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Proof. If he can win, the Paul can somehow pack n k-sets, normal and abnormal. The
bound follows then immediately from Lemmas 4.1 and 4.2.

With this, we are now ready to present the main result of the section. Let � > 0, and
k �xed.

Theorem 4.4. There exists q0 suÆciently large such that for all q � q0, for any n such
that Paul wins the k-lie, q question game from position (n; 0; : : : ; 0),

n � (2k + �)
2q�q
k

� :

Proof. Let x = ck
p
q ln q, with ck >

q
k
2 .

To win the game, Paul must be able to pack n k-sets in the Decision Tree. By Lemma
4.3 we get that

n � 2qPk
i=1

� q
2
�x+i�1

i

� +
q

2
�xX

i=0

�
q

i

�
:

Since
q

2
�xX

i=0

�
q

i

�
= 2q Pr

�
S contains less than (

q

2
� ck

p
q ln q) Ns

�
where S is a random sequence of q Ys and Ns, Cherno�-type bounds yield that

Pr
�
S contains less than (

q

2
� ck

p
q ln q) Ns

� � e�c2
k
q ln q=(q=2) = q�2c2

k = o

 �
q

k

��1
!

;

by our choice of ck.
Thus there exists a q0 large enough such that

q

2
�xX

i=0

�
q

i

�
< 2k�1�

2q�q
k

� : (7)

Since
Pk

i=1

� q
2
�x+i�1

i

�
is a polynomial in q of degree k, and since x = o(q), it follows

that
kX

i=1

� q
2 � x+ i� 1

i

�
�
� q

2

k

�
� 2�k

�
q

k

�
:

Hence there must be a q large enough so as to have

kX
i=1

� q
2 � x+ i� 1

i

�
� 1

2k + �
2

�
q

k

�
: (8)

From equations (7) and (8), it follows that for any q � q0,

n � (2k + �)
2q�q
k

� ;

and the theorem is proved.
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4 Upper Bounds

We will start with a double de�nition. Let x be a parameter later to be optimized.

De�nition 6. A k-set A is normal if all sequences w 2 A have at least q
2�x Ns. Otherwise

the set is abnormal .

This de�nition allows for two easy lemmas.

Lemma 4.1. The minimum size of a k-set is bounded from below by

kX
i=1

� q
2 � x+ i� 1

i

�
:

Proof. We look at the number of points on the ith level of the k-tree corresponding to the
k-set. These are paths for which exactly i lies have been committed by Carole.

Let the path from the root of the k-tree down to node w 2 fY;Ngq on level i be
r0 = root; r1; : : : ; ri, and let Æ(rj ; rj+1), for all 0 � j � i� 1, be the place where rj+1 �rst
di�ers from its parent.

Let nj+1 = number of Ns in rj before position Æ(rj ; rj+1), for all 0 � j � i� 1. Then
it follows that to each sequence

1 � n1 � n2 � : : : � ni ;

corresponds exactly one point on level i. Since we have at least q
2 � x choices for ni (but

we could in fact have much more), it follows that level i must contain at least
� q
2
�x+i�1

i

�
di�erent points.

By adding all these lower bounds for levels 0 through i we get the result of the lemma.

Lemma 4.2. The total number of abnormal sets we can pack in the Decision Tree is at
most

q

2
�xX

i=0

�
q

i

�
:

Proof. Since they must be disjoint (because of the packing), it follows that the total number
of abnormal sequences cannot surpass the total number of sequences with less than q

2 � x
Ns. The result follows.

The two lemmas above allow us to give the following upper bound.

Lemma 4.3. If Paul can win the k-lie game with q questions starting from position
(n; 0; : : : ; 0), then

n � 2qPk
i=1

� q
2
�x+i�1

i

� +
q

2
�xX

i=0

�
q

i

�
;

for any x.
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But this says that Paul wins the r�a2k(k+1) question game from position (
k�1P
i=1

api(s�
k)2k�i; 0; : : : ; 0), provided that r is large enough.

Since as q !1, r !1, this holds when q is large enough.

