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Phase transitions for modified Erdős–Rényi
processes

Svante Janson and Joel Spencer

Abstract. A fundamental and very well studied region of the Erdős-Rényi process is the

phase transition at m∼ n
2

edges in which a giant component suddenly appears. We examine the

process beginning with an initial graph. We further examine the Bohman–Frieze process in which

edges between isolated vertices are more likely. While the positions of the phase transitions vary,

the three processes belong, roughly speaking, to the same universality class. In particular, the

growth of the giant component in the barely supercritical region is linear in all cases.

1. Introduction

The standard Erdős–Rényi process (G(n,m))
(n
2)
m=0 starts with an empty graph

G(n, 0)=En with n vertices and adds edges one by one in random order, uniformly

over all possibilities, i.e., drawing the edges uniformly without replacement. (Hence,

G(n,m) has n vertices and m edges.) This random graph model has been studied a

great deal, starting with Erdős and Rényi [8], [9], see for example the monographs

by Bollobás [6] and Janson,  Luczak and Ruciński [14].

The purpose of this paper is to study two modifications of this process. We are

interested in the sizes (orders) of the components of the random graphs; in particular

whether there exists a giant component of size comparable to the entire graph and,

if so, how large it is. (We ignore the internal structure of the components.) We

denote the components of a graph G by Ci(G), i=1, ..., υ(G), where thus υ(G) is

the number of components of G, and their sizes by Ci(G):=|Ci(G)|, 1≤i≤υ(G); we

will always assume that the components are ordered such that C1≥C2≥.... (For

convenience we also define Ci(G)=0 when i>υ(G).) We will often, as just done,

omit the argument G when the graph is clear from the context. We further denote

This research was mainly done at Institute Mittag-Leffler, Djursholm, Sweden, during the
program Discrete Probability, 2009. We thank other participants, in particular Oliver Riordan,
for helpful comments. We thank Will Perkins for the numerical calculations in Remark 3.6.



2 Svante Janson and Joel Spencer

the edge set of G by E(G), the number of edges by e(G):=|E(G)|, and the number

of vertices by |G| (the order or size of G).

We recall the fundamental result for G(n,m) [9] that if n→∞ and m∼cn/2
for some constant c, then C1=ρ(c)n+op(n), where ρ(c)=0 if c≤1, and ρ(c)>0 if

c>1. (Furthermore, C2=op(n) for every c.) This is usually expressed by saying

that there is a threshold or phase transition at m=n/2. See further [9], [6], [14].

Moreover, as δ↘0, ρ(1+δ)∼2δ (see [7, Theorem 3.17] for a generalization to certain

other random graphs). (For the notation op(n), and other standard notations used

below such as w.h.p., see e.g. [14] and [11].)

In the first modification of the Erdős–Rényi process, we assume that some

(non-random) edges are present initially; additional edges then are added randomly

as above. We actually consider three slightly different versions of this process; see

Section 2 for details. Our main result for these processes (Theorem 2.1) character-

izes the existence and size of a giant component in terms of the initial edges (more

precisely, the sizes of the components defined by them) and the number of added

random edges. We define the susceptibility s2 as the average size of the component

containing a random vertex in the initial graph, see (2.1)–(2.3), and show the ex-

istence of a threshold when tcn/2 edges are added, where tc :=s−12 . (This was also

done, under a technical assumption, in Spencer and Wormald [17].) Moreover, we

give upper and lower bounds for the size of the giant component after the threshold

in terms of s2 and two related quantities (higher moments of the component size)

s3 and s4 for the initial graph, also defined in (2.1)–(2.3).

Our second modification is known as the Bohman–Frieze process, after Bohman

and Frieze [3]. The initial graph on n vertices is empty. At each round two edges

e1={v1, w1} and e2={v2, w2} are selected independently and uniformly. If both

v1 and w1 are isolated vertices the edge e1 is added to the graph; otherwise the

edge e2 is added to the graph. We let BFm denote this process when m edges

are added. This is a natural example of an Achlioptas process, in which a choice

may be made from two randomly chosen potential edges. In Bohman and Frieze

[3] and Bohman, Frieze and Wormald [4] it was shown that the phase transition is

deferred beyond m∼n/2. More precisely, it is proved in Spencer and Wormald [17]

and, independently, in Bohman and Kravitz [5] that the Bohman–Frieze process

has a phase transition at some tc≈1.1763. In the present paper we study further

what happens just after the phase transition, using the result just described for

the Erdős–Rényi process with initial edges. The idea is, as in [17], that to study

the process at a time t1>tc, we stop the process at a suitable time t0 just before

the phase transition, and then approximate the evolution between t0 and t1 by

an Erdős–Rényi process, using the graph obtained at time t0 as our initial graph.

In order to apply Theorem 2.1, we then need information on s2, s3 and s4 in the
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subcritical phase. The analysis in Spencer and Wormald [17] of the Bohman–Frieze

process (and a class of generalizations of it) is based on studying the susceptibility s2
in the subcritical region. We will use some results from [17], reviewed in Section 3,

and extend them to s3 and s4 in order to obtain the required results needed to

apply Theorem 2.1. The concentration of s2 and s3 was also given in [5].

In particular, we show that after the phase transition, the giant component

grows at a linear rate, just as for the Erdős–Rényi process. The precise statement

is given by Theorem 3.5. The original Erdős–Rényi process, the process from an

appropriate starting point, and the Bohman–Frieze process appear to be in what

mathematical physicists loosely call the same universality class. While the place-

ment of the phase transitions differ the nature of the phase transitions appears to

be basically the same. A very different picture was given for a related process in [1].

There, as in the Bohman–Frieze process, two random potential edges e1={v1, w1}
and e2={v2, w2} are given. However the edge is selected by the Product Rule: we

select that edge for which the product of the component sizes of the two vertices

is largest. Strong computational evidence is presented indicating clearly that this

process is not in the same univerality class as the three processes we compare. We

feel, nonetheless, that there is likely to be a wide variety of processes in the same

universality class as the bedrock Erdős–Rényi process.

The main results are stated in Sections 2 and 3, and proved in Sections 4 and 5.

Our results are asymptotic, as the size grows. All unspecified limits are as

n→∞. We emphasize that our results deal with behavior at time tc−ε and tc+ε

where ε>0 may be arbitrarily small but is fixed. That is, we do not here consider

ε=ε(n)→0. For the Erdős-Rényi process, with tc=1, it is known (see, e.g., [14],

[2]) that the critical window is parametrized by ε(n)=λn−1/3; further, the barely

subcritical regime, ε(n)�n−1/3, ε(n)=o(1), and the barely supercritical regime,

ε(n)�n−1/3, ε(n)=o(1), are quite well understood. The fine behavior for the pro-

cesses examined in our current work are much less well understood and certainly

worthy of study.

