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Abstract. In the regime of Galton-Watson trees, first order logic statements are roughly equivalent to

examining the presence of specific finite subtrees. We consider the space of all trees with Poisson offspring

distribution and show that such finite subtrees will be almost surely present when the tree is infinite. Intro-
ducing the notion of universal trees, we show that all first order sentences of quantifier depth k depend only

on local neighbourhoods of the root of sufficiently large radius depending on k. We compute the probabilities
of these neighbourhoods conditioned on the tree being infinite. We give an almost sure theory for infinite

trees.

1. Introduction and main results

For λ > 0 we let Tλ denote the standard Galton-Watson tree, in which each node independently has
Poisson offspring with mean λ. We shall set

p = p(λ) = Pr[Tλ is infinite]. (1.1)

As is well known, when λ ≤ 1, p(λ) = 0 while when λ > 1, p is the unique positive solution to the equation

1− p = e−pλ. (1.2)

We let T ∗λ denote Tλ conditioned on Tλ being infinite. (When using T ∗λ we tacitly assume λ > 1.) For
any property A of rooted trees we let Pr[A],Pr∗[A] denote the probability (as a function of λ) of A in Tλ, T

∗
λ

respectively.
The first order logic for rooted trees consists of equality (x = y), parent (π(x, y), meaning x is the

parent of y), the constant symbol R (the root), the usual Boolean connectives and existential and universal
quantification over vertices. A first order property is a property that can be written with a sentence A in
this language. The quantifier depth of any first order sentence is the number of nested quantifiers involved
in expressing the sentence. We illustrate with a few examples what a typical first order sentence looks like.

Example 1.1. Consider the property that there exists a node in the tree that has precisely two children.
This can be expressed in first order language as follows:

∃ u [∃ v1 [∃ v2 [π(u, v1) ∧ π(u, v2) ∧ [∀ v {π(u, v) =⇒ {(v = v1) ∨ (v = v2)}}]]]] .
In this particular example, the quantifier depth is 4.

Example 1.2. Consider the property that the root of the tree has precisely one child and precisely one
grandchild. Observe that the root of the tree being a designated symbol, this property is written in first order
language as follows:

∃ u [∃ v [π(R, u) ∧ π(u, v) ∧ [∀ u′ {π(R, u′) =⇒ (u′ = u)}] ∧ [∀ v′ {π(u, v′) =⇒ (v′ = v)}]]] .
The quantifier depth is 3.

We refer the reader to Spencer (2001) for further discussion on first order logic.
Our main results (Theorem 4.7 and Corollary 4.8) will be a characterization of the possible Pr∗[A], as

functions of λ, where A is a first order property. However, it can be shown that the property of T being
infinite is not first order.
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Notations 1.3. Let v ∈ T , T a rooted tree. T (v) denotes the subtree of T that is rooted at v. w is an
i-descendant of v if there is a sequence v = x0, x1, . . . , xi = w so that xj is the parent of xj+1 for 0 ≤ j < i.
(We say v is a 0-descendant of itself.) (In the Ulam-Harris notation for trees, this can be expressed as
w = (x0, x1, . . . , xi) where x0 = v and xi = w.) w is a (≤ i)-descendant of v if it is a j-descendant for
some 0 ≤ j ≤ i. (E.g., 3-descendants are great-grandchildren.) We define d(T ) to be the depth of the tree,
which may be infinite. For n ≥ 1, T |n denotes the first n generations of T , along with the root. That is, if
d(T ) > n, then we sever all nodes after the n-th generation (where root is the 0-th generation) and call the
truncated tree T |n. If, of course, d(T ) ≤ n, then T |n = T . Let T0 be a finite tree. We say T contains T0 as
a subtree if for some v ∈ T , T (v) ∼= T0. We note that this is a first order property. Letting T0 have s nodes,
the first order sentence is that there exist distinct v1, . . . , vs having all the desired parent relations and with
v1, . . . , vs having no additional children.

We use a fictitious continuation to analyze Tλ. Let X1, X2, . . . be a countable sequence of mutually
independent and identically distributed Poisson(λ) random variables. Let Xi be the number of children of
the i-th node, when the tree is explored using Breadth First Search. (The root is considered the first node
so that X1 is its number of children.) If and when the tree terminates (this occurs when

∑n
i=1Xi = n − 1

for the first time) the remaining (fictitious) Xj are not used.

Theorem 1.4. Fix an arbitrary finite tree T0. Consider the following statement A:

A := {either T contains T0 as a subtree or T is finite}. (1.3)

Then Pr[A] = 1.

This is one of the main results of this paper. Note that, in particular, Theorem 1.4 immediately implies
that for any arbitrary but fixed finite T0,

∗
Pr[∃ v : T (v) ∼= T0] = 1. (1.4)

This gives us a good structural description of the infinite random Galton-Watson tree, in the sense that
every local neighbourhood is almost surely present somewhere inside the tree.

1.1. Rapidly Determined Properties. We say (employing a useful notion of Donald Knuth) that an
event is quite surely determined in a certain parameter s if the probability of the complement of that event
is exponentially small in s.

Definition 1.5. Consider the fictitious continuation process Tλ. We say that an event B is rapidly deter-
mined if quite surely B is tautologically determined by X1, X2, . . . , Xs. Here, tautologically determined means
that for every point ω in the sample space, the realization (X1(ω), X2(ω), . . . , Xs(ω)) completely determines
whether the event B occurs or not. This means that for every sufficiently large s ∈ N,

Pr[B is not determined by X1, X2, . . . , Xs] ≤ e−βs (1.5)

where β > 0 is independent of s.

Theorem 1.6. The event A described in (1.3) is a rapidly determined property.

We shall now prove Theorem 1.4 subject to Theorem 1.6. Fix an arbitrary finite T0. Assume Theorem
1.4 is false so that Pr[A] < 1, where A is as in (1.3). For each s ∈ N, with probability at least 1 − Pr[A]
the values X1, . . . , Xs do not terminate the tree, nor do they force a copy of T0. Then A would not be
tautologically determined. So A would not be rapidly determined and Theorem 1.6 would be false. Taking
the contrapositive, Theorem 1.6 implies Theorem 1.4. We prove Theorem 1.6 in §2.1.

