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Abstract. We address the question of finite-size scaling in percolation by studying bond
percolation in a finite box of side length n, both in two and in higher dimensions. In di-

mension d = 2, we obtain a complete characterization of finite-size scaling. In dimensions
d > 2, we establish the same results under a set of hypotheses related to so-called scaling and
hyperscaling postulates which are widely believed to hold up to d = 6.

As a function of the size of the box, we determine the scaling window in which the system
behaves critically. We characterize criticality in terms of the scaling of the sizes of the largest

clusters in the box: incipient infinite clusters which give rise to the infinite cluster. Within
the scaling window, we show that the size of the largest cluster behaves like ndπn, where πn

is the probability at criticality that the origin is connected to the boundary of a box of radius

n. We also show that, inside the window, there are typically many clusters of scale ndπn,
and hence that “the” incipient infinite cluster is not unique. Below the window, we show that
the size of the largest cluster scales like ξdπξ log(n/ξ), where ξ is the correlation length, and

again, there are many clusters of this scale. Above the window, we show that the size of the
largest cluster scales like ndP∞, where P∞ is the infinite cluster density, and that there is
only one cluster of this scale. Our results are finite-dimensional analogues of results on the

dominant component of the Erdős-Rényi mean-field random graph model.

∗Revised in May 2001

Typeset by AMS-TEX

1



2 C. BORGS, J. T. CHAYES, H. KESTEN, J. SPENCER, December 2000

1. Introduction: Background and Discussion of Results

We dedicate this paper to Joel Lebowitz on the occasion of his 70th birthday. He is an
inspiration to us all. We present here the complete version of results announced several
years ago in [CPS96] and [Cha98].

Finite-size scaling is the study of corrections to the thermodynamic behavior of an
infinite system due to finite-size effects. In particular, this includes the broadening of the
transition point into a transition region in a finite system. Here we present an analysis
of finite-size scaling for percolation on the hypercubic lattice, both in two and in higher
dimensions. Our analysis is based on a number of postulates which are mathematical
expressions of the purported scaling behavior in critical percolation in dimensions two
through six. We explicitly verify these scaling postulates in two dimension.

We consider bond percolation in a finite subset Λ of the hypercubic lattice Z
d. Nearest-

neighbor bonds in Λ are occupied with probability p and vacant with probability 1 − p,
independently of each other. Let pc denote the bond percolation threshold in Z

d, namely
the value of p above which there exists an infinite connected cluster of occupied bonds. As
a function of the size of the box Λ, we determine the scaling window about pc in which the
system behaves critically. For our purposes, criticality is characterized by the behavior of
the distribution of sizes of the largest clusters in the box. We show how these clusters can
be identified with the so-called incipient infinite cluster—the cluster of infinite expected
size which appears at pc.

The motivation for this work was threefold: first, to give a finite-dimensional analogue
and interpretation of results on the Erdős-Rényi mean-field random graph model; second,
to provide rigorous results on finite-size scaling at a continuous transition; and third, to
establish detailed results on incipient infinite clusters which correspond closely to results
observed by numerical physicists. In this introduction, we will discuss each aspect of the
motivation in some detail.

The Random Graph Model
The original motivation for this work was to obtain an analogue of known results on the

random graph model of Erdős and Rényi ([ER59], [ER60]; see also [Bol85], [AS92]). The
random graph is simply the percolation model on the complete graph, i.e., it is a model
on a graph of N sites in which each site is connected to each other site, independently
with uniform probability p(N). It turns out that the model has particularly interesting
behavior if p(N) scales like p(N) ≈ c/N with c � 1. Here, as usual, f � g means that
there are nonzero, finite strictly positive constants c1 and c2, such that c1g ≤ f ≤ c2g.

Let W (i) denote the random variable representing the size of the ith largest cluster in the
system. Erdős and Rényi ([ER59], [ER60]) showed that the model has a phase transition
at c = 1 characterized by the behavior of W (1). It turns out that, with probability one,

W (1) �





log N if c < 1

N2/3 if c = 1

N if c > 1.

(1.1)

Moreover, for c > 1, W (1)/N tends to some constant θ(c) > 0, with probability one, while
for c = 1, W (1) has a nontrivial distribution (i.e., W (1)/N2/3

9 constant) ([ER59], [ER60],
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[JKLP93], [Ald97]). For c ≤ 1, the sizes of the second, third, . . . , largest clusters are of the
same scale as that of the largest cluster, while for c > 1 this is not the case: For any fixed
i > 1, W (i) � log N for all c 6= 1 ([ER59], [ER60]), while at c = 1, W (i) � N2/3 [Bol84].
The cluster of order N for c > 1 is clearly the analogue of the infinite cluster in percolation
on finite-dimensional graphs; in the random graph, it is called the giant component. As we
will see, the clusters of order log N or smaller are analogues of finite clusters in ordinary
percolation. The clusters of order N 2/3 will turn out to be the analogue of the so-called
incipient infinite cluster in percolation.

More interestingly, the critical point c = 1 is actually broadened into a critical regime
by finite-N corrections. It was shown by Bollobás [Bol84] and  Luczak [ Luc90] that the
correct parameterization of the critical regime is

p(N) =
1

N

(
1 +

λN

N1/3

)
, (1.2)

in the sense that if limN→∞|λN | < ∞, then W (i) � N2/3 for all i; see also the combinatoric
tour de force of Janson, Knuth,  Luczak and Pittel [JKLP93] for more detailed properties,
including some distributional results on the W (i)’s. Finally, it was shown by Aldous that
the W (i), rescaled by N2/3, have a nontrivial limiting joint distribution which can be
calculated from a one-dimensional Brownian motion with time-dependent drift [Ald97].