Thus, we can pack the a2k k-sets and the
k�1P
i=1

api(s � k)2k�i (k�1)-sets in a disjoint

fashion in the full binary tree on 2r vertices. But how much space do we have left? The
k-sets take up O(1) space, the (k�1)-sets take up at most 1 +

�s�k
1

�
+ : : : +

�s�k
k�1

�
space

each, by Lemma 2.3; hence by (6), the total space taken is at most

O(1) +
k�1X
i=1

api(s� k)2k�i

�
1 +

�
s� k

1

�
+ : : : +

�
s� k

k � 1

��
= o(2r) :

Since the singletons, all apk(s� k) of them, take up at most a constant fraction �0=2k

of the total size of the tree, it follows that, by use of Lemma 3.9, Paul wins the r question

game starting at (a2k;
k�1P
i=1

api(s � k)2k�i; 0; : : : ; 0; apk(s � k)), and because this position

dominates (a2k; ap1(s � k)2k�1; : : : ; apk(s � k)), he also wins with r questions from the
latter position.

Remark 3.11. An alternate proof of Lemma 3.10 may be given by proving that Paul wins
the (harder) full lie r-question game from position (a2k; ap1(s�k)2k�1; : : : ; apk(s�k)). It
is shown in [5] that for all k there exists c such that for r suÆciently large Paul wins the
r-question full lie game from position (xk; : : : ; x0) whenever

kX
i=0

xi

0
@ iX

j=0

�
r

i

�1A < 2r � crk

A calculation shows that for r suÆciently large the initial position of Lemma 3.10 satis�es
this condition.

All that is left is now to put together the results of this section.

Theorem 3.12. For all k and � < 2k, there exists a q large enough so that for any
n � � 2q

(qk)
, Paul can win the q-question game from position (n; 0; 0; : : : ; 0).

Proof. Using the results of Lemma 3.3, it is enough to prove the theorem for n = a2s with
a 2 (2T ; 2T+1] \ N. But since (a2s; 0 : : : ; 0) is dominated by (a2s; a2s�1; : : : ; a2s�1), it is
suÆcient to show that Paul can win the q-question game starting from the latter position.

From (a2s; a2s�1; : : : ; a2s�1), Paul �rst makes the s � k perfect splits of Lemma 3.8,
resulting in position (a2k; ap1(s � k)2k�1; : : : ; apk(s � k)). By Lemma 3.10 he then wins
with r = q � s+ k further questions.
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Ns (which means that in e�ect we will be packing the (k�1)-sets into the full binary tree

of size 2r�a2k(k+1)).

Claim 3.10.1. Under all the assumptions above, for q large enough, we can pack
k�1P
i=1

api(s�
k)2k�i (k�1)-sets in the full binary tree of size 2r�a2k(k+1).

Proof. From the fact that a2s � � 2q

(qk)
one easily obtains that

a

�
s� k

k

�
<

�

2k
2r ; (4)

and hence, given some small Æ such that �0 = �+ Æ < 2k, for q large enough, we shall have
that apk(s� k) < �0

2k
2r.

From (4) we also obtain that as q gets large,

a

�
s� k

k � 1

�
= o(2r(

k�1

k
+�)) ; (5)

where � < 1
k is an arbitrary (but �xed) small number.

Now since
k�1X
i=1

api(s� k)2k�i = 2a

�
s� k

k � 1

�
(1 + o(1))

in asymptotic notation (because the polynomials, with the exception of pk�1, are all of
degree smaller than k � 1, and the leading term in pk�1(t) is

� t
k�1

�
), (5) implies that

k�1X
i=1

api(s� k)2k�i = o(2r(
k�1

k
+�)) :

Since k is �xed, but r is allowed to be very large, it follows that

k�1X
i=1

api(s� k)2k�i = o(2r(
k�1

k
+�)) = o

 
2r�a2k(k+1)� r

k�1

�
!

: (6)

Consider now the k�1 lie problem; �x ~� < 2k�1, for example ~� = 1
2 . By induction, Paul

wins the s-question game from starting position (
k�1P
i=1

api(s�k)2k�i; 0; : : : ; 0), provided that

s is large enough to have
k�1X
i=1

api(s� k)2k�i <
1

2

2s�
s

k�1

� :

Now choose s = r � a2k(k + 1). From (6), for r large enough,

k�1X
i=1

api(s� k)2k�i = o

 
2r�a2k(k+1)� r

k�1

�
!
� 1

2

2s� s
k�1

� :
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Lemma 3.8. For any k; a and s � k integers, from starting position (a2s; a2s�1; a2s�1; : : : ; a2s�1),
Paul can make s� k perfect splits. Furthermore, after the jth split, the resulting position
is (a2s�j ; ap1(j)2

s�1�j ; : : : ; apk(j)2
s�k�j).