Remark 1.7. The conclusion of Theorem 1.4 is really that, fixing any finite tree T0, T ∗λ contains T0 as a
subtree with probability one. We can say a bit more. Let T0 have root v. For L ≥ 1 define T0[L] by adding
L new points v0, . . . , vL−1 and making vi a child of vi−1, 1 ≤ i ≤ L− 1 and v a child of vL−1. T ∗λ contains
T0[L] with probability one. But then it contains a T0 where the root of T0 is at least distance L from the
root of T . We thus deduce that for any finite T0 and any L there will, with probability one in T ∗λ , be a v at
distance at least L from the root such that T (v) ∼= T0.
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1.2. Ehrenfeucht Games. We use a very standard and well-known tool to analyze first order properties
on rooted trees, namely the Ehrenfeucht games. The Ehrenfeucht games are what bridges the gap between
mathematical logic and a complete structural description of logical statements on graphs. Fix a positive
integer k. The standard k-move Ehrenfeucht game used to analyze first order properties partitions the space
of all rooted trees into finitely many equivalence classes. Any two trees belonging to the same equivalence
class if and only if they have the same truth value for every first order property of quantifier depth ≤ k.
That is, given a first order sentence A of quantifier depth at most k, if A holds true for one of the trees in
an equivalence class, then it holds true for all others in that class as well. This notion is made more precise
in the following exposition.

We begin with describing the standard game, and later move on to a more specialized variant of the game
that is suited to our analysis. Fix k ≥ 1 and two trees T1 rooted at R1 and T2 rooted at R2 (these are known
to both players). The Ehrenfeucht game EHR[T1, T2; k] is a k-round game between two players, the Spoiler
and the Duplicator. In each round Spoiler picks a vertex from either T1 or T2 and then Duplicator picks a
vertex from the other tree. Letting x1, . . . , xk; y1, . . . , yk be the vertices selected (in that order) from T1, T2
respectively, Duplicator wins if all of the following hold:

(i) xi = R1 iff yi = R2;
(ii) π(xi, xj) iff π(yi, yj), i.e. xi is the parent of xj if and only if yi is the parent of yj ;

(iii) π(R1, xi) iff π(R2, yi), i.e., if xi is a child of the root R1, then yi is a child of R2, and vice versa;
(iv) xi = xj iff yi = yj .

We write T1 ≡k T2 if and only if Duplicator wins EHR[T1, T2; k]. This equivalence relation partitions all
rooted trees into finitely many equivalence classes. It can be shown that two rooted trees T1, T2 (with
roots R1, R2) have the same k-Ehrenfeucht value iff they satisfy precisely the same first order properties of
quantifier depth at most k.

We shall now describe the promised modified version of the game. Let T be a rooted tree, v ∈ T , and
r > 0. Let T− be the (undirected) tree on the same vertex set with x, y adjacent iff one of them is the parent
of the other. Let BT (v; r) denote the ball of radius r around v. That is,

BT (v; r) = {u ∈ T : d(u, v) < r in T−} (1.6)

Here d(·, ·) gives the usual graph distance. (For example, cousins are at distance four.)
Let k (the number of rounds) and M (an upper bound on the maximal distance) be fixed. Let T1, T2 be

trees with designated nodes v1 ∈ T1, v2 ∈ T2. Set

Bi = BTi(vi; bM/2c), i = 1, 2.

The k-move M -distance preserving Ehrenfeucht game, denoted by EHRM [B1, B2; k], is played on these balls.
We add a round zero in which the moves v1, v2 must be played. (Essentially these are designated vertices.)
As before, each round (1 through k) Spoiler picks a vertex from either T1 or T2 and then Duplicator picks
a vertex from the other tree. Letting x0, . . . , xk; y0, . . . , yk be the vertices selected from T1, T2 respectively,
Duplicator wins if

• For 0 ≤ i, j ≤ k, d(xi, xj) = d(yi, yj). Equivalently, for all 1 ≤ s ≤ M and all 0 ≤ i, j ≤ k,
d(xi, xj) = s if and only if d(yi, yj) = s.

• For 0 ≤ i, j ≤ k, π(xi, xj) iff π(yi, yj).
• For 0 ≤ i, j ≤ k, xi = xj iff yi = yj .

Two balls B1, B2 (as described above) are said to have the same (M ; k)-Ehrenfeucht value if Duplicator
wins EHRM [B1, B2; k]. We denote this by

B1 ≡M ;k B2 (1.7)

This being an equivalence relation, the space of all such balls with designated centers, is partitioned into
(M ; k)-equivalence classes. We let ΣM ;k denote the set of all (M ; k)-equivalence classes.

We create a first order language consisting of =, π(x, y) and d(x, y) = s for 1 ≤ s ≤ M (note that s is
not a variable here). There are only finitely many binary predicates (relations involving two variables). (In
general adding the distance function would add an unbounded number of binary predicates. In our case,
however, the diameter is bounded by M and so we are only adding the M predicates d(x, y) = s, 1 ≤ s ≤M .)
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Hence the number of equivalence classes corresponding to this game will also be finite. That is, ΣM ;k is a
finite set.

1.3. Universal Trees. A universal tree, as defined below, shall have the property that once T contains it,
all first order statements up to quantifier depth k depend only on the local neighborhood of the root.

Definition 1.8. Fix a positive integer k. Let

M0 = 2 · 3k+1. (1.8)

A finite tree T0 will be called universal if the following phenomenon happens: Take any two trees T1, T2 with
roots R1, R2 such that:

(i) the 3k+1 neighbourhoods around the root have the same (M0; k) value, i.e.

BT1
(R1; 3k+1) ≡M0;k BT2

(R2; 3k+1). (1.9)

(ii) For some u1 ∈ T1, u2 ∈ T2 such that

d(R1, u1) > 3k+2, d(R2, u2) > 3k+2, (1.10)

we have

T1(u1) ∼= T2(u2) ∼= T0. (1.11)

Then T1 ≡k T2. Equivalently, Duplicator wins the standard k-move Ehrenfeucht game played on T1, T2.