2. Erdős–Rényi process with an initial graph

The purpose of this section is to study the Erdős–Rényi process when some

edges are present initially. We define three different but closely related versions of

the process.

Let F be a subgraph of Kn with vertex set V (F )=V (Kn)={1, ..., n}. De-

fine (G(m,n;F ))
(n
2)−e(F )

m=0 by starting with G(n, 0;F ):=F and adding the
(
n
2

)
−e(F )
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edges in E(Kn)\E(F ) one by one in random order, i.e., by drawing without re-

placement.

For our purposes it will be convenient to consider two modifications of this

random graph process. (Both modifications are well-known for G(n,m).) We define

(G∗(n,m;F ))∞m=0 by starting with G∗(n, 0;F ):=F and then adding at each time

step an edge randomly drawn (with replacement) from E(Kn), provided this edge

is not already present (in which case nothing happens). In particular, G∗(n,m):=

G∗(n,m;En) is defined as G(n,m) but drawing the edges with replacement. In

general, we have E(G∗(n,m;F ))=E(G∗(n,m))∪E(F ).

Note that the number of edges in G∗(n,m) may be less than m. Alternatively,

we may regard G∗(n,m;F ) as a multigraph and add the edges whether they already

are present or not; then the number of edges is always exactly m+e(F ). Since we

will study the component sizes only, this makes no difference for the present paper.

The second modification is to use continuous time. We may think of the
(
n
2

)
edges as arriving according to independent Poisson processes with rates 1/n; thus

edges appear at a total rate
(
n
2

)
/n= n−1

2 and each edge is chosen uniformly at

random and independently of all previous choices. We define G̃(n, t;F ) to be F

together with all edges that have arrived in [0, t]. (As above, we can consider

either a multigraph version or the corresponding process of simple graphs, obtained

by ignoring all edges that already appear in the graph.) Hence, if i and j are

two vertices that are not already joined by an edge in F , then the probability

that they are joined in G̃(n, t;F ) is 1−e−t/n=t/n+O(t2/n2), and these events are

independent for different pairs i, j. (Starting with the empty graph we thus obtain

G(n, p) with p=1−e−t/n. We could change the time scale slightly to obtain exactly

G(n, t/n), and asymptotically we obtain the same results for the two versions.)

Note that if N(t) is the total number of edges arriving in [0, t], then N(t)∼
Po
((
n
2

)
t/n
)
=Po

(
n−1
2 t
)
, and, with an obvious coupling of the processes, G̃(n, t;F )=

G∗(n,N(t);F ). For constant t, N(t)/(n/2)
p−→t as n→∞ by the law of large

numbers. Moreover, the expected number of repeated edges in G∗(n,m;F ) is

at most
(
m
2

)
/
(
n
2

)
+m|E(F )|/

(
n
2

)
; if for example, as in Theorem 2.1 m=O(n) and

|E(F )|=O(n), then this is O(1), which will be negligible. Standard arguments,

comparing the processes at times t and (1±ε)t, show that for the properties con-

sidered here, and asymptotically as n→∞, we then obtain the same results for

G(n, bnt/2c;F ), G∗(n, bnt/2c;F ), and G̃(n, t;F ).

We define, for a graph G with components of sizes C1, ..., Cυ, and k≥1,

Sk =Sk(G) :=
∑
i

Cki , (2.1)
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summing over all components of G. Thus S1(G)=|G|, the number of vertices. We

normalize these sums by dividing by |G| and define

sk = sk(G) :=
Sk(G)

|G|
=
Sk(G)

S1(G)
. (2.2)

Hence, s1(G)=1 for every G. Note that

sk(G) =
∑
i

Ci
|G|

Ck−1i , (2.3)

which is the (k−1):th moment of the size of the component containing a randomly

chosen vertex. In particular, s2(G) is the average size of the component containing

a random vertex. The number s2(G) is called the susceptibility ; see e.g. [13], [15],

[12] for results on the susceptibility in G(n,m) and some other random graphs.

It follows from the definitions (2.1) and (2.2) that Sk and sk are (weakly) in-

creasing in k; in particular, sk(G)≥s1(G)=1 for every k and G. Moreover, Hölder’s

inequality and (2.3) imply that the stronger result that s
1/k
k (and even s

1/(k−1)
k ,

k≥2) is (weakly) increasing in k.

Note further that the number of edges in a component of size Ci is at most(
Ci

2

)
≤C2

i ; hence, for any graph G,

|E(G)| ≤S2(G). (2.4)

We will use these functionals for the initial graph F to characterize the existence

and size of a giant component in the random graph processes starting with F . An

informal summary of the following theorem (our main result in this section) is that

there is a phase transition at tc :=1/s2(F ), and that for t=tc+δ with δ small, there is

a giant component of size ≈2(s2(F )3/s3(F ))δn. For the special case when F=En is

empty, s2=s3=1 and we recover the well-known result for the Erdős–Rényi process

mentioned above that there is a phase transition at tc=1 (i.e., at n/2 edges) and

further for t=1+δ, there is a giant component of size ≈2δn. The formal statement

is asymptotic, and we thus consider a sequence Fn.

Theorem 2.1. Suppose that for each n (at least in some subsequence), Fn is

a given graph with n vertices, and suppose that supn s3(Fn)<∞. Let the random

variable Zn be the size of the component containing a random vertex in Fn.

Consider the random graph processes G̃(n, t;Fn). Then, for any fixed t>0, the

following hold as n→∞, with sk :=sk(Fn),

(i)If t≤1/s2, then C1(G̃(n, t;Fn))=op(n).
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(ii)If t>1/s2, then there is a unique ρn>0 such that

ρn = 1−E e−ρntZn ,

and we have

C1(G̃(n, t;Fn)) = ρnn+op(n).

(iii)If t>1/s2, let δn :=t−1/s2>0. Then

C1(G̃(n, t;Fn))

n
≥ 2δn

s32
s3

(1−2δns2)+op(1).

If further δns
2
2s4/s

2
3≤ 3

8 , then also

C1(G̃(n, t;Fn))

n
≤ 2δn

s32
s3

(
1+

8

3
δn
s22s4
s23

)
+op(1).

(iv)In (iii), if in addition lim infn→∞ δn>0, then moreover w.h.p.

C1(G̃(n, t;Fn))

n
≥ 2δn

s32
s3

(1−2δns2)

and, if δns
2
2s4/s

2
3≤ 3

8 ,

C1(G̃(n, t;Fn))

n
≤ 2δn

s32
s3

(
1+

8

3
δn
s22s4
s23

)
.

The same results hold for the random graph processes G(n, bnt/2c;F ) and

G∗(n, bnt/2c;F ).

The proof is given in Section 4. Note that by (2.3),

EZkn = sk+1(Fn), k≥ 1. (2.5)

3. The Bohman–Frieze process

Recall the definition of the Bohman–Frieze process from Section 1, see [3],

[4], [17]: we are at each round presented with two random edges e1={v1, w1} and

e2={v2, w2} in the complete graph Kn and choose one of them; we choose e1 if

both its endpoints v1 and w1 are isolated, and otherwise we choose e2. We let

BFm denote the random graph created by this process when m edges are added.