On the other hand, if limN→∞λN = −∞, then W (2)/W (1) → 1 with probability one,
whereas if limN→∞λN = +∞, then W (2)/W (1) → 0 and W (1)/N2/3 → ∞ with proba-
bility one. The largest component in the regime with λN → +∞ is called the dominant
component. As we will show, it has an analogue in ordinary percolation.

The initial motivation for our work was to find a finite-dimensional analogue of the
above results. To this end, we consider d-dimensional percolation in a box of linear size n,
and hence volume N = nd. We ask how the size of the largest cluster in the box behaves
as a function of n for p < pc, p = pc and p > pc. It is straightforward from known results
to describe these cluster sizes for fixed p 6= pc. However, we are interested mainly in the
situation where p varies with n. In particular, we ask whether there is a window about pc

such that the system has a nontrivial cluster size distribution within the window.

Finite-Size Scaling

The considerations of the previous paragraph lead us immediately to the question of
finite-size scaling (FSS). Phase transitions cannot occur in finite volumes, since all relevant
functions are polynomials and thus analytic; nonanalyticities only emerge in the infinite-
volume limit. What quantities should we study to see the phase transition emerge as we
go to larger and larger volumes?

Before our work, this question had been rigorously addressed in detail only in systems
with first-order transitions—transitions at which the correlation length and order param-
eter are discontinuous ([BoK90], [BI92-1], [BI92-2]). Finite-size scaling at second-order
transitions is more subtle due to the fact that the order parameter vanishes at the critical
point. For example, in percolation it is believed that the infinite cluster density vanishes
at pc. However, physicists routinely talk about an incipient infinite cluster at pc. This
brings us to our third motivation.
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The Incipient Infinite Cluster
At pc, it is believed that with probability one there is no infinite cluster. On the other

hand, the expected size of the cluster of the origin is infinite at pc, see [Ham57], [Kes82],
Cor. 5.1, and [AN84]. This suggests that from the perspective of an observer at the origin,
all clusters are finite, with larger and larger clusters appearing as one considers larger
and larger length scales. Physicists have called the emerging object the incipient infinite
cluster.

In the mid-1980’s there were two attempts to construct rigorously an object that could
be identified as an incipient infinite cluster. Kesten [Kes86] proposed to look at the condi-
tional measure in which the origin is connected to the boundary of a box centered at the
origin, by a path of occupied bonds: P n

p (·) = Pp(· | 0 ↔ ∂[−n, n]d). Here, as usual, Pp(·)
is product measure at bond density p. Observe that, at p = pc, as n →∞, P n

p (·) becomes
mutually singular with respect to the unconditioned measure Pp(·). Nevertheless, Kesten
found that in d = 2

lim
n→∞

Pn
pc

(·) = lim
p↘pc

Pp(· | 0 ↔∞). (1.3)

Moreover, Kesten studied properties of the infinite object so constructed and found that it
has a nontrivial fractal dimension which agrees with the fractal dimension of the physicists’
incipient infinite cluster.

Another proposal was made by Chayes, Chayes and Durrett [CCD87]. They modified
the standard measure in a different manner than Kesten, replacing the uniform p by an
inhomogeneous p(b) which varies with the distance of the bond b from the origin:

p(b) = pc +
λ

1 + dist(0, b)ζ
, (1.4)

with λ constant. The idea was to enhance the density just enough to obtain a nontrivial
infinite object. In d = 2, [CCD87] proved that for ζ = 1/ν, where ν is the so-called
correlation length exponent, the measure Pp(b) has some properties reminiscent of the
physicists’ incipient infinite cluster.

In this work, we propose a third rigorous incipient cluster—namely the largest cluster in
a box. This is, in fact, exactly the definition that numerical physicists use in simulations.
Moreover, it will turn out to be closely related to the IICs constructed by Kesten and
Chayes, Chayes and Durrett. Like the IIC of [Kes86], the largest cluster in a box will have
a fractal dimension which agrees with that of the physicists’ IIC. Also, our proofs rely
heavily on technical estimates from the IIC construction of [Kes86]. More interestingly,
the form of the scaling window p(n) for the our problem will turn out to be precisely the
form of the enhanced density used to construct the IIC of [CCD87].

Yet a fourth candidate for an incipient infinite cluster is a spanning cluster in a large box,
an object studied by Aizenman in [Aiz97]. Let us caution the reader that the terminology in
[Aiz97] differs somewhat from ours. While Aizenman reserves the term IIC for an incipient
infinite cluster viewed from a point inside this cluster (thus implying uniqueness almost
by definition), we use the term incipient infinite clusters for the large clusters viewed from
the scale of the box under consideration. From this point of view the IIC is not necessarily
unique, see below.
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Recently, Járai has shown that, viewed from a random point in the IIC, all four notions
of the IIC lead to the same distribution on local observables in dimension d = 2 [Jár00].