Remark 1.9. Technically, we should call such a T0 as described in Definition 1.8 k-universal. However, in
the sequel, we simply refer to this as universal for the convenience of notation, and since the dependence on
k will be clear in each context.

We prove in Theorem 3.3 that such a universal tree indeed exists, by imposing sufficient structural
conditions on it.

Remark 1.10. Fix a certain universal tree UNIVk, given k ∈ N. Using theorem 1.4, we conclude that T ∗λ
will almost surely contain UNIVk. From Remark 1.7, we say further that there will almost surely exist a
node v at distance > 3k+2 from the root such that

T (v) ∼= UNIVk.

From the definition of universal trees, then the standard Ehrenfeucht value of T ∗λ will be determined by the
(M0; k)-Ehrenfeucht value of BT∗λ (R; 3k+1), the 3k+1-neighbourhood of the root R, where M0 is as in (1.8).

1.4. An Almost Sure Theory. Let Bi, 1 ≤ i ≤ N for some positive integer N , denote the finitely many
(M0; k)-equivalence classes. Note that these are defined on balls of radius 3k+1 centered at a designated
vertex which is a node in some tree. Then for every realization T of T ∗λ ,

BT (R; 3k+1) ∈ Bi for precisely one i, 1 ≤ i ≤ N. (1.12)

Almost surely for two realizations T1, T2 of T ∗λ which have the same local neighbourhoods of the roots, i.e.

BT1
(R1; 3k+1) ∈ Bi, BT2

(R2; 3k+1) ∈ Bi for the same i,

we have T1 ≡k T2. As the Bi are equivalence classes over the space of rooted trees they may be considered
properties of rooted trees and so have probabilities Pr∗[Bi] in T ∗λ . As they finitely partition the space of all
rooted trees

N∑
i=1

∗
Pr[Bi] = 1. (1.13)

Let AS denote the almost sure theory for T ∗λ . That is, AS consists of all first order sentences B such that
Pr∗[B] = 1. We now give an axiomatization of AS. Let T be defined by the following schema:

A [T0] := {∃ v : T (v) ∼= T0} , for all T0 finite trees. (1.14)
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Theorem 1.11. Under the probability Pr∗,

T = AS (1.15)

That is, the first order statements B with Pr∗[B] = 1 are precisely those statements derivable from the axiom
schema T .

As T does not depend on λ we also have:

Corollary 1.12. The almost sure theory AS is the same for all λ > 1.

That T ⊆ AS is already clear from Theorem 1.4. To show the reverse inclusion, consider for every
1 ≤ i ≤ N , T + Bi. In this theory every finite T0 is contained as a subtree and the 3k+1-neighbourhood
of the root belongs to the equivalence class Bi. As discussed above in Remark 1.10, this set of information
completely determines the standard Ehrenfeucht value of the infinite tree. That is, for any first order sentence
A of quantifier depth k

either T + Bi |= A or T + Bi |= ¬A. (1.16)

The standard notation T |= A for a tree T and a property A means that the property A holds true for tree
T . Set

JA = {1 ≤ i ≤ N : T + Bi |= A}. (1.17)

Under T ∗λ , A holds if and only if Bi holds for some i ∈ JA. Thus we can express

∗
Pr[A] =

∑
i∈JA

∗
Pr[Bi]. (1.18)

In Section 4 we shall use this to express all Pr∗[A] in reasonably succint form.
Now suppose, under T ∗λ , that Pr∗[A] = 1. As the Bi partition the neighbourhoods around the roots of

trees, this implies that JA = {1, 2, . . . N}. That is, T +Bi |= A for all 1 ≤ i ≤ N and
∨N
i=1 Bi is a tautology.

Hence A is derivable from T . Thus AS ⊆ T .

In Section 4 below, we turn to the computation of the possible Pr∗[A]. As seen above, in the space of T ∗λ ,
the neighbourhoods around the root of sufficiently large radius are instrumental in determining the standard
Ehrenfeucht value of the tree. It only makes sense, therefore, to compute the probabilities of having specific
neighbourhoods around the root conditioned on the tree being infinite. We shall do this in a recursive fash-
ion, using induction on the number of generations below the root that we are considering.

2. Containing All Finite Trees

2.1. A Rapidly Determined Property. We prove here Theorem 1.6. We fix an arbitrary finite tree T0
with depth d(T0) = d0, following the notation given in 1.3. We alter the fictitious continuation process
Tλ described previously. If for some finite, first n ∈ N, we have

∑n
i=1Xi = n − 1, then the actual tree

has vertices 1, . . . , n. If this phenomenon does not happen for any finite n, then we have one infinite tree
described by our fictitious continuation. If the tree does abort after n vertices, we begin a new tree with
vertex n+ 1 as the root, and generate it from Xn+1, Xn+2, . . .. Again, if this tree terminates at some n1 we
begin a new tree with vertex n1 + 1. Continuing, we generate an infinite forest, with vertices the positive

integers. We call this the forest process and label it T forλ .
Then we define, for every s ∈ N, the event (in Tλ)

good(s) = {A is completely determined by X1, . . . Xs}, (2.1)

where A is as in (1.3). Set bad(s) = good(s)c. For every node i ∈ N, define in T forλ

Ii = 1T (i)∼=T0
. (2.2)
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That is, Ii is the indicator function of the event that in the random forest T (i) ∼= T0. Set

Y =

bεd0sc∑
i=1

Ii, (2.3)

where, with foresight, we require

0 < ε <
1

λ+ 1
. (2.4)

(Our ε is chosen sufficiently small so that quite surely in s, in T forλ , all of the (≤ d0)-descendants j of all
i ≤ sε have j ≤ s.) We create a martingale, setting, for 1 ≤ i ≤ s,

Yi = E[Y |X1, X2, . . . Xi], Y0 = E[Y ]. (2.5)

In T forλ , for x ∈ R+, i ∈ N, set

Si(x) = {indices of all i-descendants of nodes 1, 2, . . . bxc} (2.6)

with S0(x) = {1, 2, . . . bxc}, where an i-descendant is as described in Notations 1.3. Define, for i ∈ N,

gi(x) = highest index recorded in

i⋃
j=0

Sj(x). (2.7)

Lemma 2.1. For any x ∈ R+, d ∈ N,
gd(x) = gd1(x). (2.8)

Here gd1 denotes the d-times composition of g1.