Proof. The proof follows directly from Lemmas 3.5 and 3.6.

Lemma 3.9. If
Pk

i=1 xi(1 + q + : : : +
�q
i

�
) = 2q � S with S � 0, and if Paul wins the q

question game from (xk; : : : ; x1; 0) then he wins from (xk; : : : ; x1; S).

Proof. By Theorem 2.4, since Paul wins we can simultaneously pack all xi of the i-sets,
for all 1 � i � k. Because of their size limitation (see Lemma 2.3), this packing leaves at
least S points of fY;Ngq uncovered { but each point can be a 0-set, and hence we can add
another S 0-sets to the packing. Thus Paul wins from (xk; : : : ; x1; S).

The last lemma we need is the following.
Let now k, � < 2k, and T be �xed, satisfying Lemma 3.3. Let p0; : : : ; pk the polynomials

of Lemma 3.6.

Lemma 3.10. There exists q1 such that for all q � q1, the following holds. Let a; s be
integers such that 2t < a � 2T+1 and a2s � � 2q

(qk)
. Set r = q � s+ k. Then Paul can win

the r-question game from position (a2k; ap1(s� k)2k�1; : : : ; apk(s� k)).

Proof. What we must do here is to show that it is possible to simultaneously pack a2k

k-sets, a2k�1p1(s� k) (k�1)-sets, : : :, and apk(s� k) 0-sets in the full binary 2r tree.
Since a2s � � 2q

(qk)
, s � q � k log2 q +O(1), and hence r = q � s+ k !1 as q !1.

We proceed by induction over k. For k = 0 (the no-lie case), we know that if a2s � a2q,
then we can win the game starting at (a) with r questions, as a � 2q�s = 2r.

Assume now that we have proved the statement for all numbers smaller than k � 1,
and we will now show it for k.

Now since (a2k;
k�1P
i=1

api(s�k)2k�i; 0; : : : ; 0; apk(s�k)) dominates (a2k; ap1(s�k)2k�1;: : : ;

apk(s � k)), it suÆces to pack a2k k-sets,
k�1P
i=1

api(s � k)2k�i (k�1)-sets, and apk(s � k)

0-sets in the full binary 2r tree.
We will choose the a2k k-sets as follows:

S1 = fe1; e2; : : : ; ek+1g
S2 = fek+2; ek+3; : : : ; e2k+2g

: : :

Sa2k = fe(a2k�1)(k+1)+1; e(a2k�1)(k+1)+2; : : : ; ea2k(k+1)g ;
where er is the sequence of all Ns except for the rth location which contains a Y (for
example, e1 = Y NNNN : : :). Here we assume that q is much larger than a2k(k + 1).

It is immediate to check that these are indeed k-sets and they are disjoint.
To insure that the (k�1)-sets that we construct are disjoint from these, we will require

that any point in fY;Ngq that goes into any one of the (k�1)-sets starts with a2k(k + 1)

11



Proof. Since the initial values (at s = 0) of the polynomials satisfy the same kind of
recurrence as the mis of Lemma 3.5, it follows by the argument used there that pj(s) �
pj�1(s) for all integer s and j � 1.

The second part of this technical lemma can be proved inductively. For j = 1, we see
from the recurrence that p1(s) = s+ 1 =

�
s
1

�
+ 1 for all s.