Informal Statement and Heuristic Interpretation of Results
Our results will be stated precisely in Section 3. Here we give an informal statement in

terms of the critical exponents of percolation, assuming these exponents exist. Note that
our results hold independently of the existence of critical exponents, but they are easier to
state informally and to compare to the random graph results (1.1) and (1.2) in terms of
these exponents. To this end, let P∞(p) denote the infinite cluster density, χfin(p) denote
the expected size of finite clusters, ξ(p) denote the correlation length, i.e., the inverse
exponential decay rate of the finite cluster connectivity function, and P≥s(p) denote the
probability that the cluster of the origin is of size at least s. Also let πn(pc) denote the
probability at criticality that the origin is connected to the boundary of a hypercube of
side 2n. See Section 2, in particular equations (2.5), (2.15), (2.18), (2.4) and (2.10), for
precise definitions. It is believed, but not proved in low dimensions, that the behavior of
these quantities as p → pc or at p = pc is described by the following scaling laws:

P∞(p) ≈ |p− pc|β p > pc , (1.5)

χfin(p) ≈ |p− pc|−γ , (1.6)

ξ(p) ≈ |p− pc|−ν , (1.7)

P≥s(pc) ≈ s−1/δ (1.8)

and
πn(pc) ≈ n−1/ρ . (1.9)

In (1.5) - (1.7), G(p) ≈ |p− pc|α means

lim
p→pc

log G(p)

log |p− pc|
= α . (1.10)

Unless otherwise noted we implicitly assume that the approach is identical from above and
below threshold. Similarly, we use G(n) ≈ nα in (1.8) - (1.9) to mean

lim
n→∞

log G(n)

log n
= α. (1.11)

Let Λn denote a hypercube of side n and let W
(i)
Λn

denote the ith largest cluster in this
hypercube. Then, under certain “scaling assumptions,” we find the asymptotic behavior

of W
(1)
Λn

, both for fixed p and, more generally, for p which vary with n. Combining our
results at pc with known results for fixed p 6= pc, we first establish the following analogue
of (1.1):

W
(1)
Λn

�





log n if p < pc

ndf if p = pc

nd if p > pc,

(1.12)
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where we use the suggestive notation

df = d− 1/ρ (1.13)

to indicate that d− 1/ρ is the fractal dimension of our candidate incipient infinite cluster.
Moreover, we show that, under the scaling assumptions, the critical point pc is broadened

into a scaling window of the form

p(n) = pc

(
1± λ

n1/ν

)
, (1.14)

in the sense that inside the window

W (1) ≈ ndf , W (2) ≈ ndf , · · · , (1.15)

while above the window

W (1) ≈ ndP∞ ,

W (1)/ndf →∞ , (1.16 )

W (2)/W (1) → 0,

and below the window
W (1)/ndf → 0 , (1.17)

where, in fact,
W (1) ≈ ξdf log(n/ξ) . (1.18)

The results in (1.14) - (1.18) are established both in expectation and in probability. Note
the similarity between the form of the scaling window (1.14) and the bond density (1.4)
of the [CCD87] incipient infinite cluster.

Furthermore, within the scaling window, we get results on the distribution of cluster
sizes which show that the distribution does not go to a point mass. This is to be contrasted
with the behavior above the window, where the normalized cluster size approaches its
expectation, with probability one. All of these additional results require some delicate
second moment estimates.

Our scaling assumptions, which are described in detail in Section 3, are explicitly proved
in dimension d = 2, and are believed – but not proved – to hold for d less than the so-called
upper critical dimension dc. The upper critical dimension is the dimension above which
the critical exponents assume their Cayley tree values; presumably dc = 6 for percolation.

What would results (1.14) and (1.15) say if we attempted to apply them in the case of
random graph model (to which, of course, they do not rigorously apply)? Let us use the
widely believed hyperscaling relation dν = γ + 2β and the observation that the volume N
of our system is just nd, to rewrite the window in the form

pn = pc

(
1± λ

n1/ν

)
= pc

(
1± λ

N1/dν

)
= pc

(
1± λ

N1/(γ+2β)

)
. (1.19)
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Similarly, let us use the hyperscaling relation df/d = δ/(1 + δ) to rewrite the size of the
largest cluster as

W (1) ≈ ndf ≈ Ndf /d ≈ N δ/(1+δ). (1.20)

Noting that the random graph model is a mean-field model, we expect (and in fact it can
be verified [BBCK98]) that γ = 1, β = 1 and δ = 2. Using also pc = 1/N , (1.19) suggests
a window of the form

p(N) =
1

N

(
1± λ

N1/3

)
, (1.21)

and within that window

W (1) ≈ N2/3, (1.22)

just the values obtained in the combinatoric calculations on the random graph model. We
caution the reader that hyperscaling relations do not apply to the random graph, so that
a proper version of the arguments above requires that we deal with a “correlation volume”
rather than the correlation length, and that we establish (1.20) directly from the scaling of
the cluster size distribution (1.8), rather than by recourse to our finite-dimensional results
and a hyperscaling relation. Such arguments can be derived, but are beyond the scope of
this paper.

Our results also have implications for finite-size scaling. Indeed, the form of the window
tells us precisely how to locate the critical point, i.e., it tells us the correct region about
pc in which to do critical calculations.

Finally, the results tell us that we may use the largest cluster in the box as a candidate
for the incipient infinite cluster. Within the window, it is not unique, in the sense that
there are many clusters of this scale. However, above the window (even including a region
where p is not uniformly greater than pc as n → ∞), there is a unique cluster of largest
scale. This is the analogue of what is called the dominant component in the random graph
problem.

It is interesting to contrast our results with recent results in high dimensions. As already
observed on a heuristic level in [Con85], the validity of hyperscaling is related to the fact
that the critical crossing clusters in a box of side length n have size of order nd−1/ρ, and
that their number is bounded uniformly in n; see [BCKS98] for rigorous results concerning
this relationship. Conversely, breakdown of hyperscaling above six dimensions requires, at
least on a heuristic level, that at criticality, the number of crossing clusters in a box of side
length n grows like nd−6, and that all of them have sizes of order n4; see again [Con85].
In a similar way, one would expect that the largest cluster in a box of side length n is of
size n4, and that there are roughly nd−6 clusters of similar size. Indeed, it can be proven
[Aiz97] that these results follow from a postulate on the decay of the connectivity function
at criticality which is widely believed to hold above six dimensions. Very recently, T. Hara
[Har01] used the so-called Lace expansion, in the form developed in [HHS01], to rigorously
establish this postulate in sufficiently high dimensions d � 6.