(The size n is not shown explicitly.) We further define, using the natural time

scale, BF(t):=BFbnt/2c. (For convenience, we sometimes omit rounding to integers

in expressions below.)
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Note that if we add e1, then it always joins two previously isolated vertices,

while if we add e2, it is uniformly distributed and independent of the existing graph.

We call the added edges e2 Erdős–Rényi edges, since all edges in the Erdős–Rényi

process are of this type.

Remark 3.1. We have talked about edges e1 and e2, but it is technically con-

venient in the proofs to allow also loops (as in [17]); we thus assume in the proofs

below that in each round, the vertices v1, w1, v2, w2 are independent, uniformly dis-

tributed, random vertices. It is easily seen that the results proved for this version

hold also if we assume that there are no loops, for example by conditioning on the

event that no loops are presented during the first nt/2 rounds; we omit the details.

For a graph G, let ni=ni(G) be the number of vertices in components of order i,

and let xi=xi(G):=ni(G)/|G| be the proportion of the total number of vertices that

are in such components. (Thus, sk(G)=
∑
i i
k−1xi(G).) For the Bohman–Frieze

process, we need only n1, the number of isolated vertices, and the corresponding

proportion x1 :=n1/n.

For the Bohman–Frieze process (and some generalizations of it), it is shown

in Spencer and Wormald [17] that the random variables x1(BF(t)) (for any fixed

t<∞) and s2(BF(t)) (for any fixed t<tc) converge in probability, as n→∞, to some

deterministic values x̄1(t) and s̄2(t); these limit values are given as solutions to

differential equations. We extend this to s3 and s4 as follows.

We first define, as in [17], the deterministic function x̄1(t) as the solution to

the differential equation

x̄′1(t) =−x̄21(t)−
(
1−x̄21(t)

)
x̄1(t), t≥ 0, (3.1)

with initial condition x̄1(0)=1; by [17, Theorem 2.1], x̄1(t) is defined and positive

for all t≥0, and by [17, Theorem 1.1], x1(BF(t))
p−→x̄1(t) for every fixed t≥0.

We further define functions s̄2(t), s̄3(t), s̄4(t) as the solutions to the differential

equations

s̄′2(t) = x̄21(t)+
(
1−x̄21(t)

)
s̄22(t),(3.2)

s̄′3(t) = 3x̄21(t)+3
(
1−x̄21(t)

)
s̄2(t)s̄3(t),(3.3)

s̄′4(t) = 7x̄21(t)+
(
1−x̄21(t)

)(
4s̄2(t)s̄4(t)+3s̄23(t)

)
,(3.4)

with initial conditions

s̄2(0) = s̄3(0) = s̄4(0) = 1. (3.5)

The function s̄2(t) is studied in Spencer and Wormald [17, Theorem 2.2], and it is

shown there that it explodes at some finite tc, i.e., the solution s̄2(t) is (uniquely)
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defined for t∈[0, tc), but s̄2(t)↗+∞ as t↗tc; it is further shown [17, Theorem 1.1]

that this tc is the time of the phase transition for the Bohman–Frieze process, when

a giant component first appears, and that for any fixed t<tc, s̄2(BF(t))
p−→s̄2(t).

We extend these results to s̄3 and s̄4 as follows.

Theorem 3.2. The functions s̄2(t), s̄3(t), s̄4(t) are uniquely defined by (3.2)–

(3.5) for all t∈[0, tc). As t↗tc, there exist positive constants α and β such that

s̄2(t)∼ α

tc−t
,

s̄3(t)∼βs̄2(t)3∼ βα3

(tc−t)3
,

s̄4(t)∼ 3β2s̄2(t)5∼ 3β2α5

(tc−t)5
.

More precisely, s̄k(t)=ak(tc−t)−(2k−3)(1+O(tc−t)) for k=2, 3, 4 with a2=α, a3=

βα3, a4=3β2α5.

We have α=
(
1−x̄21(tc)

)−1
, while β=g(tc) is given by (5.2) and (5.5).

Theorem 3.3. For any fixed t∈[0, tc), and k=2, 3, 4, sk(BF(t))
p−→s̄k(t).

Remark 3.4. It is straightforward to extend Theorem 3.3 to any k≥2, with

s̄k(t) given by a differential equation similar to (3.2)–(3.4) (involving s̄j for j<k, so

the functions are defined recursively). We leave the details to the reader since we

only use k≤4 in the present paper.

Proofs are given in Section 5. Using these results for the subcritical phase, we

obtain the following for the supercritical phase; again the proof is given in Section 5.

Theorem 3.5. There exists constants γ=2(1−x̄21(tc))/β>0 and K<∞ such

that for any fixed δ>0, w.h.p.

γδ−Kδ4/3≤ C1(BF(tc+δ))

n
≤ γδ+Kδ4/3.

Remark 3.6. Numerical calculations of Will Perkins give tc≈1.1763, x̄1(tc)≈
0.2438, α≈1.063, β≈0.764, a2=α, a3≈0.917, a4≈2.375 and γ≈2.463.

There is an obvious conjecture (made explicit in [17]) that C1(BF(t))/n
p−→

ρBF(t) for some function ρBF :[0,∞)→[0, 1]; equivalently, C1(BF(t))=ρBF(t)n+op(n).

(For t<tc, clearly this holds with ρBF(t)=0.) In Spencer and Wormald [17] it

was further conjectured that limδ→t+c ρBF(t)=0; in the language of Mathematical

Physics, this says that the phase transition is not first order. If such an ρBF exists,

Theorem 3.5 resolves the latter conjecture positively and further gives the asymp-

totic behavior ρBF(tc+δ)∼γδ as δ→0+.
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Remark 3.7. We further conjecture that the function ρBF is differentiable (and,

furthermore, infinitely differentiable) on [tc,∞); if this is the case, then Theorem 3.5

shows that ρ′BF(t+c )=γ. This conjecture would imply that δ4/3 in Theorem 3.5 could

be replaced by δ2; unfortunately, our approximations are not sharp enough to show

this.

Remark 3.8. Recent work of Will Perkins [16] cast additional light on behav-

ior at tc±δ. In particular, the asymptotic size of the second largest component

C2(BF(tc+δ)) is determined up to constants independent of δ.

4. Proof of Theorem 2.1

We begin with a simple lemma (related to results in [7, Section 5]).

Lemma 4.1. Let Y ≥0 be a random variable with 1<EY ≤∞.

(i) There is a unique ρ>0 such that

ρ= 1−E e−ρY . (4.1)

(ii) If EY 2<∞, then

ρ>
2(EY −1)

EY 2
.

