a foolish strategy for Spoiler to pick an already selected term since
Duplicator will simply pick its already selected counterpart but this possib-
lity comes in in the Recursion discussed later.) This is a perfect information
game so some player will win. Two sequences are called equivalent if Dupli-
cator wins. Ehrenfeucht showed that this is an equivalence class and that
two sequences are equivalent if their models have the same truth value on
all sentences of quanti�er depth at most t. We let M denote the set of
equivalence classes which is known to be a �nite set. �A forms a semigroup
under concatenation, denoted +, and this operation �lters to an operation,
also denoted +, on M . We use x; y; . . . to denote elements of M : x+ y their
sum; O is the equivalence class of the null sequence which acts as identity.
We associate a 2 A with the sequence a of length one and its equivalence
class (which contains only it),, also called a. We let jx denote x + . . . + x
with j summands. From analysis of the Ehrenfeucht game (see x3.4) it is
known that there exists s (for de�niteness we may take s = 3t) so that:

jx = kx for all j; k � s; x 2M

12



We have a third claim that is somewhat technical. For any 1 � j � k let
�1; . . . ; �u denote the j-values of the successive j-intervals starting at one,
where �u is the last such interval that is in Pj . We know that almost surely
�1 � � ��u is persistent in �Pj . We claim further that almost surely �2�3 � � ��u
is persistent in �Pj . It su�ces to show this for any particular j as there are
only a �nite number of them. For any integer A we have u � 1 � A almost
surely and the probability that �2 � � ��A+1 is transient goes to zero with A
so almost surely �2 � � ��u is persistent. Let us call [b; c) a super k-interval
(for a given U) if it is a k-interval and further for every 1 � j � k letting
�1; . . . ; �u be the successive j-values of the j-intervals beginning at b and
stopping with the last persistent value - that then �2�3 � � ��u is persistent
in �Pj . So almost surely the k-interval [1; i1) is a super k-interval.

We shall show, for an appropriate sequence A1; . . . ; AR, that all U satis-
fying the above three claims give models < n;C; U > which have the same
Ehrenfeucht value.

We �rst need some glue. Call [a; b) an incomplete k-interval (with respect
to some �xed arbitrary U) if the k-interval beginning at a is not completed
by b� 1. Suppose [a; b) is an incomplete k-interval and [b; c) is a persistent
super k-interval. We claim [a; c) is a persistent k-interval. The argument
is by induction on k. For k = 1, [a; b) must consist of just zeroes while
[b; c) consists of at least s zeroes followed by a one. But then so does [a; c).
Assume the result for k and let [a; b) be an incomplete k + 1-interval and
[b; c) be a persistent k + 1-interval. We split [a; b) into a (possibly empty)
sequence x1; x2; . . . ; xr of persistent k-intervals followed by (possibly null) in-
complete k-interval [a+; b) with value, say, y. We split [b; c) (renumbering for
convenience) into a sequence xr+1; . . . ; xs; ys+1 of k-intervals, all persistent
except the last which is transient. Then, by induction, y+xr+1 is a persistent
k-interval with some value x0r+1. Then [a; c) splits into k-intervals with val-
ues x1; . . . ; xr; x

0
r+1; xr+2; . . . ; xs; ys+1. By the super-persistency xr+2 � � �xs

is persistent in �Pk and hence (see x3.2) so is x1 � � �xrx0r+1xr+2 � � �xs and
therefore [a; c) is a persistent k + 1- interval.

Now let < [n]; C; U > be any model that meets the three claims above,
all of which hold almost surely for p in this range. We set i = i0 = 1 and �nd
successive k-intervals [i0; i1); [i1; i2); . . . until [iu�1; iu) and then U on [iu; n]
gives an incomplete k-interval. By the third claim [1; i1) is superpersistent
and so the \interval" [iu; n][ [1; i1) (going around the corner) is k-persistent.
Hence we have split [n] (now thinking of it as a cycle with 1 following n )
into k-persistent intervals with k-values x1; x2; . . . ; xu. The k-value for x1
may be di�erent from that for [1; i1) but the others have remained the same.
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probability 1� o(1) so that each of these t-intervals will have length at least
�tp

�t with probability at least ct � o(1). As the lengths are independent
with conditional probability at least :99 at least ct
=2 of the intervals have
length at least �tp

�t. Thus with probability at least, say :4 the total length
Lt+1 is at least ct
�tp�t=2 which is �t+1p�(t+1) for an appropriate constant
�t+1, completing the induction.