Assume now that we have proved the result for all i � j � 1 and let us prove it for j.
First, note that the polynomial recurrence can be replaced by the simpler 2-term re-

currence
pj(s+ 1) = pj(s) + pj�1(s+ 1) :

Hence, by going backwards, we obtain that

pj(s+ 1) =

s+1X
k=1

pj�1(k) + pj(0) = 2j�1 +

s+1X
k=1

pj�1(k) :

By induction, pj�1(k) =
�

k
j�1

�
+ qj�1(k), where qj�1 is a polynomial of degree at most

j � 2. Thus,

pj(s+ 1) = 2j�1 +
s+1X
k=1

pj�1(k) = 2j�1 +
s+1X
k=1

��
k

j � 1

�
+ qj�1(k)

�
:

By the additive property of binomial coeÆcients,

pj(s+ 1) =

�
s+ 2

j

�
+

s+1X
k=1

qj�1(k) + 2j�1

=

�
s+ 1

j

�
+

 
2j�1 +

s+1X
k=1

qj�1(k) +

�
s+ 2

j

�
�
�
s+ 1

j

�!
:

Since the degree of qj�1 is at most j � 2, it follows that
s+1P
k=1

qj�1(k) is a polynomial of

degree at most j � 1. Thus the polynomial

qj(s+ 1) = 2j�1 +
s+1X
k=1

qj�1(k) +

�
s+ 2

j

�
�
�
s+ 1

j

�

has degree at most j � 1 (since
�
s+2
j

�� �s+1
j

�
has degree j � 1), and the lemma is proved

by induction.

Remark 3.7. In fact, one can prove that

pj(s) =

�
s+ j

j

�
+

jX
i=2

2j�2

�
s+ j � i

j � i

�
;

for all j; s � 0.
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Remark 3.4. Note that if � is considerably smaller than 2k, one does not have to go too
far to �nd a suitable T ; it is when � is close to 2k that T gets large. However, since � is
always �xed, so is T .

The following result is a crucial splitting lemma.

Lemma 3.5. Let a 2 N. Let 1 = m0;m1; : : : ;mk such that mi �
i�1P
j=0

mj, for all 1 � i � k.

Set j0 = n0 = 1. For 1 � i � k set

ji = mi �mi�1 �mi�2 � : : :�m0 and

ni = 2mi � ji = mi +mi�1 +mi�2 + : : :+m0

Let t > k. Then from position (am02
t; am12

t�1; : : : ; amk2
t�k) we can make a perfect split

by asking question (aj02
t�1; aj12

t�2; : : : ; ajk2
t�k�1), with resulting position (an02

t�1; an12
t�2,

: : :, ank2
t�k�1). Furthermore, ni �

i�1P
j=0

nj, for all 1 � i � k.

Proof. Note that the requirement that mi �
i�1P
j=0

mj , for all 1 � i � k, insures that the

question Paul asks for the split is an allowable one (basically, it insures that 0 � ji � mi

for all i).
The formulas for ji and ni are easily established by inspection. Let us now examine

what it means for the nis to inherit the \growth property" of the mis. We must show that

ni � ni�1 + ni�2 + : : :+ n0 ;

and since
ni = mi +mi�1 + : : :+m0 ;

it suÆces to show that mj+1 � nj for all 0 � j � i � 1. Since nj = mj + : : : +m0, the
latter inequality is just the condition we imposed on the mis, and we are done.

We now need to establish a technical result.
We de�ne a (uniquely determined) in�nite sequence of polynomials p0; p1; : : : ; pj ; : : : ;

by the recursion

p0(s) = 1 ; 8 s (1)

pj(s+ 1) = pj(s) + pj�1(s) + : : :+ p0(s) ; 8j � 1 ; (2)

pj(0) = 2j�1 ; 8j � 1 : (3)

Lemma 3.6. For every j � 1 and every s � 0

pj(s) � pj�1(s) :

Furthermore, pj(s) =
�
s
j

�
+ qj(s) for some polynomial qj with deg(qj) � j � 1.
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In what follows we show that for any given k, � < 2k, and q large enough, there exists
a \small" multiple of a power of 2 between �2q=

�q
k

�
and 2k2q=

�q
k

�
.

Lemma 3.3. For any k � 1 and � such that � < 2k, there exist integers T and q0 such
that for all q � q0, there exists at least one a 2 (2T ; 2T+1] \ N such that

�
�

2q�
q
k

�� � a2s <
�2k + �

2

2q�
q
k

��
for some integer s.