Proof. We prove this using induction on d. For d = 1 this is true by definition of g1. For d = 2, the
highest possible index of all the children and grandchildren of 1, 2, . . . bxc is equal to the highest index of the
children of the nodes 1, 2, . . . g1(bxc) = g1(x), which is g1(g1(x)). Now suppose we have proved the claim
for some d ∈ N, d ≥ 2. Once again, a similar argument comes into play. The highest index among all the
(d + 1)-descendants of nodes 1, 2, . . . bxc, is also equal to the highest index among all the d-descendants of

the nodes 1, 2, . . . g1(x), which by induction hypothesis will be gd1(g1(x)) = gd+1
1 (x). �

When gd0(bεd0sc) ≤ s, the descendents j of 1, . . . , bεd0sc down to generation d0 will all have j ≤ s. Thus
Y will be completely determined by X1, . . . Xs. That is,

gd01 (bεd0sc) ≤ s ⇒ Ys = Y. (2.9)

A few observations about the function g1(·) are important. First,

g1(x) ≥ bxc for all x ∈ R+. (2.10)

In T forλ every time the tree terminates, we start a new tree, and that uses up one extra index for the root of
the new tree. But while counting the nodes 1, 2, . . . bxc, for any x ∈ R+, at most bxc many new trees need
be started. Therefore

g1(x) ≤ bxc+

bxc∑
i=1

Xi. (2.11)

Further, by the definition of g1(·), it is clear that it is monotonically increasing.
We shall use the inequality in (2.11) to show that, for ε as chosen in (2.4), quite surely in s, we have

Ys = Y , i.e. Y is tautologically determined by X1, . . . , Xs with exponentially small failure probability in s.
This involves showing that for i this small, i.e. 1 ≤ i ≤

⌊
εd0s

⌋
, T (i) is quite surely determined by X1, . . . , Xs.

We employ Chernoff bounds. For x ∈ R+ and any α > 0,

Pr[g1(εx) > x] = Pr[eαg1(εx) > eαx]

≤E[eαg1(εx)]e−αx

≤E[eα(εx+
∑bεxc
i=1 Xi)]e−αx
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=eαεx
bεxc∏
i=1

E[eαXi ]e−αx

=e−(1−ε)αx {exp [λ (eα − 1)]}bεxc

≤e−(1−ε)αx {exp [λ (eα − 1)]}εx

= exp{−[(1− ε)α− λ(eα − 1)ε]x}. (2.12)

It can be checked that for any α ∈
(
0, log

(
1−ε
λε

))
, the exponent in (2.12) is negative, i.e. −[(1 − ε)α −

λ(eα − 1)ε] < 0. We set

η = [(1− ε)α− λ(eα − 1)ε] (2.13)

Observe that η is positive. Now we have the upper bound:

Pr[g1(εx) > x] ≤ e−ηx. (2.14)

We make the following claim:

Lemma 2.2. For any d, s ∈ N,

Pr[gd1(εds) > s] ≤
d−1∑
i=0

e−ε
iηs. (2.15)

Proof. We prove this using induction on d. We have already seen that this holds for d = 1. This initiates
the induction hypothesis. Suppose it holds for some d ∈ N. Then

Pr[gd+1
1 (εd+1s) > s] = Pr[gd+1

1 (εd+1s) > s, g1(εd+1s) > εds] + Pr[gd+1
1 (εd+1s) > s, g1(εd+1s) ≤ εds]

≤Pr[g1(εd+1s) > εds] + Pr[gd1(εds) > s]

≤e−η·ε
ds +

d−1∑
i=0

e−ε
iηs, by induction hypothesis and (2.14);

=

d∑
i=0

e−ε
iηs.

This completes the proof. �

From Lemma 2.2, we conclude that

Pr[gd01 (bεd0sc) > s] ≤
d0−1∑
i=0

e−ε
iηs, (2.16)

From (2.9), this means

Pr[Ys = Y ] ≥ 1−
d0−1∑
i=0

e−ε
iηs. (2.17)

As promised earlier, we therefore have that, quite surely, Ys = Y . In the following definition, we describe the
event Ys = Y as globalgood(s), emphasizing the dependence on the parameter s. What we can conclude from
the above computation is that globalgood(s) fails to happen with only exponentially small failure probability
in s.

Definition 2.3. globalgood(s) is the event Ys = Y . globalbad(s) is the complement of globalgood(s).

We now claim that the martingale {Yi : 0 ≤ i ≤ s} satisfies a Lipschitz Condition.

Lemma 2.4. There exists constant C > 0 such that for 1 ≤ i ≤ s,

|Yi − Yi−1| ≤ C. (2.18)
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Proof. For 1 ≤ i ≤ bεd0sc, fix a sequence ~x = (x1, . . . xi−1) ∈ (N ∪ {0})i−1, and then consider

yi = E[Y |X1 = x1, . . . Xi−1 = xi−1, Xi] =
∑

1≤j≤bεd0sc

E[Ij |X1 = x1, . . . Xi−1 = xi−1, Xi]

and

yi−1 = E[Y |X1 = x1, . . . Xi−1 = xi−1] =
∑

1≤j≤bεd0sc

E[Ij |X1 = x1, . . . Xi−1 = xi−1].

Ij will be affected by the extra information about Xi only if either j = i or node j is an ancestor of node
i at distance ≤ d0 from i. If j = i, then it will of course affect the conditional expectation because Xi gives
the number of children of j in that case. When j > i, this is immediate, because any subtree rooted at j
has no involvement of Xi. When j < i, but not an ancestor of i, i is not a part of the subtree T (j) rooted
at j. Therefore Xi, the number of children of node i, does not contribute anything to the probability of the
presence of T0 rooted at j. When j is an ancestor of i but at distance > d0 from i, i won’t be a part of the
subtree T (j)|d0 at all.