(iii) If EY 3<∞ and 8(EY −1)EY 3≤3(EY 2)2, then

ρ<
3EY 2−

√
9(EY 2)2−24(EY −1)EY 3

2EY 3

=
4(EY −1)

EY 2+
√

(EY 2)2− 8
3 (EY −1)EY 3

≤ 2(EY −1)

EY 2

(
1+

8(EY −1)EY 3

3(EY 2)2

)
.

(iv) Let Yn, n≥1, be random variables with Yn≥0 and EYn>1 and let ρn>0

be the corresponding numbers such that ρn=1−E e−ρnYn . If Yn
d−→Y for some Y

with EY >1, then ρn→ρ>0 satisfying (4.1). On the other hand, if Yn
d−→Y with

EY ≤1, then ρn→0.

Remark 4.2. In fact, (4.1) is the standard equation for the survival probability

of a Galton–Watson process with a mixed Poisson Po(Y ) offspring distribution.

Parts (i) and (iv) follow easily from standard results on branching processes. We

prefer, however, to give direct proofs (also easy). Note further that ρ=0 always is
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another solution to (4.1). If EY ≤1, then ρ=0 is the only non-negative solution,

either by branching process theory, or because

1−E e−sY =E(1−e−sY )≤E(sY )≤ s (4.2)

for every s≥0, with strict inequality unless sY =0 a.e. and E(sY )=s, which together

imply s=0.

Proof. The function ϕ(s):=1−E e−sY , s∈[0,∞), is increasing and concave with

0≤ϕ(s)<1, ϕ(0)=0 and ϕ′(0)=EY >1. Consequently, ϕ(s)>s for small s>0, but

ϕ(s)<s for s>1, say, and there is a unique ρ>0 such that ϕ(ρ)=ρ. This proves (i).

Note that ϕ(s)>s for 0<s<ρ and ϕ(s)<s for s>ρ.

We next prove (iv). If EY >1, let 0<ε<ρ. Then ϕ(ρ−ε)>ρ−ε and thus,

because Yn
d−→Y ,

1−E e−(ρ−ε)Yn −→ 1−E e−(ρ−ε)Y >ρ−ε,

so for large n, 1−E e−(ρ−ε)Yn>ρ−ε and thus ρ−ε<ρn. Similarly, for large n, 1−
E e−(ρ+ε)Yn<ρ+ε and thus ρ+ε>ρn. Since ε is arbitrarily small, it follows that

ρn→ρ.

If instead EY ≤1, then ϕ(s)<s for every s>0 by (4.2) and the comment after

it. Hence the same argument shows that for every ε>0, ρn<ε for large n; thus

ρn→0.

To see (ii), observe that e−x≤1−x+x2/2 for x≥0, with strict inequality unless

x=0, and thus, when EY 2<∞,

ρ=E
(
1−e−ρY

)
>E

(
ρY − ρ

2Y 2

2

)
= ρEY − ρ

2

2
EY 2.

Hence, 1>EY −ρEY 2/2, which yields (ii).

For (iii), we first note that, similarly, e−x≥1−x+x2/2−x3/6 for x≥0, again

with strict inequality unless x=0, and thus, provided EY 3<∞,

ρ=E
(
1−e−ρY

)
<E

(
ρY − ρ

2Y 2

2
+
ρ3Y 3

6

)
= ρEY − ρ

2

2
EY 2+

ρ3

6
EY 3.

This can be written

EY 3 ρ2−3EY 2 ρ+6(EY −1)> 0. (4.3)

As long as the discriminant 9(EY 2)2−24(EY −1)EY 3≥0, the corresponding quadratic

equation (with equality instead of >) has two roots

ρ±=
3EY 2±

√
9(EY 2)2−24(EY −1)EY 3

2EY 3
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and we have either ρ<ρ− or ρ>ρ+. In order to rule out the latter possibility, we

consider the random variable Yt :=tY for t0<t≤1, where t0=1/EY . Note that for

t0<t≤1, EYt>1 and thus there is an ρ(t)>0 such that ρ(t)=1−E e−ρ(t)Yt ; by (iv),

ρ(t) is a continuous function of t. Further, for t0<t≤1,

9(EY 2
t )2 = 9t4(EY 2)2≥ 24t4(EY −1)EY 3 = 24(EYt−t)EY 3

t

≥ 24(EYt−1)EY 3
t ;

hence the discriminant is non-negative for each Yt, and there are corresponding

roots ρ±(t). These are continuous functions of t and for each t∈(t0, 1), ρ(t)<ρ−(t)

or ρ(t)>ρ+(t). As t↘t0, EYt→1 and ρ+(t)→3EY 2
t0/EY

3
t0>0 while, by (iv) again,

ρ(t)→0. Hence, ρ(t)<ρ+(t) for t close to t0, and by continuity, ρ(t)<ρ+(t) for

all t∈(t0, 1] (since equality is impossible by (4.3)). Consequently, ρ<ρ+ and thus

ρ<ρ−.

Finally, we use straightforward algebra and the fact that for x∈[0, 1],
√

1−x≥
(1−x)/(1+x) and thus

1

1+
√

1−x
≤ 1+x

2
.

Proof of Theorem 2.1. Note that the assumptions and (2.4) imply that

|E(Fn)| ≤S3(Fn) =ns3(Fn) =O(n).

Hence, by the discussion in Section 2, it suffices to consider G̃(n, t;Fn).

The main idea is that we may collapse each component Ci(Fn) of Fn to a

“supervertex” with weight

xi =x
(n)
i := |Ci(Fn)|=Ci(Fn). (4.4)

The probability of an edge between Ci(Fn) and Cj(Fn) in G̃(n, t;Fn) is, for i 6=j,

pij(t) = 1−e−txixj/n. (4.5)

Hence, to obtain the distribution of component sizes in G̃(n, t;Fn) we may instead

consider the random graph Hn with υ=υ(Fn) vertices having weights xi given by

(4.4) and edges added independently with probabilities pij given by (4.5); note that

the size of a component in G̃(n, t;Fn) is given by the weight of the corresponding

component in Hn, i.e., the sum of the weights of the vertices in it.

The random graphHn is an instance of the general random graph model studied

in Bollobás, Janson and Riordan [7]; we will use results from [7], and therefore we

show the relation in some detail.

We will actually consider a subsequence only, for technical reasons, and thus we

at first obtain the result for this subsequence only. However, this means that if we
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start with any subsequence of the original sequence, there exists a subsubsequence

where the result holds; this fact implies that the result actually holds for the full

sequence by the subsubsequence principle, see e.g. [14, p. 12].