Up to now the relation between p and n, the number of integers, has not
appeared. Recall that p! 0 and n!1 so that npk !1 but npk+1 ! 0.
Now begin at i = i0 = 1 and generate the k-interval [i0; i1). Then generate
the k-interval [i1; i2) beginning at i1 and continue. (We do this with k

�xed. Even if one of the intervals is transient we simply continue with k-
intervals. Again we imagine continuing forever through the integers.) Let
N be that maximal u for which iu � 1 � n, so that we have split [n] into
N k-intervals plus some excess. As each sequence of k ones de�nitely will
end a k-interval N is at least the number of disjoint subintervals of k ones.
Simple expectation and variance calculations show that N > :99npk almost
surely. On the other side set, with foresight, c = 4c�1k ��1k . If N < cnpk

then the sum of the lengths of the �rst cnpk k-intervals would be less than n.
But these lengths are independent identically distributed variables and each
length is at least �kp

�k with probability at least ck so that almost surely at
least ckcnp

k=2 of them would have length at least �kp
�k and thus their total

length would be at least (cck�k=2)n > n. That is, almost surely

C1np
k < N < C2np

k

where C1; C2 are absolute constants.
Let �1; . . . ; �N be the k-values of the k-intervals generated by this pro-

cedure. Now we make two claims about this procedure. We �rst claim that
almost surely none of the �i are transient. Each �i has probability � cp of
being transient so the probability that some �i, 1 � i � C2np

k is transient
is at most � (cp)C2np

k = �(npk+1) = o(1). And almost surely N < C2np
k ,

proving the claim.
Let A1 � � �AR be any �xed sequence of elements of Pk . The second claim

is that almost surely A1 � � �Ar appears as a subsequence of the � sequence,
more precisely that almost surely there exists i with 1 � i � N �R so that
�i+j = Aj for 1 � j � R. (For technical reasons we want the subsequence
not to start with �1.) As each �i has a positive probability of being any
particular x 2 Pk and the �i are independent and C1np

k ! 1 almost surely
this �xed sequence will appear in the �rst C1np

k �'s. And almost surely
N > C1np

k , proving the claim.
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Then, as
P1

u=0 L(1� p�)up� = L,

jPr[W = �]� Lj � �
1X

u=U

(1� p�)up� + (L+ 1)
X

0�u<U

(1� p�)up�

For �xed U the second sum is o(1) (as p� ! 0) while the �rst sum is less
than � so the entire expression is less than 2� for p su�ciently small. As �
was arbitrary this gives the claim.

Recall that the k+1-value of the full k+1-interval is a pair consisting of
the Ehrenfeucht value W just discussed and the k-value of the �rst transient
type yu+1. The transient type's value has a limiting distribution which is
independent of W , for conditional on any Lu the distribution on yu+1 is the
same. All possible y 2 Tk have a limiting probability dy 2 (0; 1). Hence
the probability of a k + 1-value being � = �y is simply the product of the
probabilities and hence approaches a constant if �, and hence �, is persistent
and is � cp if �, and hence � is transient. This completes the inductive
argument for the limiting probabilities of the k-values of the k-intervals.

We now let L = Lk be the length of the k-interval of i and �nd bounds on
the distribution of L. A simple induction shows that if the sequence 1 � � �1
of k ones appears after i then the k-interval of i ends with this sequence or
possibly before. Thus we get the crude bound

Pr[L > ka] < (1� pk)a

so that asymptotically

Pr[L > �p�k ] < e�c�

where c is a positive constant. In fact, this gives the correct order of magni-
tude, L is (speaking roughly) almost always on the order of p�k . We claim
that there are positive constants �t; ct so that

Pr[Lt > �tp
�t] > ct

The argument is by induction, for t = 1 the random variable L1 is simply
the number of trials until a success which occurs with probability p and
the distribution is easily computable. Assume this true for t and let (as
previously shown) etp be the asymptotic probability that a t-interval will
be transient. Pick ft positive with ftet < :5. With probability at least
:5, the �rst 
 = ftp

�1 t-intervals after i will be persistent. Conditioning
on an interval being persistent is conditioning on an event that holds with

9



For any �xed 0 � u < U we have limp!0 f(u; �) = fo(u; �) so that

lim
p!0

P
0�u<U f(u; �)(1� p�)up�

p
=

X
0�u<U

cfo(u; �)

With U su�ciently large this may be made within �=2 of c
P1

0 fo(u; �).
But this holds for � arbitrarily small, giving the claimed asymptotics of
Pr[W = �].