When j is an ancestor of i and at distance d0 from i, then i is a leaf node of T (j)|d0 and therefore Xi, the
number of children of i, will actually play a role, because to ensure that T (j) ∼= T0, the leaf nodes of T (j)|d0
must have no children of their own in T forλ .

That is, we need be concerned with the at most d0 ancestors of node i, plus i iteself, and for each of them,
the difference in the conditional expectations of Ij can be at most 1. Denoting by

∑∗
the sum over j = i

and j an ancestor of i at distance ≤ d0 from i, this gives us:

|yi − yi−1| =

∣∣∣∣∣
∗∑
E[Ij |X1 = x1, . . . Xi−1 = xi−1, Xi]− E[Ij |X1 = x1, . . . Xi−1 = xi−1]

∣∣∣∣∣
≤
∗∑
|E[Ij |X1 = x1, . . . Xi−1 = xi−1, Xi]− E[Ij |X1 = x1, . . . Xi−1 = xi−1]|

≤d0 + 1.

The final inequality follows from the argument above that
∑∗

involves summing over at most d0 + 1 many
terms, and each summand is at most 1, since each summand is the difference of the expectations of indicator
random variables. This proves Lemma 2.4, with C = d0 + 1.

�

Given Lemma 2.4 we apply Azuma’s inequality. Consider the martingale

Y ′i =
E[Y ]− Yi
d0 + 1

, 0 ≤ i ≤ s.

Set, for a typical node v in a random Galton-Watson tree T with Poisson(λ) offspring distribution,

Pr[T (v) ∼= T0] = p0, (2.19)

so that E[Y ] = bεd0scp0. Applying Azuma’s inequality to {Y ′i , 0 ≤ i ≤ s}, for any β > 0,

Pr[Y ′s > β
√
s] < e−β

2

.

We choose

β =
εd0p0

√
s

2(d0 + 1)
.

This gives

Pr[Ys <
εd0p0

2
· s− p0] < exp

{
− ε2d0p20

4(d0 + 1)2
· s
}
. (2.20)

Writing

ξ =
εd0p0

2
, ϕ =

ε2(d0)p20
4(d0 + 1)2

,
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we can rewrite the above inequality as

Pr[Ys < ξs− p0] < e−ϕs. (2.21)

Putting everything together, we get for all s large enough:

Pr[Y = 0] = Pr[Y = 0, Ys = Y ] + Pr[Y = 0, Ys 6= Y ]

≤Pr[Ys < ξs− p0] + Pr[Ys 6= Y ]

≤e−ϕs +

d0−2∑
i=0

e−ε
iηs; from (2.17) and (2.21);

which is an upper bound exponentially small in s. This gives us the proof of Theorem 1.6.

3. Universal trees exist!

In this section, we shall establish sufficient conditions that guarantee the existence of universal trees.
Fixing k ∈ N, set M0 = 2 · 3k+1 as in (1.8). Assume T0 is a finite tree with root R0 with the following
properties:

(i) For every σ ∈ ΣM0;k, there are distinct nodes vi;σ ∈ T0, 1 ≤ i ≤ k, with the following conditions
satisifed: for every σ ∈ ΣM0;k and every 1 ≤ i ≤ k, we have

d(R0, vi;σ) > 3k+2; (3.1)

for every σ1, σ2 ∈ ΣM0;k and 1 ≤ i1, i2 ≤ k, with (σ1, i1) 6= (σ2, i2), we have

d(vi1;σ1
, vi2;σ2

) > 3k+2; (3.2)

and for all 1 ≤ i ≤ k, σ ∈ ΣM0;k,

B(vi;σ; 3k+1) ∈ σ. (3.3)

(ii) For every 1 ≤ i ≤ k, every choice of u1, . . . ui−1 ∈ T0, and every choice of σ ∈ ΣM0;k, there exists a
vertex ui ∈ T0 such that

d (ui, uj) > 3k+2, for all 1 ≤ j ≤ i− 1, (3.4)

d (R0, ui) > 3k+2, (3.5)

and
B
(
ui; 3k+1

)
∈ σ. (3.6)

Remark 3.1. Observe that Condition (ii) is stronger than Condition (i) and actually implies the latter.
However, for pedagogical clarity, and since (i) gives a nice structural description of the Christmas tree that
is described in Theorem 3.3, we retain (i). Furthermore, we state (i) before (ii) since, we feel, it is an easier
condition to visualize.

Lemma 3.2. T0 with properties described above will be a universal tree.

Proof. Recall the definition of universal trees. We start with two trees T1, T2 with roots R1, R2, and which
satisfy the following conditions:

(i) The balls B(R1; 3k+1), B(R2; 3k+1) satisfy

B(R1; 3k+1) ≡M0;k B(R2; 3k+1). (3.7)

(ii) For some u1 ∈ T1, u2 ∈ T2 such that

d(R1, u1) > 3k+2, d(R2, u2) > 3k+2, (3.8)

we have each of T1(u1) and T2(u2) isomorphic to T0. If ϕ1 : T0 → T1(u1), ϕ2 : T0 → T2(u2) are
these isomorphisms, then

ϕ1(vi;σ) = v
(1)
i;σ , ϕ2(vi;σ) = v

(2)
i;σ ,

for all σ ∈ ΣM0;k, 1 ≤ i ≤ k.
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Now we give a winning strategy for the Duplicator. We assume that since R1, R2 are designated vertices,
x0 = R1, y0 = R2. Let (xi, yi) be the pair chosen from T1 × T2 in the i-th move, for 1 ≤ i ≤ k. Now, we
claim the following:

The Duplicator can play the game such that, for each 0 ≤ i ≤ k,

• he can maintain

B(xi; 3k+1−i) ≡M0;k B(yi; 3k+1−i),

(Our proof only needs

B(xi; 3k+1−i) ≡M0;k−i B(yi; 3k+1−i),

but the stronger assumption is a bit more convenient);
• for all 0 ≤ j < i such that xj ∈ B(xi; 3k+1−i), the corresponding yj ∈ B(yi; 3k+1−i), and vice versa,

according to the winning strategy of EHRM0
[B(xi; 3k+1−i), B(yi; 3k+1−i); k]. Again, this is overkill

as one need only consider the Ehrenfeucht game of k − i moves at this point.