Proof. Given k and � as in the statement of the lemma, a simple calculation shows that
there is a value q0 such that for all q � q0,�

2k+�
2

2q

(qk)

�� �� 2q

(qk)

�
�
� 2q

(qk)

� >
2k � �

4�
:

Thus, choose q � q0, and T the smallest integer such that

1

2T
� 2k � �

4�
;

and consider all numbers of the form a2s, with a 2 (2T ; 2T+1] \ N and s an integer. Let
n1 = (a1 � 1)2s1 be the largest such number smaller than or equal to

�
� 2q

(qk)

�
. We will

show that a12
s1 is strictly between

�
� 2q

(qk)

�
and

�
2+�
2

2q

(qk)

�
.

To begin with, it is clear by choice of a1 and s1 that

�
�

2q�
q
k

�� < a12
s1 :

The other inequality is almost as easy to prove. Indeed,

a12
s1 =

�
1

a1 � 1
+ 1

�
(a1 � 1)2s1 �

�
�

1

2T
+ 1

��
�

2q�q
k

��

�
�
2k � �

4�
+ 1

��
�

2q�q
k

��

<
�2k + �

2

2q�q
k

�� ;
by way of choosing T and q0.
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Using Claim 2.2.1, we get that all Ayes(i; j) are i-sets, and all Byes(i; j) are (i�1)-sets.
Moreover, both Ayes(i; j)s and Byes(i; j)s are packed in the right subtree of the root.
But since Carole has answered \yes", Paul will be searching in the right subtree of
the root! And since by induction, because these i- and (i�1)-sets are packed in the
right subtree (and thus in the q� 1 question Decision Tree), it follows that Paul can
use the strategy to win.

The second implication is proved, and so is the lemma.

3 Lower bounds

We will start with a de�nition. Here we are using the vector format previously described.

De�nition 4. We say that from position (x0; x1; : : : ; xk) we can make a perfect split if
there exists an allowable question (a0; a1; : : : ; ak) that Paul can ask, such that the outcome
in the case of an aÆrmative answer is the same as for a negative one.

If they exist, the integers a0; : : : ; ak are (uniquely) de�ned by the following set of
equations:

a0 =
x0
2

;

ai =
xi � xi�1 + ai�1

2
; 8 1 � i � k :

Remark 3.1. There are two ways in which a perfect split can fail to exist: the �rst one is
due to issues of parity, and the second one is due to the fact that the question might not
be allowable (for a question to be allowable we must have 0 � ai � xi for every 0 � i � k).

For example, from (2; 1) we can make a perfect split by asking the question (1; 0),
which regardless of the answer takes Paul to position (1; 1).

Intuitively, whenever one is in need of perfect splits in the Halie game, the best initial
values to start from are powers of 2 (or \close" to a power of 2, like a \small" multiple of a
power of 2). Unfortunately, not every number is of such a form, which is an inconvenience.
However, in this game, there is a concept of dominance which will make things easier,
and will allow us to reduce the study of the problem to numbers n = a2s where a will be
\small" compared to s.

De�nition 5. We will say that position p = (x0; x1; : : : ; xk) dominates position p0 =
(x00; x

0
1; : : : ; x

0
k) if for all i � k,

Pi
j=0 xi �

Pi
j=0 x

0
i. For example, (2; 3; 0; 0; 1) dominates

(2; 1; 1; 1; 1).

Remark 3.2. The essential fact about a position p dominating another position p0 is that,
trivially, if p is a winning position for Paul in q moves, then so is p0. In particular, if
n � a2s for some a and s, and if (a2s; 0; : : : ; 0) is a winning position for Paul when q
questions are left, then so is (n; 0; : : : ; 0).

7



game, starting at this position. If we look at the set Pi;j of possible paths that lead to a
given answer (call it �i;j) from among the xi possible answers in the case when Carol has
already lied k � i times, we can easily see that Pi;j is an i-set. Since all such sets, for all
the i's, are disjoint, it follows that they represent a packing of xi i-sets, i = 0; : : : ; k, in
the full binary tree of size 2q.

For the other direction, we will show how to construct the splitting questions which lie
at the nodes of the Decision Tree. We can pack the i-sets, 0 � i � k, and we choose to label
each set of leaves that correspond to an i-set by a number from 1 through n := xk+: : :+x0.
Also, we assume that the packing is done so that the \no" branches to the left, whereas
the \yes" branches to the right, just like in Figure 2.