Methods and Organization

As mentioned above, our results are proved under certain scaling assumptions which we
explicitly verify in dimension d = 2. Obviously, the results could have been proven directly
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– with no assumptions – in d = 2, but the resulting proof would have been quite compli-
cated and would not have yielded much insight. Instead, we formulate postulates which
we believe characterize critical behavior in all dimensions below the critical dimension dc,
and then prove our results under these postulates. We believe that the postulates are of
independent interest since they provide insight into the nature of critical behavior. Indeed,
in previous announcements of this work [CPS96] and [Cha98], we used more postulates
than we need now. In [BCKS99], we proved that one of these original postulates was
implied by several others, in particular that a reasonable assumption on the behavior of
crossing probabilities implies certain hyperscaling relations among critical exponents. The
proofs in this paper will rely heavily on the results and methods of [BCKS99]. Indeed,
[BCKS99] should really be viewed as “Part I” of this paper, since many of our results on
the cluster size distribution were derived there. The verification of the postulates in d = 2
relies on the constructive two-dimensional methods of [Kes86] and [Kes87].

The organization of this paper is as follows. In Section 2, we give definitions, notations
and previous percolation results we will need in our proofs. Our main results are formulated
in Section 3. There we first state our postulates, and then state the finite-size scaling results
under these postulates. In Section 4, we state many additional results which may be of
independent interest, including the results of [BCKS99]. Finally, using these additional
results, in Section 5 we prove our main finite-size scaling theorems under the scaling
postulates. We believe, but cannot prove, that the scaling postulates should hold up to
the upper critical dimension, which is believed to be dc = 6 for percolation. Finally, in
Section 6, we prove that the scaling postulates are satisfied in two dimensions. Thus, we
have a complete proof of finite-size scaling for percolation in dimension d = 2. In Section
7, we give a proof of slightly stronger finite-size scaling results under an alternative set of
postulates, and also show that the alternative postulates hold in d = 2.

2. Definitions, Notation and Preliminaries

Consider the hypercubic site lattice Z
d, and the corresponding bond lattice Bd consisting

of bonds between all nearest-neighbor pairs in Z
d. Bond percolation on Bd is defined by

choosing each bond of Bd to be occupied with probability p and vacant with probability 1−p,
independently of all other bonds. The corresponding product measure on configurations
of occupied and vacant bonds is denoted by Prp. Ep denotes expectation with respect to
the measure Prp, and Covp(· ; ·) denotes the covariance of two indicator functions with
respect to Prp: Covp(A; B) = Prp(A ∩ B) − Prp(A)Prp(B). A generic configuration is
denoted by ω. If S1, S2, S3 ⊂ Z

d, we say that S1 is connected to S2 in S3, denoted by
{S1 ↔ S2 in S3}, if there exists an occupied path with vertices in S3 from some site of S1

to some site of S2. Maximal connected subsets are called (occupied) clusters. The occupied
cluster (in the configuration ω) containing the site x is denoted by C(x) = C(x; ω). The
size of the cluster C, denoted by |C|, is the number of sites in C. C∞ denotes the (unique)
infinite cluster, i.e., the occupied cluster with |C| = ∞.

We also consider clusters in a finite box Λ ⊂ Z
d. The connected component of x in

C(x)∩Λ is denoted by CΛ(x) = CΛ(x; ω); this is therefore the collection of all points which

are connected to x by an occupied path in Λ. C(1)
Λ , C(2)

Λ , · · · C(k)
Λ denote the occupied clusters

in Λ, ordered from largest to smallest size, with lexicographic order between clusters of
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the same size. W
(i)
Λ = |C(i)

Λ | denotes the size of the ith largest cluster in Λ. Finally

NΛ(s1, s2) = |{i | s1 ≤ W
(i)
Λ ≤ s2}| (2.1)

denotes the number of clusters in Λ with size between s1 and s2, and

ÑΛ(s1, s2) = |{i | s1 ≤ W
(i)
Λ ≤ s2, C

(i)
Λ 6↔ ∂Λ}| (2.2)

is the corresponding number of clusters which do not touch the boundary ∂Λ of Λ. Here ∂Λ
is the set of points x ∈ Λ that have distance less than 1 from the complement Λc = Z

d \Λ
of Λ.

Returning now to the model on the full lattice, the cluster size distribution is charac-
terized by

Ps = Ps(p) = Prp(|C(0)| = s) , (2.3)

or alternatively
P≥s = P≥s(p) = Prp(|C(0)| ≥ s) . (2.4)

The order parameter of the model is the percolation probability or infinite-cluster density

P∞(p) = Prp(|C(0)| = ∞) . (2.5)

The critical probability is
pc = inf{p : P∞(p) > 0} . (2.6)

We consider several connectivity functions: the (point-to-point) connectivity function

τ(v, w; p) = Prp(v ↔ w) , (2.7)

the finite-cluster (point-to-point) connectivity function

τfin(v, w; p) = Prp(v ↔ w, |C(v)| < ∞) , (2.8)

the point-to-hyperplane connectivity function

π̃n(p) = Prp{∃ v = (n, ·) such that 0 ↔ v} (2.9)

(v = (n, ·) means that the first coordinate of v equals n), and the point-to-box connectivity
function

πn(p) = Prp{0 ↔ ∂Bn(0)} , (2.10)

where
Bn(v) = {w ∈ Z

d : |v − w|∞ ≤ n} = [−n, n]d ∩ Z
d , (2.11)

with | · |∞ denoting the `∞-norm. Notice that πn(p) and π̃n(p) are equivalent, in the sense
that