We prove this using induction on the number of moves played so far. For i = 0, we have chosen x0 =
R1, y0 = R2, and we already have imposed the condition

B(R1; 3k+1) ≡M0;k B(R2; 3k+1)

in (3.7). So suppose the claim holds for 0 ≤ j ≤ i − 1. Without loss of generality suppose Spoiler chooses
xi ∈ T1. There are two possibilities:

(i) Inside move:

xi ∈
i−1⋃
j=0

B(xj ; 2 · 3k+1−i). (3.9)

So xi ∈ B(xl; 2 · 3k+1−i) for some 0 ≤ l ≤ i− 1. By the induction hypothesis,

B(xl; 3k+1−l) ≡M0;k B(yl; 3k+1−l).

Duplicator now follows his winning strategy of EHRM0
[B(xl; 3k+1−l), B(yl; 3k+1−l); k] and picks

yi ∈ B(yl; 3k+1−l). This means that,

d(xi, xl) < 2 · 3k+1−i ⇒ B(xi; 3k+1−i) ⊂ B(xl; 3k+1−l),

since l < i. In the same way

B(yi; 3k+1−i) ⊂ B(yl; 3k+1−l),

and further,

B(xi; 3k+1−i) ≡M0;k B(yi; 3k+1−i).

This last relation follows from the fact that yi is chosen corresponding to xi in the winning strategy of
the Duplicator for EHRM0

[B(xl; 3k+1−l), B(yl; 3k+1−l); k]. Since M0, as chosen in Equation (1.8),
is greater than 2 · 3k+1−i, hence for Duplicator to win EHRM0

[B(xl; 3k+1−l), B(yl; 3k+1−l); k], he
must be able to win the game played within the smaller balls B(xi; 3k+1−i) and B(yi; 3k+1−i).

(ii) Outside move:

xi /∈
i−1⋃
j=0

B(xj ; 2 · 3k+1−i). (3.10)

Then we consider B(xi; 3k+1−i) and we know, from (3.4), (3.5) and (3.6), that there exists some
v ∈ T2 such that

d(v, yl) > 3k+2, for all 0 ≤ l ≤ i− 1,

and

B(v; 3k+1) ≡M0;k B(xi; 3k+1).
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We choose yi = v. Note that then we automatically have

B(yi; 3k+1−i)
⋂

i−1⋃
j=0

B(yj ; 3k+1−i)

 = φ,

and

B(xi; 3k+1−i) ≡M0;k B(yi; 3k+1−i).

Once again, Duplicator is choosing yi so that B(yi; 3k+1) ≡M0;k B(xi; 3k+1), i.e. he wins

EHRM0

[
B(xi; 3k+1), B(yi; 3k+1); k

]
.

Then he must be able to win the game within the smaller balls B(xi; 3k+1−i) and B(yi; 3k+1−i),
since his winning involves being able to preserve mutual distances of pairs of nodes up to M0.

This shows that the Duplicator will win EHR[T1, T2; k], which finishes the proof.
�

Theorem 3.3. For each k ∈ N there is a universal tree T .

Proof. T will be a Christmas tree which is constructed as follows. For each σ ∈ ΣM0:k select and fix a specific
ball B(v; 3k+1) ∈ σ. For each such σ and each 1 ≤ i ≤ k create disjoint copies Ti,σ = B(vi,σ; 3k+1) such
that B(vi;σ; 3k+1) ∼= B(v; 3k+1), with the isomorphism mapping vi;σ to v. These B(vi;σ; 3k+1) are the balls
decorating the Christmas tree. Let wi;σ be the top vertex of B(vi;σ; 3k+1). That is, it is that unique node
in the ball with no ancestor in the ball. It can be seen that this node is actually the ancestor of vi;σ which
is at distance 3k+1 away from vi;σ, or in other words, vi;σ is a 3k+1-descendant of this node. Let R be the
root of T . Draw disjoint paths of length 3k+4 from R to each wi;σ. These will be like the strings attaching
the balls to the Christmas tree.

We now explain why this T satisfies Conditions (i) and (ii). Once again, for pedagogical clarity, we first
show a detailed reasoning why T satisfies (i), although technically, it suffices to verify only (ii). First, observe
that the vi;σ we have defined in the previous paragraph, for 1 ≤ i ≤ k and σ ∈ ΣM0;k, immediately satisfy
(3.1) and (3.2), since

d (R, vi;σ) = d (R,wi;σ) + d (vi;σ, wi;σ) = 3k+4 + 3k+1 > 3k+2,

for every σ1, σ2 ∈ ΣM0;k, 1 ≤ i1, i2 ≤ k with (σ1, i1) 6= (σ2, i2), we indeed have

d (vi1;σ1
, vi2;σ2

) = d (vi1;σ1
, R) + d (R, vi2;σ2

) > 2 · 3k+4 > 3k+2.

To see that (3.3) holds, note that by our construction,

B(vi;σ; 3k+1) ∼= B(v; 3k+1) ∈ σ,

with vi;σ mapped to v, for all 1 ≤ i ≤ k, and for all σ ∈ ΣM0:k.
Finally, we verify that (ii) holds. Consider any 1 ≤ j ≤ k. Suppose we have selected any j − 1 vertices

u1, . . . uj−1 from T . For any σ ∈ ΣM0:k and 1 ≤ i ≤ k, we consider the branch of the tree consisting of
the ball B

(
vi;σ; 3k+1

)
and the string joining R to wi;σ, and we call that branch free if no ul, 1 ≤ l ≤ j − 1

is picked from that branch. Since there are k copies of balls for each σ, and j ≤ k, hence we shall always
have at least one free branch from each σ ∈ ΣM0:k. So we simply choose uj = vi;σ for some i such that the
corresponding branch is free.