Remark. The rough notion here is that the probability of having a tran-
sient k+ 1-value is dominated by having few persistent k-intervals and then
a transient k-interval. The transient 2-intervals all had at most s persistent
1-intervals. The situation changes with 3-intervals. Recall Bai consisted
of at least s ones each preceeded by at least s zeroes and then two ones i
apart. Consider an arbitrarily long grouping of 2-intervals of 2-value Bai
but, say, with none of the form Ba3, i.e., 1001 not appearing and then, say,
follow the last one, say Ba1, with a one so that the 3- interval ends 111. For
every u there is a � cup probability of this being the 3-interval with u such
2-intervals and cu > 0 but all such 3-intervals would be considered transient
since a persistent sequence in �P2 must surely contain every value in P2.

Now suppose � is persistent. Again we have the precise formula

Pr[W = �] =
1X
u=0

f(u; �)(1� p�)up�

only this time it is the tail of the sum that dominates. As � is persistent there
is a limiting probability L = limu!1 fo(u; �) with L > 0 and furthermore
the M(p) approach Mo in the sense that

L = lim
p!0

lim
u!1

f(u; �)

We claim
Pr[W = �] = L+ o(1)

For any � > 0 there exist � and U so that for p � � and u � U we have

L� � < f(u; �) < L+ �

8



� 2 Pk let p+� = p�=(1� p�), the conditional probability that V k = � given

that V k is persistent. Note that (as p! 0)

p+� � p� � c�

Conditioning on Lu the x1; . . . ; xu are mutually independent with distri-
butions given by the p+� . De�ne on M a Markov Chain (see x3.3) with

transition probability p+� from and � to � + �. We let M(p) denote this
Markov Chain. Observe that the set of states M is independent of p and
the nonzeroness of the transition probabilities is independent of p 2 (0; 1)
though the actual transition probabilities do depend on p. There is a partic-
ular state O representing the null sequence. Let f(u; �) be the probability
of being at state � at time u, beginning at O at time zero. Then f(u; �) is
precisely the conditional distribution for � given Lu. But therefore, letting
W denote the Ehrenfeucht equivalence class,

Pr[W = �] =
1X
u=0

f(u; �)(1� p�)up�

Let Mo be the Markov Chain on the same set with transition probability c�
from � to �+ � and let fo(u; �) be the probability of going from O to � in
u steps under Mo. Observe that Mo is the limit of M(p) as p ! 0 in that
taking the limit of any (1-step) transition probability in M(p) as p ! 1

gives the transition probability in Mo.
Now we need some Markov Chain asymptotics. Assume � is transient.

We claim (recall p� � cp)

Pr[W = �] �

"
c
1X
u=0

fo(u; �)

#
p

and that the interior sum converges. In general the probability of remaining
in a transient state drops exponentially in u so there exist constants K; � so
that fo(u; �) < K(1� �)u for all u giving the convergence. Moreover there
exists �1; �2; K1 so that for all 0 < p < �1 we bound uniformly f(u; �) <
K1(1� �2)

u for all u. Pick �3 � �1 so that for 0 < p < �3 we have p� � 2cp.
For any positive � we �nd U so that for 0 < p < �3P1

u=U f(u; �)(1� p�)up�

p
<

1X
u=U

K1(1� �2)
u p
�

p
�

2cK1

�2
(1� �2)

U <
�

2
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persistent state (as de�ned in x3.2)in �P2; otherwise we call � transient and
place it in T3. If x1 � � �xu and x01 � � �x

0
u0 are equivalent as strings in P2 then

x1+. . .+xu and x01+. . .+x0u0 have (as shown in x3.4) the same Ehrenfeucht
value. So the 3-value of i determines the Ehrenfeucht value of the 3-interval
of i though possibly it has more information. What are the probabilities
for the 3-value of i? Again we get a string of 2-values z1z2 . . . whose values
are mutually independent and we stop when we hit a transient 2-value. We
shall see (in the course of the full induction argument) that the probability
of having 3-value � is � c� for persistent � and � c�p for transient �.