π̃n(p) ≤ πn(p) ≤ 2dπ̃n(p) . (2.12)
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A quantity which for p > pc behaves much like τfin(x, y; p) is the covariance:

τ cov(v, w; p) = Covp(v ↔∞; w ↔∞) (2.13)

(see [CCGKS89], Section 6). We also consider several susceptibilities:

χ(p) = Ep(|C(0)|) =
∑

v

τ(0, v; p) , (2.14)

χfin(p) = Ep(|C(0)|, |C(0)| < ∞) =
∑

v

τfin(0, v; p) =
∑

s<∞

sPs(p) (2.15)

and
χcov(p) =

∑

v

τ cov(0, v; p) . (2.16)

Finally, we introduce the quantity

s(n) = (2n)d πn(pc) . (2.17)

As we will see, s(n) is the order of magnitude of the size of the largest critical clusters on
scale n.

Length scales in the model are naturally expressed in terms of the correlation length
ξ(p), defined by the limit

1/ξ(p) = − lim
|v|∞→∞

1

|v|∞
log τfin(0, v; p) (2.18)

taken with v along a coordinate axis. We will use the fact that ξ(p) < ∞ for all p 6= pc and
ξ(p) → ∞ as p ↑ pc (see Grimmett [Gri99], Theorem 6.49 and equation (6.57) for p < pc;
for p > pc this follows from Grimmett and Marstrand [GM90]). While it is also believed
that ξ(p) →∞ as p ↓ pc, this is rigorously known only for d = 2.

Alternatively, lengths may be expressed in terms of the finite-size scaling correlation
length L0(p, ε), introduced in [CCF85] and studied in [CCF85], [CCFS86] and [Kes87].
For p < pc, L0(p, ε) is defined in terms of the crossing probabilities of rectangles, the
so-called sponge crossing probabilities:

RL,M (p) = Prp{ ∃ occupied bond crossing of [0, L]× [0,M ] · · · × [0,M ]

in the 1-direction} . (2.19)

Observing that, for p < pc, the sponge crossing probability RL,3L(p) → 0 as L → ∞, we
define

L0(p) = L0(p, ε) = min{L ≥ 1 | RL,3L(p) ≤ ε} if p < pc . (2.20)

Using the methods and results of [ACCFR83], [CC86], [CCF85] and [Kes87], it is straight-
forward to show that there exists a(d) > 0 such that for ε < a(d), the scaling behavior
of L0(p, ε) is independent of ε for p < pc, in the sense that L0(p, ε1)/L0(p, ε2) is bounded
away from 0 and infinity for two fixed values ε1, ε2 < a(d). This scaling behavior is also
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essentially the same as that of the standard correlation length ξ(p). More specifically, for
0 < ε < a(d), there exist constants c1 = c1(d), c2 = c2(d, ε) < ∞ such that1

1

L0(p, ε)
≤ 1

ξ(p)
≤ c1 log L0(p, ε) + c2

L0(p, ε)− 1
, p < pc . (2.21)

Hereafter we will assume that ε < a(d); we usually suppress the ε-dependence in our
notation.

For p > pc, it is natural to define L0(p, ε) in terms of a suitable finite-cluster analogue
of the sponge-crossing probability RL,M (p), see [CC87], eq. (53). For technical reasons, it
is convenient, however, to consider instead crossings in an annulus

HL,M = Z
d ∩ [−L,L + M ]d \ (0,M)d , (2.22)

with inner and outer boundaries ∂IHL,M and ∂EHL,M . We say that an occupied cluster
CH in H = HL,M is H-finite if H \ CH contains a path – occupied or not – that connects
∂IH to ∂EH. Let

Sfin
L,M (p) = Prp{ ∃ an occupied H-finite cluster CH in H = HL,M

that connects ∂IH to ∂EH} , (2.23)

with the convention Sfin
0,M (p) = 1. We define

L0(p) = L0(p, ε) = 1 + max{L ≥ 0 : Sfin
L,L(p) ≥ ε} if p > pc , (2.24)

and more generally, for x ≥ 1,

L0(p, ε; x) = 1 + max{L ≥ 0 : Sfin
L,bxLc(p) ≥ ε} if p > pc . (2.25)

Note that L0(p, ε; x) may be finite or infinite, depending on whether or not there exists an
L0 < ∞ such that Sfin

L,bxLc(p) < ε for all L ≥ L0. We expect that this definition coincides,

say in the sense of equation (2.21) (with an x−dependent constant c2, and c1(d) = 0), with
the standard correlation length ξ(p) above threshold. However, we are not able to prove
this in d ≥ 3, since the rescaling techniques of [ACCFR83] do not work for finite-cluster
crossings. In d = 2, we can use a Harris ring construction [Har60] in conjunction with the
Russo-Seymour-Welsh Lemma ([Rus78], [SW78]) to show that this definition is equivalent
to ξ(p); see Section 6.

An important quantity in the high-density phase is the surface tension σ(p); see [AC-
CFR83] for the precise definition. By analogy with the definition of a finite-size scaling
correlation length below threshold, we define a finite-size scaling inverse surface tension as

A0(p) = A0(p, ε) = min{Ld−1 ≥ 1 | RL,3L(p) ≥ 1− ε} if p > pc . (2.26)

1K. Alexander [Ale96] has shown that one can take c1(d = 2) = 0 in (2.21)
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It is easy to see that A0(p) is well-defined and finite for all p > pc. Indeed, p > pc implies
P∞(p) > 0, which in turn implies that the probability of the event |C(x)| < ∞ for all
x ∈ Z

d ∩ [0, L]d goes to zero as L → ∞. Since this probability is bounded from below by
(1−RL,3L(p))2d (cf. the proof of Lemma 4.4), this implies that RL,3L(p) → 1 as L →∞,
and hence A0(p) is well-defined and finite. We expect that A0(p) is equivalent to the inverse
surface tension2 1/σ(p), which in turn should be equivalent to ξd−1(p) below the critical
dimension dc (presumably dc = 6). Again, we are only able to prove this equivalence in
d = 2.