For each node z of the Decision Tree we de�ne

L(z) = fr : some leaf in the left subtree of z has label rg
Q(z) = f1; 2; : : : ; ng n L(z) :

At node z, we place the question \Is the answer in Q(z)?".

Claim 2.4.1. The questions we indicated above represent a strategy for Paul.

Proof. We proceed by induction on the number of questions q. The case q = 0 corresponds
to n = 1 and k = 0, in other words Paul knows what the answer is and no questions are
needed.

Assume we have proved that packing implies winning for any number of questions
smaller than q, and let us examine the question at the root of the q-Decision Tree. Paul
asks the question \Is the answer in Q(root)?" and

� If Carole's answer is \no", Paul knows that she is telling the truth, and it follows
that the answer must be one of the labels present at the leaves of the left subtree of
the root. Since she answered \no", that is where he will search.

Let
Ano(i; j) = fw : Nw 2 P (i; j) and P (i; j)'s stem starts with a Ng;

any one of these paths lead to a valid answer, and any valid answer has such a path
leading to it.

Using Claim 2.2.1, we get that Ano(i; j) is an i-set. Since these i-sets are packed
in the left subtree, they are packed in the Decision Tree corresponding to the q � 1
question game. By induction, Paul can use the same strategy to win.

� If Carole's answer is \yes", Paul cannot, generally, determine the truthfulness of her
answer.

Let

Ayes(i; j) = fw : Y w 2 P (i; j) and P (i; j)'s stem starts with a Yg
Byes(i; j) = fw : Y w 2 P (i; j) and P (i; j)'s stem starts with a Ng ;

and again each such path leads to a valid answer and any valid answer has such a
path leading to it.

6



Proof. We will show that the number of elements on level i of the k-tree is bounded from
above by

�q
i

�
.

Let w be a node at level i, and let r = x0; x1; : : : ; xi = w be the path from the root
r to w in the tree. Let p1 = Æ(x0; x1), p2 = Æ(x1; x2), : : :, pi = Æ(xi�1; xi). Note that
1 � p1 < p2 < : : : < pi � q.

By the de�nition of the k-tree, the choice of the positions p1; : : : ; pi determines the
element w completely. Since there are at most

�
q
i

�
possibilities for the choice of the pis, it

follows that there are at most
�q
i

�
elements on the ith level of the tree.

2.3 The Synthesis

The �nal result that we state and prove in this section is the following crucial equivalence
theorem, which connects the two formats of the Halie game (vectorial and k-set) that we
have presented here.

Theorem 2.4. Given a number q of questions, the position (xk; xk�1; : : : ; x1; x0) is a
winning position in q moves for Paul if and only if one can �nd a family P of disjoint sets
Pi;j, 0 � i � k, 1 � j � xi, such that

1. for all i and j, Pi;j is an i-set;

2. for all i and j, the elements of Pi;j are in fY;Ngq.
If such a family of disjoint sets exists, we will say that we can pack (simultaneously)

xi i-sets, i = 0; : : : ; k, in the full binary tree of size 2q.

For an example of what it means to \pack" a k-set, refer to Figure 2 below.

N

N

N

N

N

N

N

Y

Y Y

YY

Y Y

YNYY N Y

Figure 2: Packing the 2-set of Figure 1 into the Decision Tree; the rest of the Decision
Tree vertices are not drawn for convenience

Proof. The \left to right" direction of the argument is easy; indeed, if Paul can win the
game from (xk; xk�1; : : : ; x1; x0) in q moves, let us examine the decision tree for the Halie
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2. Let r0 be a nonroot point, with parent r�, and of depth less than k. For each i >
Æ(r0; r�) for which r0i = N , there exists exactly one child ~r of r0 such that Æ(~r; r0) = i.
Moreover, these are all the children of r0.

De�nition 3. We call the set of nodes of a k-tree a k-set, and we call the sequence at the
root of the tree the stem.

To better illustrate the de�nitions above, we have inserted Figure 1.