We have defined Zn as the size of the component containing a random vertex

in Fn. Let ν̂n be the distribution of Zn; thus ν̂n is the probability measure on

Z+ :={1, 2, ...} given by
∑
i
Ci

n δCi
. By (2.5), EZn=s2(Fn)≤s3(Fn)=O(1), which

implies that the sequence of random variables Zn is tight, see e.g. [10, Section

5.8.3]. Consequently (see [10, Theorem 5.8.5]), we may select a subsequence such

that Zn converges in distribution to some random variable Z. Equivalently, ν̂n
converges (weakly) to some probability measure µ̂ on Z+, where µ̂ is the distribution

of Z. Moreover, EZ2
n=s3(Fn)=O(1), and thus [10, Theorem 5.4.2] Zn are uniformly

integrable; consequently [10, Theorem 5.5.8], s2(Fn)=EZn→EZ. We denote this

limit by s̄2, and have thus

s2(Fn)−→ s̄2 =EZ.(4.6)

Let υk(Fn) be the number of components of order k in Fn and let νn be the

measure on Z+ defined by

νn{k} :=
υk(Fn)

n
.

Equivalently, νn := 1
n

∑υ
i=1 δCi

. The total mass of νn is thus νn(Z+)=υ(Fn)/n≤1.

(In general, νn is not a probability measure.)

The total size of the components of order k in Fn is kυk(Fn), and thus

ν̂n{k}=P(Zn = k) =
kυk(Fn)

n
= kνn{k}.

Let µ be the measure on Z+ given by

µ{k} := µ̂{k}/k, k≥ 1.

Since we have ν̂n{k}→µ̂{k}, we also have

νn{k}= ν̂n{k}/k−→ µ̂{k}/k=µ{k}

for every k≥1. Moreover, if f :Z+→R is any bounded function, and g(k):=f(k)/k,

then the convergence ν̂n→µ̂ implies∫
Z+

f(x) dνn(x) =

∫
Z+

g(x) dν̂n(x)−→
∫
Z+

g(x) dµ̂(x) =

∫
Z+

f(x) dµ(x).

Hence νn→µ weakly; in particular

νn(A)−→µ(A) for every A⊆Z+. (4.7)
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We let (xn)n≥1 be the sequence (C1(Fn), ..., Cυn(Fn)) of component sizes of

Fn, where υn :=υ(Fn). We have just shown that the triple V :=(Z+, µ, (xn)n≥1) is a

generalized vertex space in the sense of [7, p. 10]; in particular, the crucial condition

[7, (2.4)] is our (4.7).

We define the kernel � on Z+ by

�(x, y) := txy (4.8)

(recall that t is fixed); the probability (4.5) of an edge in Hn between (super)vertices

with weights xi and xj is thus 1−exp(−�(xi, xj)/n), which agrees with [7, (2.6)].

Hence, our random graph Hn is the graph denoted GV(n,�) in [7].

We further have, with xi=Ci(Fn), by (4.5),

1

n
E e(Hn) =

1

n

∑
1≤i<j≤υn

pij =
1

n

∑
1≤i<j≤υn

(
1−exp(−txixj/n)

)
≤ 1

n2

∑
1≤i<j≤υn

txixj ≤
t

2

(
1

n

υn∑
i=1

xi

)2

=
t

2
,

and ∫
Z+

xdµ(x) =

∞∑
x=1

xdµ{x}=

∞∑
x=1

dµ̂{x}= µ̂(Z+) = 1 (4.9)

(since µ̂ is a probability measure on Z+); hence

∫∫
Z2
+

�(x, y) dµ(x) dµ(y) = t

(∫
Z+

xdµ(x)

)2

= t (4.10)

and
1

n
E e(Hn)≤ 1

2

∫∫
Z2
+

�(x, y) dµ(x) dµ(y).

Together with [7, Lemma 8.1], this shows that

1

n
E e(Hn)−→ 1

2

∫∫
Z2
+

�(x, y) dµ(x) dµ(y),

and thus, using also (4.10), the kernel � is graphical [7, Definition 2.7].

We can now apply the results of [7]. The kernel �(x, y) is of the special type

ψ(x)ψ(y) (with ψ(x):=t1/2x), which is the rank 1 case studied in [7, Section 16.4],

and it follows by [7, Theorem 3.1 and (16.8)] that Hn has a giant component if and
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only if ‖T�‖>1, where T� is the integral operator with kernel �; in the rank 1 case

T� has the norm, using also (4.6),

‖T�‖=

∫
Z+

ψ(x)2 dµ(x) =

∫
Z+

tx2 dµ(x) =

∫
Z+

tx dµ̂(x) = tEZ = ts̄2.

Hence there is a phase transition at tc :=1/s̄2. We consider the cases t≤tc and

t>tc separately.

4.1. The (sub)critical case

Consider first the case t≤s̄−12 ; then Hn thus has no giant component; more

precisely,

C1(Hn) = op(n). (4.11)

Recall, however, that we really are interested in the size of the largest component

of G̃(n, t;Fn), which is the same as the largest weight of a component in Hn. (Note

also that the component with largest weight not necessarily is the component with

largest number of vertices.) Nevertheless, the corresponding estimate follows easily:

Let A>0. Then the total weight of all vertices in Hn of weight larger than A is∑
i

xi1[xi>A] =
∑
k>A

kυk(Fn)≤A−1
∑
k≥1

k2υk(Fn) =A−1S2(Fn)

=nA−1s2(Fn),

and thus the weight of any component C in Hn is∑
i∈C

xi≤
∑
i∈C

xi1[xi≤A]+
∑
i

xi1[xi>A]≤A|C|+nA−1s2(Fn)

≤AC1(Hn)+nA−1s2(Fn).

For any ε>0, we may choose A=An :=ε−1s2(Fn) and find (since An=O(1)) w.h.p.,

using (4.11),

C1(G̃(n, t;Fn)) = sup
C

∑
i∈C

xi≤AnC1(Hn)+εn≤ 2εn. (4.12)

which proves (i) when t≤1/s̄2.
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4.2. The supercritical case

Suppose now that t>s̄−12 .

By [7, Theorem 3.1], the size C1(Hn) of the largest component C1 of Hn satisfies

C1(Hn)

n

p−→ ρ(�)> 0.

Furthermore C2(Hn)=op(n), and it follows by the same argument as for (4.12)

above that the weigth of any component C 6=C1 of Hn is at most

max
C6=C1

∑
i∈C

xi≤AnC2(Hn)+εn≤ 2εn

w.h.p., and thus op(n). Since C1 has weight ≥|C1|=ρ(�)n+op(n), it follows that

w.h.p. the largest component C1 of Hn also has the largest weight, and thus corre-

sponds to the largest component in G̃(n, t;Fn), while C2(G̃(n, t;Fn))=op(n).

It remains to find the weight of C1. We first note that by [7, (2.13), (2.17) and

Theorem 6.2], ρ(�)=
∫
Z+
ρ�(x) dµ(x), where ρ�(x) is the unique positive solution

to

ρ� = Φ�(ρ�) := 1−e−T�ρ� .