While the behavior of L0(p) below pc is well understood in general dimension, much
less is know about L0(p) or A0(p) above pc. In particular, below pc, it is easy to see that
L0(p) is monotone increasing, left continuous and piecewise constant. Moreover,

L0(p) ↑ ∞ as p ↑ pc , (2.27)

because RL,3L(pc) is bounded away from 0 (e.g., by Theorem 5.1 in [Kes82]). Furthermore,
the jumps in L0(p) are uniformly bounded on a logarithmic scale. In particular, by the
methods of [ACCFR83], [CC86], [CCF85] and [Kes87], we have

R2L,6L ≤ 1

a(d)
R2

L,3L , (2.28)

which in turn implies

lim
δ→0

L0(p + δ)

L0(p)
≤ 2 , (2.29)

provided p < pc and ε < a(d). By contrast, none of these properties are known for
L0(p) above pc. Next consider A0(p), which, almost by definition, is monotone decreasing
and right continuous. However, in general dimension, we do not have a proof that A0(p)
diverges as p ↓ pc, nor do we have a bound of the form (2.29). We will therefore require
several postulates on the behavior of L0(p) and A0(p) above pc.

3. Statement of Postulates and Theorems

3.1. The Scaling Postulates.

Most of our theorems are established under a set of assumptions which we can verify
explicitly in two dimensions, and which we expect to be true for all dimensions not exceed-
ing the critical dimension dc (presumably dc = 6). We call these assumptions the Scaling
Postulates, since they follow from the type of scaling typically assumed in the physics lit-
erature. Since L0(p) and A0(p) depend on ε, see equations (2.20), (2.24) and (2.26), many
of our postulates implicitly involve the constant ε. We assume that they are true for all
nonzero ε < ε0, where ε0 = ε0(d) is a suitable constant. We write our postulates in terms
of the equivalence symbol �. Here

F (p) � G(p) (3.1)

2Using Proposition 3 of [CC87], one can actually prove that A0(p) ≤ const σ(p)−1 for all d ≥ 2. We do
not expect that the opposite inequality holds for d > the critical dimension, dc, since such an inequality

— together with the usual assumption that σ(p) → 0 as p ↓ pc — would imply that A0(p) →∞ as p ↓ pc

for d > dc, which is believed to be false, see Section 3.3.
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means that there are lower and upper bounds of the form

C1F (p) ≤ G(p) ≤ C2F (p) (3.2)

where C1 > 0 and C2 < ∞ are constants which do not depend on p, as long as p is
uniformly bounded away from zero or one, but which may depend on the constants ε, ε̃ or
x appearing explicitly or implicitly in the postulates. Occasionally, p is further restricted
to lie on one side of pc. Similarly F (n) � G(n) means that

C1F (n) ≤ G(n) ≤ C2F (n)

for some constants 0 < C1 ≤ C2 < ∞.

Our scaling postulates are

(I) L0(p) →∞ as p ↓ pc;

(II) A0(p) � Ld−1
0 (p) � Ld−1

0 (p, ε̃; x) provided p > pc, x ≥ 1 and 0 < ε̃ < ε0;

(III) There are constants D1 > 0 and D2 < ∞ such that

D1 ≤
πn(p)

πn(pc)
≤ D2 if n ≤ L0(p);

(IV) There are constants D3 > 0 and ρ1 > 2
d such that

πm(pc)

πn(pc)
≥ D3

(m

n

)−1/ρ1

if m ≥ n ≥ 1;

(V) There is a constant D4 such that

χcov(p) ≤ D4L
d
0(p)π2

L0(p)(pc) and χfin(p) ≤ D4L
d
0(p)π2

L0(p)(pc)

if p > pc;

(VI) πL0(p)(pc) � P∞(p) if p > pc;

(VII) There are constants D5, D6 < ∞ such that

P≥ks(L0(p))(p) ≥ D5e
−D6kP≥s(L0(p))(p) if p < pc and k ≥ 1.

We shall have some comments on the interpretation of the postulates and other remarks
after we state our theorems.
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3.2. Statement of the Main Results.

A central concept in our theorems is the notion of a scaling window in which the system
behaves critically. This can best be described by the function

g(p, n) :=





− n
L0(p) if p < pc

0 if p = pc

n
L0(p) if p > pc.

(3.3)

It will be seen that a sequence of systems with density pn behaves critically – as far as size
of large clusters is concerned – in the finite boxes

Λn := {v ∈ Z
d | −n ≤ vi < n, i = 1, . . . , d} (3.4)

if

pn → p and lim sup
n→∞

|g(pn, n)| < ∞. (3.5)

If this is the case we shall say that the (sequence of) systems are inside the scaling win-
dow. We shall say that the systems are below (respectively above) the scaling window if
g(pn, n) → −∞ (respectively, g(pn, n) → ∞). These regimes correspond to subcritical,
respectively supercritical behavior. In particular we must have pn < pc eventually if {pn}
lies below the scaling window, and pn > pc eventually if {pn} lies above the scaling window.
Our theorems below give many details of the finite-size scaling behavior of the system in-
side, above, and below the scaling window. They confirm the folklore that within distances
of the order of the correlation length the system behaves critically. Specifically, we make
this statement precise for the behavior of the size of the large clusters. Unfortunately we
cannot derive this from the definition of correlation length only. One of our basic assump-
tions is that within the correlation length the point-to-box connectivity behaves as it does
at the critical point (see Postulate III).