Now let us de�ne k-interval and k-value, including the split into persis-
tent and transient k-values by induction on k. Suppose Ek; Pk; Tk have been
de�ned. Beginning at i = i0 let [i0; i1) be the k-interval and then take suc-
cesive k-intervals [i1; i2); . . . ; [iu�1; iu) until reaching a k-interval [iu; iu+1)
with transient k-value. Then [i; iu+1) is the k+1-interval of i. (Incidentally,
suppose U(i). Then [i; i+ 1) is the 1-interval of i which is transient. But
then [i; i+ 1) is the 2-interval of i and is transient. For all k [i; i+ 1) is
the k-interval of i and is transient.) Let x1; . . . ; xu; yu+1 be the succesive
k-values of the intervals. Let � be the equivalence class of x1 � � �xu in �Pk.
Then i has k+ 1-value � = �yu+1. This value is persistent if � is persistent
and transient if � is transient. This de�nes Ek+1; Pk+1; Tk+1, completing the
induction. Our construction has assured that the k-value of i determines
the Ehrenfeucht value of the k-interval of i, though it may have even more
information.

Now let us �x i and look at the distribution of its k-value V k . We
show, by induction on k, that for every persistent � Pr[V k = �] = c� + o(1)
while for every transient � Pr[V k = �] = (c� + o(1))p. Here each c� is
a positive constant. Assume the result for k and set p� = Pr[V k = �]
for all � 2 Ek. Let p� be the probability that V k is transient so that
p� � cp, c a positive constant. Let x1; . . . ; xu; yu+1 be the successive k-
values of the k-intervals beginning at i, stopping at the �rst transient value.
We can assume these values are taken independently from the inductively
de�ned distribution on Ek. The distribution of the �rst transient value is the
conditional distribution of V k given that V k is transient so the probability
that it is some transient y is dy + o(1) where dy = cy=

P
cy0 , the sum over

all transient y0. Note all dy are positive constants.
The key to the argument is the distribution for the Ehrenfeucht equiva-

lence class � for the �nite sequence x1 � � �xu 2 �Pk. Let M be the set of all
such equivalence classes. Let Lu be the event that precisely u persistent x's
are found and then a transient y. Then Pr[Lu] = (1� p�)up� precisely. For

6



this value the 1-value of i. The probability of the 1-value being any partic-
ular ai is � p while the probability of it being b is � 1. (All asymptotics
are as p ! 0.) We let E1 denote this set of possible 1-values and we split
E1 = P1 [ T1 with P1 = fbg and T1 = fa1; . . . ; asg. The 1-values in T1 we
call 1-transient, the 1-value in P1 we call 1-persistent.

Now (with an eye toward induction) we de�ne the 2-interval of i = i0.
Take the 1-interval of i, say [i0; i1). Then take the 1-interval of i1, say [i1; i2).
Continue until reaching a 1-interval [iu; iu+1) whose 1-value is 1-transient.
(Of course, this could happen with the very �rst interval.) We call [i; iu+1)
the 2-interval of i. Now we describe the possible 2-values for this 2-interval.
In terms of Ehrenfeucht value we can write the interval as b+b+. . .+ b+ai
where there are u (possibly zero) b's. Any b+. . .+b with at least s addends
b has (see x3.4) the same value, call it B. Let jb denote the sum of j b's. We
de�ne the transient 2-values T2 as those of the form jb+ ai with 0 � j < s

and the persistent 2-values P2 as those of the form B + ai. For example,
let t = 5 and s = 35 = 243. Then i has 2-value 6b + a22 if, starting at i,
six times there are at least 243 zeroes before a one and after the sixth one
there are 21 zeroes and then a one. The 2-value is B + a5 if at least 243
times there are at least 243 zeroes before the next one and the �rst time
two ones appear less than 243 apart they are exactly 5 apart. What are the
probabilities for i = i0 having any particular 2-value? The �rst 1-interval
[i0; i1) has distribution for 1-value as previously discussed: � p for each ai
and � 1 for b. Having determined the �rst 1-interval the values starting at
i1 have not yet been examined. Hence the 1-value of the second 1-interval
will be independent of the 1-value of the �rst and, in general, the sequence
of 1-values will be of mutually independent values. Then the transient 2-
values jb+ai each have probability � p while the persistent 2-values B+ai
will each have probability 1

s + o(1). We let P2 denote the set of persistent
2-values, T2 the set of transient 2-values and E2 = P2[T2 the set of 2-values.