Since

T�ρ�(x) :=

∫
Z+

�(x, y)ρ�(y) dµ(y) = tx

∫
Z+

yρ�(y) dµ(y),

we thus have

ρ�(x) = 1−e−ρtx

with

ρ=

∫
Z+

xρ�(x) dµ(x) =

∫
Z+

ρ�(x) dµ̂(x) =

∫
Z+

(
1−e−ρtx

)
dµ̂(x). (4.13)

To find the weight w(C1) of C1(Hn), we note that if f(x):=x, then f :Z+→R
satisfies, using (4.9), 1

n

∑
i f(xi)= 1

n

∑
i xi=|Fn|/n=1=

∫
f dµ, and thus [7, Theo-

rem 9.10] applies and yields

1

n
w(C1) =

1

n

∑
i∈C1

xi
p−→
∫
Z+

xρ�(x) dµ(x) = ρ. (4.14)

Combining (4.13) and (4.14), we thus find that

|C1(G̃(n, t;Fn))|=w(C1(Hn)) = ρn+op(n), (4.15)
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where ρ solves the equation (4.13), which also can be written

ρ=E
(
1−e−ρtZ

)
= 1−E e−ρtZ . (4.16)

Applying Lemma 4.1 to Y :=tZ, we see that when t>1/s̄2=1/EZ, there is a

unique ρ>0 satisfying (4.16).

Further, in (ii), we may apply Lemma 4.1 also to Y :=tZn; thus there indeed

is a unique such ρn. Moreover, by Lemma 4.1(iv), ρn→ρ. Hence, (4.15) yields

|C1(G̃(n, t;Fn))|= ρnn+op(n),

which proves (ii) when t>1/s̄2.

We have shown the conclusions in (i) and (ii) when t≤1/s̄2 and t>1/s̄2, re-

spectively. However, the statements use instead the slightly different conditions

t≤1/s2(Fn) and t>1/s2(Fn). For (i), this is no problem: if t≤1/s2(Fn) for in-

finitely many n, then t≤1/s̄2 since we have assumed s2(Fn)→s̄2.

To complete the proof of (ii), however, we have to consider also the case 1/s̄2≥
t>1/s2(Fn). If this holds (for a subsequence), then E(tZn)=ts2(Fn)≤s2(Fn)/s̄2→
1, and thus ρn→0 by Lemma 4.1(iv). Since t≤1/s̄2, (4.12) applies and shows that

|C1(G̃(n, t;Fn))|= op(n) = ρnn+op(n), (4.17)

so (ii) holds in this case too. This completes the proof of (i) and (ii).

(iii) now follows easily from Lemma 4.1. We have, by (2.5), E(tZn)=ts2=

1+δns2, E(tZn)2=t2s3 and E(tZn)3=t3s4. Hence,

E(tZn)−1

E(tZn)2
=
δns2
t2s3

=
δns

3
2

(1+δns2)2s3
>δn

s32
s3

(1−2δns2), (4.18)

so the lower bound follows by (ii) and Lemma 4.1(ii).

For the upper bound we have by (4.18)

E(tZn)−1

E(tZn)2
<δn

s32
s3
,

and similarly

(E(tZn)−1)E(tZn)3

(E(tZn)2)2
=
δns2t

3s4
t4s23

=
δns

2
2s4

(1+δns2)s23
<
δns

2
2s4
s23

,

and the upper bound follows by Lemma 4.1(iii).

For (iv), we note that if lim infn δn>0, we can by ignoring some small n assume

that infn δn>0, and then the difference between the left-hand side and right-hand

side in (4.18) is bounded below (since 1≤s2≤s3=O(1)); hence we can add some
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small η>0 to the right hand side of (4.18) such that the inequality still holds for

large n. Consequently,

C1(G̃(n, t;Fn))/n≥ δn
s32
s3

(1−2δns2)−η+op(1),

which implies that w.h.p.

C1(G̃(n, t;Fn))/n≥ δn
s32
s3

(1−2δns2)

The upper bound follows in the same way.

5. Proof of Theorems 3.2–3.5

Proof of Theorem 3.2. Define the functions

f(t) := 1/s̄2(t),

g(t) := s̄3(t)/s̄32(t) = f3(t)s̄3(t),

h(t) := s̄4(t)/s̄42(t) = f4(t)s̄4(t).

The differential equations (3.2)–(3.4) then translate into, after simple calculations

including some cancellations,

f ′(t) =−x̄21(t)f2(t)−
(
1−x̄21(t)

)
,(5.1)

g′(t) = 3x̄21(t)f3(t)−3x̄21(t)f(t)g(t),(5.2)

h′(t) = 7x̄21(t)f4(t)+3
(
1−x̄21(t)

)
g2(t)f−2(t)−4x̄21(t)f(t)h(t).(5.3)

Consider first (5.1). The right hand side is locally Lipschitz in t and f , and

thus there exists a unique solution with f(0)=1 in some maximal interval [0, tf )

with tf≤∞; if tf<∞ (which actually is the case, although we do not need this),

|f(t)|→∞ as t↗tf . Since 0<x̄1(t)<1 for all t>0, and further x̄1(t) is decreasing,

f ′(t)≤−(1−x̄21(t))<−c0, for some c0>0 and all t>0.1, say. Hence, f(t) decreases

and will hit 0 at some finite time tc<tf . This means that s̄2(t)=1/f(t)→∞ as

t↗tc, so (3.2) has a (unique) solution in [0, tc) but not further.

We have f(tc)=0 and thus, by (5.1), f ′(tc)=−(1−x̄21(tc))<0. Consequently,

defining α:=(1−x̄21(tc))
−1>0,

f(t) =α−1(tc−t)
(
(1+O(tc−t)

)
, t≤ tc,

and thus

s̄2(t) =
α

tc−t
(
(1+O(tc−t)

)
, t < tc,
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as asserted.

Next, treating x̄1(t) and f as known functions, (5.2) is a linear differential

equation in g. An integrating factor is

G(t) := 3

∫ t

0

x̄21(u)f(u) du, (5.4)

and then the unique solution in [0, tf ) is given by

g(t) = e−G(t)+3e−G(t)

∫ t

0

eG(u)x̄21(u)f3(u) du. (5.5)

Hence (3.3) has the unique solution g(t)s̄32(t), t∈[0, tc), with g(t) given by (5.5).

Note that g(t)>0 for t≤tc.
Let β :=g(tc)>0. By (5.2), g′(tc)=0, and thus, for t<tc, g(t)=β+O(tc−t)2,

and

s̄3(t) =βs̄32(t)
(
1+O(tc−t)2

)
=

βα3

(tc−t)3
(
(1+O(tc−t)

)
,

Finally we consider (5.3). Here the right-hand side is singular at tc because of

the factor f−2(t) in the second term, so we modify h and consider

h1(t) :=h(t)−3g2(t)s̄2(t) =h(t)−3g2(t)f−1(t),

which satisfies the differential equation

h′1(t) = 7x̄21(t)f4(t)−18x̄21(t)g(t)f2(t)+15x̄21(t)g2(t)−4x̄21(t)f(t)h(t)

= 7x̄21(t)f4(t)−18x̄21(t)g(t)f2(t)+3x̄21(t)g2(t)−4x̄21(t)f(t)h1(t).