In order to state these theorems, we again use the symbol �, this time for two sequences
an and bn of real numbers . We write

an � bn (3.6)

if

0 < lim inf
n→∞

an

bn
≤ lim sup

n→∞

an

bn
< ∞ . (3.7)

|Λn| denotes the number of sites in Λn; thus |Λn| = (2n)d. We remind the reader that
Postulates (I)–(VII) are verified for d = 2 in Section 6. Thus all the conclusions of our
theorems hold in the two-dimensional case.

Our first theorem characterizes the scaling window in terms of the expectation of the
largest cluster sizes.
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Theorem 3.1.

i) Suppose that Postulates (I)–(IV) hold. If {pn} is inside the scaling window, i.e., if
lim supn→∞ |g(pn, n)| < ∞, and i ∈ N, then

Epn{W (i)
Λn
} � s(n) . (3.8)

ii) Suppose that Postulates (I)–(IV) and (VII) hold. If {pn} is below the scaling window,
i.e., g(pn, n) → −∞, then

Epn{W (1)
Λn
} � s(L0(pn)) log

n

L0(pn)
. (3.9)

iii) Suppose that Postulates (II), (V) and (VI) hold. If {pn} is above the scaling window,
i.e., g(pn, n) →∞, then

Epn{W (1)
Λn
}

|Λn|P∞(pn)
→ 1 as n →∞ , (3.10)

and
Epn{W (2)

Λn
}

|Λn|P∞(pn)
→ 0 as n →∞ . (3.11)

The next theorem tells us about the distribution of the largest cluster sizes above the
scaling window.

Theorem 3.2. Suppose that Postulates (II), (V) and (VI) hold. Let {pn} be above the
scaling window. Then, as n →∞,

W
(1)
Λn

|Λn|P∞(pn)
→ 1 in probability . (3.12)

The next theorem gives information about the distribution of the cluster sizes inside the

scaling window. It shows that, in this regime, the tails of the distribution of W
(i)
Λn

/E{W (1)
Λn
}

decay, but the distribution does not go to a delta function. This should be contrasted
with the behavior (3.12), which shows that above the scaling window the distribution of

W
(1)
Λn

/E{W (1)
Λn
} does tend to a delta function.

Theorem 3.3. Suppose that Postulates (I)–(IV) hold. Let {pn} lie inside the scaling
window.

i) For all i < ∞,

lim inf
n→∞

Prpn

{
K−1 ≤

W
(i)
Λn

Epn{W (i)
Λn
}
≤ K

}
→ 1 as K →∞ . (3.13)
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ii) For each K < ∞ and all i < ∞,

lim sup
n→∞

Prpn

{ W
(i)
Λn

Epn{W (i)
Λn
}
≥ K−1

}
< 1 . (3.14)

We have one more theorem for p inside the scaling window. This concerns the number of
clusters on scales m < n. Before stating the theorem, we point out that, due to (3.8), the

“incipient infinite cluster” inside the scaling window is not unique, in the sense that W
(2)
Λn

is of the same scale as W
(1)
Λn

. This should be contrasted with the behavior of W
(2)
Λn

/W
(1)
Λn

above the scaling window (see (3.10) and (3.11)), a remnant of the uniqueness of the infinite
cluster above pc. The next theorem relates the non-uniqueness of the “incipient infinite
cluster” inside the scaling window to the property of scale invariance at pc. We remind

the reader that the quantities NΛn and ÑΛn are defined in equation (2.1) and (2.2).

Theorem 3.4. Suppose that Postulates (I)–(IV) hold. Let {pn} lie inside the scaling
window. Then there exist strictly positive, finite constants σ1, σ2, C1 and C2 (all depending
on the sequence {pn}, but not on n,m or k ) such that

C1

(
n

m

)d

≤ Epn

{
ÑΛn(s(m), s(km))

}
≤ Epn

{
NΛn(s(m), s(km))

}
≤ C2

(
n

m

)d

, (3.15)

provided m and k are strictly positive integers with k ≥ σ1 and σ2m ≤ n.

Our next theorem gives the behavior of the W
(i)
Λn

when p is below the scaling window.

Theorem 3.5. Suppose that Postulates (I)–(IV) and (VII) hold. Let {pn} lie below the
scaling window. Then, for each fixed i,

lim inf
n→∞

Prpn

{
K−1 ≤

W
(i)
Λn

s(L0(pn)) log n
L0(pn)

≤ K
}
→ 1 as K →∞. (3.16)

As mentioned before, we expect the Scaling Postulates to hold for all d ≤ dc = 6. The
next theorem states that they do hold if d = 2.

Theorem 3.6. The Postulates (I) — (VII) hold in d = 2.

Notice that in Theorem 3.3 ii) (in conjunction with (3.8)), we prove that inside the

scaling window the support of W
(i)
Λn

/s(n) is not bounded away from 0. We would expect
that this support is also unbounded above and that this should be easy to prove from
Postulate (VII), which states in a way that the support of |C(0)|/s(L0(p)) is unbounded.
However we have been unable to derive this from the Postulate (VII). Instead, in Section 7,
we consider an alternative postulate, Postulate (VII alt), which says roughly that clusters
of size of order s(L0(p)) and distance of order L0(p) have a reasonable chance of being
connected to each other. In that section, we prove the following theorem.
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Theorem 3.7.
i) Suppose Postulates (I) – (IV) and (VII alt) hold. Let {pn} be inside the scaling window
and let i ∈ N. Then

lim sup
n→∞

Prpn

{ W
(i)
Λn

Epn{W (i)
Λn
}
≤ K

}
< 1 for all K < ∞.

ii) Postulate (VII alt) holds in d = 2.