Since no ul, 1 ≤ l ≤ j − 1, belongs to that branch, each of them must be at least as far away from uj as
the root is from vi;σ. That is, we will have

d (uj , ul) > 3k+4 + 3k+1; d (uj , R) = 3k+4 + 3k+1.

And of course, by our choice, we would have B
(
uj ; 3k+1

)
∈ σ.

�
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4. Probabilities conditioned on infiniteness of the tree

As before, with R the root, BT (R; i) denotes the neighbourhood of R with radius i, i.e.

BT (R; i) = {u ∈ T : d(u,R) < i}.
We define

BT (R; i) = {u ∈ T : d(u,R) ≤ i}.
So, BT (R; i) captures up to the i-th generation of the tree, R being the 0-th generation. For each i ∈ N we
give a set of equivalence classes Γi which will be relatively easy to handle and which we show in Theorem
4.2 is a refinement of Σi:k. We set

C = {0, 1, . . . , k − 1, ω}. (4.1)

Here ω is a special symbol with the meaning “at least k.” That is, to say that there are ω copies of someting
is to say that there are at least k copies. We set

Γ1 = C = {0, 1, . . . , k − 1, ω}. (4.2)

A BT (R; 1) is of type i ∈ Γ1 if the root has i children. Since the game has k rounds, if the roots has x, y
children in the two trees with both x, y ≥ k then Duplicator wins the modified game. Inductively we now
set

Γi+1 = {g : Γi → C}. (4.3)

Each child v of the root generates a tree to generation i. This tree belongs to an equivalence class σ ∈ Γi.
A BT (R; i+ 1) has state g ∈ Γi+1 if for all σ ∈ Γi the root has g(σ) children v whose subtree T (v) upto
generation i belongs to equivalence class σ, i.e. T (v)|i ∈ σ.

Example 4.1. Consider k = 4, i = 2. Then a typical example of BT (R; i) will be: the root has two children
with no chidren, at least four children with one child, three children with two children, no children with three
children, and one child with at least four children. Thus g(0) = 2, g(1) = ω, g(2) = 3, g(3) = 0, g(ω) = 1.

Theorem 4.2. Γi is a refinement on Σi:k.

Proof. Let BT1(R1; i), BT2(R2, i) lie in the same Γi equivalence class. It suffices to show that Duplicator
wins the k-move modified Ehrenfeucht game on these balls. We show this using induction on i.

The case i = 1 is immediate. Suppose it holds good for all i′ ≤ i− 1. In the Ehrenfeucht game let Spoiler
select w1 ∈ T1. Let v1 be the child of the root such that w1 belongs to the tree generated by v1 up to depth
i − 1, i.e. T1(v1)|i−1. Duplicator allows Spoiler a free move of v1. Let σ be the Γi−1 class for T1(v1)|i−1.
In T2 Duplicator finds a child v2 of the root R2 in T2 such that T2(v2)|i−1 ∈ σ. Duplicator now moves v2
and then, by induction hypothesis, finds the appropriate response w2 ∈ T2(v2)|i−1 corresponding to w1. For
any further moves by the Spoiler with the same v1 or v2, Duplicator plays, inductively, on the two subtrees
T1(v1)|i−1, T2(v2)|i−1. And if Spoiler chooses some y1 ∈ BT1

(R1; i) − T1(v1)|i−1, then again we repeat the
same procedure as above. There are only k moves, hence Duplicator can continue in this manner and so
wins the Ehrenfeucht game.

�

When σ ∈ Γi we write Pr[σ],Pr∗[σ] for the probabilities, in Tλ, T
∗
λ respectively, that BT (R, i) is in

equivalence class σ. Let Γ = Γs with s = 3k+1.
For any first order A with quantifier depth k let JA be as in (1.17). Applying Theorem 4.2 for each i ∈ JA

the class Bi splits into finitely many classes τ ∈ Γ. Let KA denote the set of such classes. The equation
(1.18) can be rewritten as

∗
Pr[A] =

∑
τ∈KA

∗
Pr[τ ]. (4.4)

For 0 ≤ i < k set

Pi(x) = Pr[Po(x) = i] = e−x
xi

i!
, (4.5)
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and set

Pω(x) = Pr[Po(x) ≥ k] = 1−
k−1∑
i=0

Pi(x). (4.6)

We now make use of a special property of the Poisson distribution. Let Ω = {1, . . . , n} be some finite
state space. Let pi ≥ 0 with

∑n
i=1 pi = 1 be some distribution over Ω. Suppose v has Poisson mean λ

children and each child independently is in state i with probability pi. The distribution of the number of
children of each type is the same as if for each i ∈ Ω there were Poisson mean piλ children of type i and
these values were mutually independent. For example, assumming boys and girls equally probable, having
Poisson mean 5 children is the same as having Poisson mean 2.5 boys and, independently, having Poisson
mean 2.5 girls.

The probability, in Tλ, that the root has u children (including u = ω) is then Pu(λ). Suppose, by induction,
that Pτ (x) has been defined for all τ ∈ Γi such that Pr(τ) = Pτ (λ). Let σ ∈ Γi+1 so that σ is a function
g : Γi → C. In Tλ the root has Poisson mean λ children and, for each τ ∈ Γi, the i-generation tree rooted
at a child is in the class τ with probability Pτ (λ). By the special property above we equivalently say that
the root has Poisson mean λPτ (λ) children of type τ for each τ ∈ Γi and that these numbers are mutually
independent. The probability Pσ(λ) is then the product, over τ ∈ Γi, of the probability that a Poisson mean
λPτ (λ) has value g(τ). Setting

Pσ(x) =
∏
τ

Pg(τ)(xPτ (x)), (4.7)

we have
Pr[σ] = Pσ(λ). (4.8)

Example 4.3. Continuing Example 4.1, set xi = e−λλi/i! for 0 ≤ i < 4 and xω = 1 −
∑3
i=0 xi. The root

has no child with three children with probability exp[−x3λ]. It has one child with at least four children with
probability exp[−xωλ](xωλ). It has at least four children with one child with probability 1 − exp[−x1λ](1 +
(x1λ) + (x1λ)2/2 + (x1λ)3/6]. It has two children with no children with probability exp[−x0λ](x0λ)2/2. It
has three children with two children with probability exp[−x2λ](x2λ)3/6. The probability of the event is then
the product of these five values.