Again, this is a linear differential equation, with a unique solution in [0, tf ). We

leave the explicit form to the reader, since we need only that h1(t)=O(1) for t≤tc,
which yields that for t∈[0, tc),

s̄4(t) =h(t)s̄42(t) = 3g2(t)s̄52(t)+h1(t)s̄42(t)

= 3β2s̄52(t)+O
(
s̄42(t)

)
.

Proof of Theorem 3.3. For k=2, this is, as said above, proved in [17, Theorems

1.1 and 4.3]. We prove the extension by the same method (with somewhat different

notation).

Let, for a vertex v∈G, C(v) be the component of G containing the vertex v,

and C(v):=|C(v)|.
For a given graph G, let G+ be the random graph obtained by adding one

random edge by the Bohman–Frieze rule; we assume that the edge was chosen from
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the pair e1={v1, w1} and e2={v2, w2}. If the added edge is {v, w} (which thus is

either {v1, w1} or {v2, w2}), and further C(v) 6=C(w), then, by (2.1),

Sk(G+)−Sk(G) =
(
C(v)+C(w)

)k−C(v)k−C(w)k, (5.6)

while Sk(G+)−Sk(G)=0 if C(v)=C(w). We define

∆∗k = ∆∗k(G; v, w) :=
(
C(v)+C(w)

)k−C(v)k−C(w)k. (5.7)

Hence,

E
(
Sk(G+)−Sk(G)−∆∗k

)
=−E

(
∆∗k1[C(v) = C(w)]

)
=−E

(
(2k−2)C(v)k1[C(v) = C(w)]

)
and thus

|E
(
Sk(G+)−Sk(G)−∆∗k

)
| ≤ 2k E

(
C(v)k1[C(v) = C(w)]

)
≤ 2k E

(
C(v1)k1[C(v1) = C(w1)]

)
+2k E

(
C(v2)k1[C(v2) = C(w2)]

)
=

2k+1

n
EC(v1)k+1≤ 2k+1C1(G)k+1

n
.

In particular, if C1(G)=O(log n), then

|E
(
Sk(G+)−Sk(G)−∆∗k

)
|=O

( logk+1 n

n

)
= o(1).(5.8)

Expanding (5.7), we have

∆∗2 = 2C(v)C(w),(5.9)

∆∗3 = 3C(v)2C(w)+3C(v)C(w)2,(5.10)

∆∗4 = 4C(v)3C(w)+6C(v)2C(w)2+4C(v)C(w)3.(5.11)

The Bohman–Frieze rule is to take {v, w}={v1, w1} if C(v1)=C(w1)=1. The

probability of this is x1(G)2, and in this case ∆∗k=2k−2.

The opposite case {v, w}={v2, w2}, which we denote by E2, has probability

1−x1(G)2. Conditioning on this case places us basically in the well-studied Erdős–

Rényi regime. That is, v and w are uniform and independent, and thus for any k

and `,

E
(
C(v)kC(w)l | E2

)
=

1

n2

∑
v,w

C(v)kC(w)` =
1

n2

∑
i

Ck+1
i

∑
j

C`+1
j

= sk+1(G)s`+1(G).
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Hence, (5.9)–(5.11) yield

E∆∗2 = 2x21(G)+(1−x1(G)2)·2s2(G)2,

E∆∗3 = 6x21(G)+(1−x1(G)2)·6s2(G)s3(G),

E∆∗4 = 14x21(G)+(1−x1(G)2)·
(
8s2(G)s4(G)+6s3(G)2

)
.

By (5.8), we thus have, for k=2, 3, 4 and provided C1(G)=O(log n),

(5.12) E
(
Sk(G+)−Sk(G)

)
=E∆∗k+O

(
logk+1 n/n

)
= 2fk

(
x1(G), s2(G), s3(G), s4(G)

)
+O

(
logk+1 n/n

)
,

with

f2(x1, s2, s3, s4) :=x21+(1−x21)s22,

f3(x1, s2, s3, s4) := 3x21+3(1−x21)s2s3,

f4(x1, s2, s3, s4) := 7x21+(1−x21)
(
4s2s4+3s23

)
.

Similarly, as shown in [17],

E
(
n1(G+)−n1(G)

)
= 2f1

(
x1(G), s2(G), s3(G), s4(G)

)
+O

(
1/n

)
, (5.13)

where (the variables s2, s3, s4 are redundant here)

f1(x1, s2, s3, s4) :=−x21−(1−x21)x1.

Consider the vector-valued random process

Xi :=
(
x1(BFi), s2(BFi), s3(BFi), s4(BFi)

)
,

and let Fi=σ(X0, ..., Xi) be the σ-field describing the history up to time i. Further,

let Φ:=(f1, f2, f3, f4):R4→R4. Using this notation, (5.12)–(5.13) yield

E
(
n(Xi+1−Xi) | Fi

)
−2Φ(Xi) =O

(
log5 n/n

)
, (5.14)

uniformly in i≤tn/2, provided C1(BFi)=O(log n).

By [17, Theorem 1.1], there exists a constant c′ (depending on t) such that

w.h.p. C1(BFi)≤c′ log n for all i≤tn/2. As in [17], we avoid the problem when

C1(BFi)>c
′ log n by definingX∗0 =X0=(1, 1, 1, 1), X∗i+1=Xi+1 when C1(BFi)≤c′ log n

and X∗i+1=X∗i + 2
nΦ(X∗i ) otherwise. Then w.h.p. X∗i =Xi for all i≤tn/2, so we can

just as well consider X∗i . We have, by (5.14) but now without side condition, for

all i≤tn/2,

E
(
n(X∗i+1−X∗i ) | Fi

)
= 2Φ(X∗i )+O(log5 n/n)
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and also, for some c′′, from (5.6) and |n1(G+)−n1(G)|≤2,

|X∗i+1−X∗i | ≤ c′′ log4 n/n.

The differential equation method in the form of Spencer and Wormald [17, Theorem

4.1], which is taken from Wormald [18, Theorem 5.1], now applies (with Y (i)=nX∗i )

and the result follows; note that the differential equations (3.1)–(3.4) can be written

ϕ′(t)=Φ(ϕ(t)) with ϕ=(x̄1, s̄2, s̄3, s̄4), where further ϕ(0)=(1, 1, 1, 1)=X0=X∗0 .

Proof of Theorem 3.5. We may assume that δ is small, since the result is trivial

for δ≥δ0>0 if we choose K large enough. In particular, we assume δ<1.