The 3-value will contain all the notions of the general case. Begin-
ning at i = i0 take its 2-interval [i0; i1). Then take successive 2-intervals
[i1; i2); . . . ; [iu�1; iu) until reaching an interval [iu; iu+1) whose 2-value is
transient. The 3-interval for i is then [i; iu+1). Let x1; . . . ; xu; yu+1 be
the 2-values for the successive intervals. From the procedure all xi 2 P2
while yu+1 2 T2. Now consider (see x3.1)the Ehrenfeucht equivalence classes
(again with respect to a t-move game) over �P2. (�A is the set of strings
over alphabet A.) Let � be the equivalence class for the string x1 � � �xu,
then the 3-value of i is de�ned as the pair � = �yu+1. We let E3 be the
set of all such pairs and we call � persistent (and place it in P3) if � is a
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t either all models < [u]; C; U > that contain A1 � � �AR as a subsequence
satisfy A or no such models satisfy A. (< [u]; C; U > contains A1 � � �AR as
a subsequence if for some 1 � j � u for all 1 � i � R we have U(j + i)
if and only if xi = 1, with j + i de�ned modulo u.) For p(n) in this range
< [u]; C; U > almost surely contains any such �xed sequence A1 � � �AR as a
subsequence and hence the Zero-One Law is satis�ed. This leaves us with
only one case in Theorem 1, and that will be the object of the next section.

2 The Main Case.

Here we let k be a positive integer and assume

n�
1

k � p(n) � n�
1

k+1

Our object is to show that p(n) satis�es the Zero-One Law for circular unary
predicates. We shall let t be a �xed, though arbitrary large, positive integer.
We shall examine the equivalence class under the t-move Ehrenfeucht game
of the circular model. For the most part, however, we shall examine linear
models.

We de�ne (as Ehrenfeucht did) an equivalence class on models M =<
n;�; U >, two models M;M 0 being equivalent if they satisfy the same depth
t sentences or, equivalently, if the t-move Ehrenfeucht game on M;M 0 is won
by the \Duplicator". The addition of models (with M on [n], M 0 on [n0] we
de�ne M+M 0 on [n+n0]) yields an addition of equivalence classes. We shall
denote the equivalence classes by x; y; . . . and the sum by x + y. Results
from the beautiful theory of these classes are given in Section 3.

Let us consider a random unary function U de�ned on all positive in-
tegers 1; 2; . . . and with Pr[U(i)] = p for all i, these events mutually inde-
pendent. (In the end only the values of U(i) for 1 � i � n will \count"
but allowing U to be de�ned over all positive integers allows for a \�ctitious
play" that shall simplify the analysis.) Now for any starting point i examine
i; i+ 1; . . . until reaching the �rst j (perhaps i itself) for which U(j). Call
[i; j] the 1-interval of i. (With probability one there will be such a j; �cti-
tious play allows us to postpone the analysis of those negligible cases when
no j is found before j > n.) What are the possible Ehrenfeucht values of
< [i; j];�; U >? The model must have a series of zeroes (i.e., :U) followed
by one one (i.e., U). There is an s (s = 3t will do) so that all such models
with at least s zeroes have the same Ehrenfeuct value. We can write these
values as a1; . . .as and b (ai having i � 1 zeroes, b having s zeroes). Call
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or
1� p(n) � n�1

Then p(n) satis�es the Zero-One Law for circular unary predicates. Inversely
if p(n) falls into none of the above categories then it does not satisfy the
Zero-One Law for circular unary predicates.

The inverse part is relatively simple. Let Ak be the sentence that there
exist k consecutive elements x1; . . . ; xk 2 U . (x; y are consecutive if for
no z is C(x; z; y). For k = 2 this is example C. ) Then Pr[Ak] is (for a
given n) a monotone function of p. When p(n) � cn�1=k and c a positive
constant the probability Pr[Ak] approaches a limit strictly between zero and
one. (Roughly speaking, n�1=k is a threshold function for Ak.) Thus for
p(n) to satisfy the Zero-One law we must have p(n) � n�1=k or p(n) �
n�1=k . Further (replacing U with :U), the same holds with p(n) replaced
by 1 � p(n). For p(n) to fall between these cracks it must be in one of the
above �ve categories.

Remark. Dolan [??] has shown that p(n) satis�es the Zero-One Law for
linear unary predicates if and only if p(n) � n�1 or n�1 � p(n) � n�1=2

or 1� p(n) � n�1 or n�1 � 1� p(n) � n�1=2. For n�1=2 � p(n) = o(1) he
considered the following property:

D : 9xU(x)^[U(x+1)_U(x+2)]^:9y[U(y)^[U(y+1)_U(y+2)]^y < x]^U(x+1)

(Addition is not in our language but we write x + 1 as shorthand for that
z for which x < z but there is no w with x < w < z.) In our zero-one
formulation D basically states that the �rst time we have 11 comes before
the �rst time we have 101. This actually has limiting probability :5. This
example illustrates that limiting probability for linear unary predicates can
depend on edge e�ects and not just edge e�ects looking at U on a �xed
size set 1; . . . ; k or n; n� 1; . . . ; n� k. We defer our results for linear unary
predicates to section 4.