YNYNN

NYYNY

NYYYN

YYNNY YNYNY NYYYY

YNYYN

1 4

2 4 5 5

NYYNY
YNYNN
YYNNY
YNYYN
YNYNY
NYYYN
NYYYY

Figure 1: A 2-tree (left) and the corresponding 2-set (list, right) when q = 5; the boxed
letters and the numbers on the arrows the represent Æ(parent, child) and the place where
N has turned into Y in the child sequence

Remark 2.2. Note that any point in fY;Ngq is a 0-set; critically, the set of paths leading
to a given value � in the decision tree for the Halie game with k lies form an k-set (and
this would be an equivalent alternative de�nition of a k-set).

Claim 2.2.1. Let A be a k-set in fY;Ngq with stem v.

(i). Suppose v starts with an Y . Then fw : Y w 2 Ag is a k-set (in fY;Ngq�1) and
fw : Nw 2 Ag = ;.

(ii). Suppose v begins with an N . Then fw : Y w 2 Ag is a (k�1)-set (in fY;Ngq�1) and
fw : Nw 2 Ag is a k-set.

Proof. The proof is immediate from the de�nition.

The k-sets prove to be essential for proving both upper and lower asymptotic bounds
for Ak(q); we will state and prove here two results that will be used in the next sections.

The following lemma follows easily from the de�nition.

Lemma 2.3. For any k and q, the maximum size of a k-set in fY;Ngq is at most

mk(q) = 1 +

�
q

1

�
+ : : :+

�
q

k

�
:
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It follows that Carole still has the opportunity to lie i more times. Let us then say that
possibility � is in state i.

We can thus describe the position of the game as a vector (xk; xk�1; : : : ; x0) where xi
is the number of possibilities in state i.

We further consider a query \Is x 2 A?" by Paul to be described by a vector (ak; : : : ; a0)
where ai is the number of � 2 A of state i. Now consider the two possibilities.

� Carole says \no." Paul knows this is a truthful answer. Then none of the ai possi-
bilities of state i that were in A are viable, while the xi � ai possibilities of state i
that were not in A are still in state i. The new position is (xk � ak; : : : ; x0 � a0).

� Carole says \yes." The ai possibilities of state i that were in A remain in state i;
further, as Carole may have been lying, the xi � ai possibilities of state i that were
not in A move to state i � 1 (when i = 0 these possibilities are no longer viable).
The new position is then (ak; ak�1 + xk � ak; : : : ; a0 + x1 � a1).

We can describe the vector game without any reference to lying. There are q rounds.
There is an initial vector ~P = (zk; : : : ; z0) with all zj nonnegative integers. Each round
Paul selects a vector ~a = (ak; : : : ; a0) with all aj integers satisfying 0 � aj � zj . Carole

then resets ~P to either (xk � ak; : : : ; x0 � a0) or (ak; ak�1 + xk � ak; : : : ; a0 + x1 � a1).
Paul wins if at the end of the game the sum of the coeÆcients of ~P is either zero or one.
(Strictly speaking, a move by Carole that sets ~P = ~0 would be cheating. It is convenient,
however, to allow this move and then declare Paul the winner.)

The haliar game with parameters (n; q; k) is then equivalent to the q-round vector
game with initial vector ~P = (n; 0; : : : ; 0) (of length k+1).

Remark 2.1. The vector format may also be used in the full lie problem. The only
distinction is that when ~P = (xk; : : : ; x0) and Paul selects ~a = (ak; : : : ; a0) then Carole
may reset ~P to either (ak; ak�1+ xk � ak; : : : ; a0 + x1� a1) (as above) or (xk � ak; xk�1�
ak�1 + ak; : : : ; x0 � a0 + a1).

2.2 Packing k-Trees

In this subsection we de�ne two concepts that proved to be crucial in our understanding
of the problem, by providing a second format to the Haliar Game.

First, we introduce the (perhaps familiar) Æ function, which we use to de�ne the two
concepts mentioned above: those of k-tree and k-set.

De�nition 1. Given two points in fY;Ngq, w = w1w2 : : : wq and w0 = w0
1w

0
2 : : : w

0
q, we

de�ne Æ(w;w0) to be the smallest i for which wi 6= w0
i.