Let ε:=δ2/3>δ. We stop the process at tc−ε, and let F :=BF(tc−ε). We then

let the process evolve to tc+δ by adding (ε+δ)n/2 further edges according to the

Bohman–Frieze rule. Actually, for convenience, we add instead a random number of

edges with a Poisson distribution Po
(
(ε+δ)n/2

)
; this will not affect our asymptotic

results (by the same standard argument as for comparing the different models in

Section 2). We denote the resulting graph by B̃F(tc+δ).

By Theorems 3.3 and 3.2, for k=2, 3, 4, and with ak as in Theorem 3.2,

sk(F ) = s̄k(tc−ε)+op(1) =
ak

ε2k−3
(
1+O(ε)

)
+op(1).

Since |op(1)|≤ε w.h.p., we thus have w.h.p.

sk(F ) =
ak

ε2k−3
(
1+O(ε)

)
. (5.15)

(This means that there exists a constant c, not depending on ε or n, such that (5.15)

holds with the error term O(ε)∈[−cε, cε] w.h.p.) Similarly, x1(F )
p−→x̄1(tc−ε)=

x̄1(tc)+O(ε), so w.h.p. x1(F )=x̄1(tc)+O(ε).

We fix F (i.e., we condition on F ) and assume that (5.15) holds together with

x1(F )=x̄1(tc)+O(ε) (for some fixed implicit constant c in the O(ε); we have just

shown that this holds w.h.p. provided c is chosen large enough).

We cannot directly apply Theorem 2.1 since the graph evolves by the Bohman–

Frieze evolution and not by the Erdős–Rényi evolution. Nevertheless, we can ap-

proximate and find upper and lower bounds of the graphs where we can apply

Theorem 2.1; the idea is that we consider the Erdős–Rényi edges separately as an

Erdős–Rényi evolution.

For a lower bound, let V1 be the set of isolated vertices in F and consider

only the pairs of edges e1={v1, w1}, e2={v2, w2} where v1 /∈V1 or w1 /∈V1. Since

the graphs BFm in the continued process contain F , the vertices v1 and w1 are

not both isolated in the current BFm, and thus e2=(v2, w2) is added, and these

are independent Erdős–Rényi edges, i.e., uniformly chosen. The number of such
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Erdős–Rényi edges is Po
(
(1−x1(F )2)(ε+δ)n/2

)
, since each time we add an edge,

the probability of it being of this type is 1−(|V1|/n)2=1−x1(F )2. (Note that we

ignore some Erdős–Rényi edges in order to avoid unpleasant dependencies.)

Call the resulting graph H−⊆B̃F(tc+δ). Then Theorem 2.1(iv) applies to H−,

with

t=
(
1−x1(F )2

)
(ε+δ) =

(
1−x̄1(tc)

2+O(ε)
)
(ε+δ)

and, recalling (5.15) and α=
(
1−x̄21(tc)

)−1
,

δn = t−1/s2(F ) =
(
1−x̄1(tc)

2
)
(ε+δ)−α−1ε+O(ε2) =

(
1−x̄1(tc)

2
)
δ+O(ε2),

(5.16)

which yields w.h.p., using again (5.15),

C1(B̃F(tc+δ))

n
≥ C1(H−)

n
≥ 2δn

s2(F )3

s3(F )

(
1−2δns2(F )

)
= 2

((
1−x̄1(tc)

2
)
δ+O(ε2)

) α3ε−3

βα3ε−3

(
1+O(ε)+O

(
δ+ε2

ε

))
=

2

αβ
δ
(
1+O(ε)+O(δ/ε)+O(ε2/δ)

)
=

2

αβ
δ
(

1+O(δ1/3)
)

= γδ+O(δ4/3),

(5.17)

with our choice ε=δ2/3 (which is optimal in this estimate).

For an upper bound, note that w.h.p. at most (ε+δ)n≤2εn edges are added to

F , so at most 4εn vertices are hit, and thus during the process from F to B̃F(tc+δ),

x1≥x1(F )−4ε= x̄1(tc)−O(ε).

Hence we add w.h.p. at most(
1−(x̄1(tc)−O(ε))2

)
(ε+δ)n/2 =

(
1−x̄1(tc)

2+O(ε)
)
(ε+δ)n/2

Erdős–Rényi edges. We also add a number of non-Erdős–Rényi edges, all joining

two isolated vertices (or being loops). They may depend on the Erdős–Rényi edges

already chosen, but we avoid this dependency by being generous and adding the

edge e1=(v1, w1) in each round whenever both v1 and w1 are isolated in F and

neither is an endpoint of an already added non-Erdős–Rényi edge. (We add e2 by

the same Bohman–Frieze rule as before, so we may now sometimes add both e1 and

e2.)
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Let c1 be a large constant and let H+ be the graph obtained from F by adding

2εn (to be on the safe side) non-Erdős–Rényi edges in this way, together with(
1−x̄1(tc)

2+c1ε
)
(ε+δ)n/2 Erdős–Rényi edges, independent of each other and of

the non-Erdős–Rényi edges. We conclude that, if c1 is chosen large enough, we may

couple H+ with the Bohman–Frieze process such that w.h.p. B̃F(tc+δ)⊆H+.

Since the two types of edges are added independently, we may further add all

non-Erdős–Rényi edges first. Let F1 be F together with all non-Erdős–Rényi edges.

There are 2εn such edges, and each joins two isolated vertices and changes Sk by

2k−2 (or by 0 if the edge is a loop). Hence, for every k≤4, by (5.15),

sk(F1) = sk(F )+O(ε) =
ak

ε2k−3
(
1+O(ε)

)
. (5.18)

Since H+ is obtained by adding the Erdős–Rényi edges to F1, Theorem 2.1

applies with

t=
(
1−x̄1(tc)

2+c1ε
)
(ε+δ)

and

δn = t−1/s2(F1) =
(
1−x̄1(tc)

2
)
(ε+δ)−α−1ε+O(ε2) =

(
1−x̄1(tc)

2
)
δ+O(ε2),

(5.19)

the same estimate as was obtained in (5.16). We use the upper bound in Theo-

rem 2.1(iv). By (5.18) and (5.19),

δn
s2(F1)2s4(F1)

s3(F1)2
= δn

a22a4/ε
7

a23/ε
6

(
1+O(ε)

)
=O

(δn
ε

)
=O

(δ
ε

)
=O

(
δ1/3

)
.

Hence Theorem 2.1(iv) applies (for small δ) and yields, w.h.p.,

n−1C1(B̃F(tc+δ))≤n−1C1(H+)≤ 2δn
s2(F1)3

s3(F1)

(
1+O(δ1/3)

)
= 2(1−x̄1(tc)

2)δ
α3ε−3

βα3ε−3
(
1+O(ε2/δ+ε+δ1/3)

)
=

2(1−x̄1(tc)
2)

β
δ
(
1+O(δ1/3)

)
= γδ+O(δ4/3).

This and the corresponding lower bound (5.17) yield the result.
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