While Equation (4.8) gives a very full description of the possible Pr[σ] the following less precise description
may be more comprehensible.

Definition 4.4. Let F be the minimal family of function f(λ) such that

(i) F contains the identity function f(λ) = λ and the constant functions fq(λ) = q, q ∈ Q.
(ii) F is closed under finite addition, subtraction and multiplication.

(iii) F is closed under base e exponentiation. That is, if f(λ) ∈ F then ef(λ) ∈ F .

We call a function f(λ) nice if it belongs to F .

In Corollary 4.8 we show that the probability of any first order property, conditioned on the tree being
infinite, is actually such a nice function.

Theorem 4.5. Then for all k and all i, if σ ∈ Γi then Pr[σ] is a nice function of λ.

This is an immediate consequence of the recursion (4.7).

Example 4.6. The statement “the root has no children which have no children which have no children” is
the union of classes σ with k = 1, i = 3. It has probability exp[−λ exp[−λ exp[−λ]]].

Let T finλ denote Tλ conditioned on Tλ being finite. For any k, i and any σ ∈ Γi let Prfin[σ] be the

probability of event σ in T fin. Assume λ > 1. Let p = p(λ), the probability Tλ is infinite, be given by (1.1).

By duality, T finλ has the same distribution as Tqλ, where

q(λ) = 1− p(λ) = Pr[Tλ is finite]. (4.9)

Thus
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fin

Pr[σ] = Pσ(qλ). (4.10)

For any k, i and σ ∈ Γi

Pr[σ] =
fin

Pr[σ]q +
∗

Pr[σ]p (4.11)

and hence
∗

Pr[σ] = p−1[Pr[σ]−
fin

Pr[σ]q]. (4.12)

For any first order sentence A of quantifier depth k, letting KA be as in (4.4),

∗
Pr[A] =

∑
σ∈KA

p−1[Pr[σ]−
fin

Pr[σ]q]. (4.13)

Combining previous results gives a description of possible Pr∗[A].

Theorem 4.7. Let A be a first order sentence of quantifier depth k. Let KA be as in (4.4) Let

f(x) =
∑
σ∈KA

Pσ(x). (4.14)

Then
∗

Pr[A] = p−1[f(λ)− qf(qλ)]. (4.15)

As before, it is also convenient to give a slightly weaker form.

Corollary 4.8. For any first order sentence A we may express

∗
Pr[A] = p−1[f(λ)− qf(qλ)] (4.16)

where f is a nice function in the sense of Definition 4.4.

5. Further results

In this paper, we have so far dealt with Galton-Watson trees with Poisson offspring distribution. The
results of Sections 2 and 3 extend to some other classes of offspring distributions. In this section, we outline
briefly these extensions. We consider a general probability distribution D on N0 = {0, 1, 2, . . .}, where pi is
the probability that a typical node in the random tree has exactly i children, i ∈ N0. We shall denote the
probabilities under this regime by PrD. We also assume that the moment generating function of D exists
on a non-degenerate interval [0, γ] on the real line.

Fix an arbitrary finite T0 of depth d0. We assume that PrD[T0] > 0. In other words, this means that if
T is the random Galton-Watson tree with offspring distribution D, then PrD[T ∼= T0] > 0. Consider the
statement

A = {∃ v : T (v) ∼= T0} ∨ {T is finite} . (5.1)

We can show, similar to our results in Section 2, that PrD[A] = 1, provided (5.6) holds for some α ∈ (0, γ]
and 0 < ε < 1. Of course, the non-trivial case to consider is when D has expectation greater than 1, as only
then does it make sense to talk about the infinite Galton-Watson tree.

The proof of this fact follows the exact same steps as shown in Section 2. We consider again a fictitious
continuation X1, X2, . . . which are i.i.d. D. For every node i, we let Ii be the indicator for the event
{T (i) ∼= T0}. For a suitable ε > 0 that we choose later, we let

Y =

bεd0sc∑
i=1

Ii, (5.2)
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and we define the martingale Yi = E[Y |X1, . . . , Xi] for 1 ≤ i ≤ s, with Y0 = E[Y ]. Defining g1 as in Equation
(2.7), we similarly argue that

g1(x) ≤ bxc+

bxc∑
i=1

Xi. (5.3)

The only difference is in the estimation of the probability that g1(εx) exceeds x. We employ Chernoff bounds
again, but we no longer have the succinct form of the moment generating function as in the case of Poisson.
For any 0 < α ≤ γ,

Pr[g1(εx) > x] = Pr[eαg1(εx) > eαx]

≤E[eαg1(εx)]e−αx

≤E[eα(εx+
∑bεxc
i=1 Xi)]e−αx

=eαεx
bεxc∏
i=1

E[eαXi ]e−αx

=ϕ(α)bεxce−α(1−ε)x, (5.4)

where ϕ(α) = E[eαX1 ]. Since X1 is non-negative valued, ϕ(α) > 1 for α > 0, hence we can bound the
expression in (5.4) above by

ϕ(α)εxe−α(1−ε)x =
{
ϕ(α)εe−α(1−ε)

}x
. (5.5)

If we are able to choose α > 0 such that for some 0 < ε < 1, we have

ϕ(α)εe−α(1−ε) < 1, (5.6)

then the exact same argument as in Section 2 goes through, and we have the desired result.
In particular, it is easy to see that (5.6) is indeed satisfied when D is a probability distribution on a finite

state space ⊆ N0.
The sufficient conditions for a tree to be universal nowhere uses the offspring distribution. Once the

results of Section 2 hold for a given D, it is not too difficult to see that the conclusion of Remark 1.10 should
hold in this regime as well. We hope to return to this more general setting in our future work.

A further object of future study is a more detailed analysis of Tλ at the critical value λ = 1. While Pr∗

is technically not defined at the critical value, there may well be some approaches via the insipient infinite
tree.
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