De�nition 2. A k-tree is a rooted tree of depth at most k whose vertices are points of
fY;Ngq with the following properties:

1. Let the root be r = r1r2 : : : rq. For each 1 � i � q such that ri = N , there exists
exactly one child r0 of r with Æ(r; r0) = i. Moreover, these are all the children of r;

3



Berlekamp [1]. Pelc [3] solved the problem completely when k = 1. Spencer [5] solved the
problem completely for any �xed k with q suÆciently large. In particular, it is known that
for any �xed k

A�
k(q) �

2q�q
k

�
where the asymptotics are as q !1.

In this paper we modify Carole's ability to lie: she is still allowed to lie at most k times,
but she is only allowed to lie when the truthful answer is \No". In other words, for Paul,
any \No" he hears is a truthful answer and thus completely trustworthy; and any \Yes"
answer he hears is a potential lie.

We call this the halie game. We shall set Ak(q) equal to the maximal n such that
Paul has a winning strategy in the halie game with parameters (n; q; k). Our main result
is the following:

Theorem 1.1. For any �xed k 2 N,

Ak(q) � 2k
2q�
q
k

�
where the asymptotics are as q !1.

Informally, the restriction of Carole to halies, as opposed to full lies, allows Paul to
probe 2k times as many possibilities.

Many authors have commented on the connection between the now classic liar problem
and the classic coding theory problem of sending n messages through a binary channel
which may make up to k errors. The two problems are equivalent if Paul is required to
pose all q queries at once { i.e., if his strategy must be nonadaptive. Alternatively, the liar
problem is the coding theory problem with \feedback."

We may make a similar connection to the haliar game. Consider what is sometimes
called in the coding theory literature the Z-channel. In this channel, a one may be acci-
dentally transformed into a zero, but a zero is never transformed into a one. We naturally
identify zero with Yes and one with No. Our haliar game may then be considered, roughly,
the coding theory problem on the Z-channel with feedback.

Our result for k = 1 (Carole is allowed 1 lie) has been proven independently by F.
Cicalese and D. Mundici [2]. Indeed, a number of the key ideas of their paper have proven
to be very useful in our argument for general �xed k.

2 Two Perspectives

2.1 The Vector Game

There is a natural way to describe the state of the game in a middle position, after Paul has
asked and Carole has answered a certain number of questions. For each (still) valid answer
� there must be a certain number of lies that Carole has already used. If that number is
greater than k then � is no longer a possibility (it is not viable). Suppose then that for
a certain still viable �, the number of lies Carole has used is k � i for some 0 � i � k.
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A Haliar's Game
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Abstract

In Ulam's game Paul tries to �nd one of n possibilities with q Yes-No questions,
while responder Carole is allowed to lie a �xed number k of times. We consider an
asymmetric variant in which Carole must say yes when that is the correct answer
(whence the halie). We show that this variation allows Paul to distinguish between
roughly 2k as many possibilities as in Ulam's game.

1 Introduction

The basic liar game has two players whom we call Paul and Carole and three integer
parameters (n; q; k). Paul is trying to �nd an unknown x 2 f1; : : : ; ng by asking q questions
of Carole. The questions must all be of the form \Is x 2 A?", where A is a subset of
f1; : : : ; ng. Carole, the responder, is allowed to lie; however, she may lie at most k times.
Paul wins if at the end of the q questions and responses the answer x is known with
certainty.

Carole is allowed to play (and will play) an adversary strategy. That is, she does not
preselect a particular x, but rather answers questions in a manner consistent with at least
one possible x. At the end of the game, if there are at least two answers x, x0 still valid
(i.e., for which Carole has lied at most k times) then Carole has won; otherwise Paul is
the winner of the game.

We further note that Paul's questions may (and generally will) be adaptive. That is,
Paul's choice of question depends on Carole's previous answers.

In this formulation we have a two person perfect information game; thus we know that
for any given triplet (n; q; k) either Paul or Carole has a perfect strategy. The question is,
which one? Due to monotonicity, it suÆces to answer the following more explicit question:
given q and k, what is the maximal n (which we will denote by A�

k(q)) for which Paul has
a winning strategy?

Much work on the basic liar game was inspired by comments in the autobiography of
Stanislas Ulam [6]. For this reason we, like many other authors, refer to the liar game
as Ulam's game. Other early references include work by Alfred R�enyi [4] and Elwyn
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