When p(n) � n�1 the Zero-One Law is trivially satis�es since almost
surely there is no x for which U(x). Also, if p(n) satis�es the Zero-One Law
so does 1� p(n). Suppose p = p(n) satis�es p(n) � n�� and 1� p(n)� n��

for all � > 0. We show in a section 3 that for every t there is a sequence
A1 � � �AR with the property that for any sentence A of quanti�er depth

3



directly after n, C(x; y; z) is the relation that x to y to z goes in a clockwise
direction. For any sentence S in this new language we can again de�ne
Pr[Un;p j= S] only in this case Ehrenfeucht's results give a Zero-One Law:
for any constant p and sentence S

lim
n!1

Pr[Un;p j= S] = 0 or 1

We shall call the �rst language the linear language and the second language
the circular language. As a general guide, the circular language will tend to
Zero-One Laws while the linear language, because of edge e�ects, will tend
to limit laws.

We shall not restrict ourselves to p constant but rather consider p = p(n)
as a function of n. We have in mind the \Evolution of Random Graphs"
as �rst developed by Erd}os and R�enyi. Here as p = p(n) evolves from zero
to one the unary predicate evolves from holding for no x to holding for all
x. Analogously (but without formal de�nition) we have threshold functions

for various properties. For example, p(n) = n�1 is a threshold property for
A. When p(n) � n�1 almost surely A fails while when p(n) � n�1 almost
surely A holds. In Shelah,Spencer [??] we showed that when p = n��

with � 2 (0; 1), irrational then a Zero-One Law held for the random graph
G(n; p) and in  Luczak, Spencer [??] we found a near characterization of
those p = p(n) for which the Zero-One Law held. The situation with random
unary predicates turns out to be somewhat simpler. Let us say p = p(n)
satis�es the Zero-One Law for circular unary predicates if for every sentence
S in the circular language

lim
n!1

Pr[Un;p(n) j= S] = 0 or 1

Here is our main result.
Theorem 1. Let p = p(n) be such that p(n) 2 [0; 1] for all n and either

p(n) � n�1

or for some positive integer k

n�
1

k � p(n) � n�
1

k+1

or for all � > 0
n�� � p(n) and n�� � 1� p(n)

or for some positive integer k

n�
1

k � 1� p(n) � n�
1

k+1
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RANDOM SPARSE UNARY PREDICATES

1 Introduction.

Let n be a positive integer, 0 � p � 1. The random unary predicate Un;p is a
probability space over predicates U on [n] = f1; . . . ; ng with the probabilities
determined by

Pr[U(x)] = p; 1 � x � n

and the events U(x) being mutually independent over 1 � x � n. Informally,
we think of 
ipping a coin for each x to determine if U(x) holds, the coin
coming up \heads" with probability p. We shall examine the �rst order
language < [n];�; U > with equality, a unary predicate U and a binary
predicate �. Examples of sentences in this language are:

A : 9xU(x)

B : 9xU(x)^ 8y:y < x

C : 9x;yU(x)^ U(y)^ 8z:[x < z ^ z < y]

(>;�; < are natuarally de�nable from � and equality.) For any such sen-
tence S we have the probability

Pr[Un;p j= S]

While the use of unary predicates is natural for logicians there are two other
equivalent formulations that will prove useful. We may think of U as a
subset of [n] and speak about i 2 U rather than U(i). Second we may
associate with U a sequence of zeroes and ones where the i-th term is one if
U(i) and zero if :U(i). Thus we may talk of starting at i and going to the
next one. We shall use all three formulations interchangably.

Ehrenfeucht [??] showed that for any constant p and any sentence S in
this language

lim
n!1

Pr[Un;p j= S]

exists. In the case of sentences A and C the limiting probability is one. But
sentence B e�ectively states 1 2 U , hence its limiting probability is p. We
get around these edge e�ects with a new language, consisting of equality,
a unary predicate U , and a ternary predicate C. We consider C as a built
in predicate on [n] with C(x; y; z) holding if and only if either x < y < z
or y < z < x or z < x < y. Thinking of [n] as a cycle, with 1 coming
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