3.3 Comments on the Postulates and Further Remarks.

The interpretation of our postulates is as follows. The first tells us that the approach to
pc is critical – i.e., continuous or second-order – from above pc. The second postulate is the
assumption of equivalence of length scales above pc: namely, Widom scaling, dimensionally
relating the surface tension to the correlation length, together with the equivalence of the
finite-size scaling lengths at various values of x ≥ 1 and ε ∈ (0, ε0). This postulate is not
expected to hold above the critical dimension. In fact, it is not even believed that A0(p) →
∞ as p ↓ pc, because this would imply that the crossing probability RL,3L(pc) is bounded
away from 1 uniformly in L. But uniform boundedness of crossing probabilities implies
hyperscaling [BCKS99], which is not believed to hold above the upper critical dimension
dc. Postulate (III) tell us that the system within the correlation length behaves as it does
at threshold, at least as characterized by the behavior of the point-to-box connectivity
function. Postulate (IV) implies that the connectivity function has a lower bound of power
law behavior at threshold. Especially Postulates (III) and (IV) turn out to imply more
than is immediately apparent. Proposition 4.6 states that the cluster size distribution
for clusters with diameters up to the correlation length behaves like the corresponding
distribution at threshold. This proposition also gives us a hyperscaling relation between
the exponents δ and ρ, assuming that these exponents exist. We also obtain a scaling
relation for χ(p) in Proposition 4.8. Assuming power laws for χ and L0, and the relation
(4.24), the assumed bound on ρ1 in Postulate (IV) is equivalent to the very weak bound
γ > 0. But it is known ([AN84]) that χ(p) ≥ C1(pc − p)−1, p < pc, i.e., γ ≥ 1 if it exists.
In the light of this, Postulate (IV) seems very reasonable. The fifth and sixth postulates
give various exponent relations, again provided that these exponents exist. Finally, the
last postulate states that (in the subcritical region) s(L0(p)) is the natural scale for the
cluster size distribution and that on this scale the tail of the distribution does not decay
faster than exponentially. Proposition 4.8 provides an inequality in the opposite direction,
i.e., this decay is at least exponentially fast. See also Remark vi) below.

Remarks. i) Assuming the existence of the exponent ρ, see (1.9), Theorem 3.1 implies that
inside the scaling window the largest, second largest, third largest,..., clusters scale like
ndf , with df = d− 1/ρ, while below the scaling window the size of the largest cluster (and
hence of all clusters) goes to zero on the scale ndf .

ii) By Postulate (VI), and Lemma 4.5 below,

|Λn|P∞(pn)

s(n)
=

P∞(pn)

πn(pc)
� πL0(pn)(pc)

πn(pc)
→∞ (3.17)
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above the scaling window. Statement iii of Theorem 3.1 therefore implies that

Epn{W (1)
Λn
}

s(n)
→∞ as n →∞ (3.18)

above the scaling window.
iii) Assume that the critical exponent ν, see equation (1.7), exists, and that an equiv-

alence of the form (2.21) holds for p > pc as well. Choose p−n = sup{p < pc : L0(p) ≤ n}.
Then by (2.29), L0(p−n ) � n. Moreover,

L0(p−n ) ≈ ξ(p−n ) ≈ |p−n − pc|−ν (3.19)

so that pc − p−n ≈ n−1/ν . Finally, {pn} is below the scaling window if lim infn→∞ log(pc −
pn)/ log n > −1/ν. Similar statements hold to the right of pc with p+

n := inf{p > pc :
L0(p) ≤ n}, provided we make the further assumption that

lim sup
p↓pc

lim
δ↓0

L0(p− δ)

L0(p)
< ∞.

Thus under these various assumptions the scaling window has width n−1/ν .
It should be pointed out, though, that at present we do not have enough rigorous

knowledge of the behavior of L0(p) as a function of p to define the scaling window in
terms of the behavior of (pn − pc)/g±n for suitable sequences {g±n }. For instance, it is not
known that there exists a sequence {g−n } of positive numbers such that n/L0(pn) →∞ is
equivalent to (pc − pn)/g−n →∞ for pn < pc.

iv) It follows from (3.11) and Markov’s inequality that

W
(2)
Λn

|Λn|P∞(pn)
→ 0 in probability (3.20)

above the scaling window. Combined with (3.12) this implies that, as n →∞,

W
(2)
Λn

W
(1)
Λn

→ 0 in probability , (3.21)

provided g(pn, n) →∞.
v) In a similar way, it follows from (3.9) that, as n →∞,

W
(1)
Λn

s(n)
→ 0 in probability , (3.22)

provided g(pn, n) → −∞.
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4. Auxiliary results

In this section, which is split into two subsections, we state several useful auxiliary
results, most of which have been already proved in [BCKS99], which we will need for
our proofs in Section 5. The first subsection gives a fundamental moment estimate and
an exponential tail estimate for cluster sizes. These estimates show a close relationship
between the diameter and the size or volume of a large cluster. A cluster in Λn of diameter
small with respect to n usually has a volume which is small with respect to s(n). We believe
– but could not prove – that the converse also holds, namely that a cluster in Λn of diameter
of order n has with high probability a volume bigger than a small multiple of s(n). The
second subsection contains various important properties of the quantities πn, Ps, P≥s and
χ which are akin to the postulates.

Throughout, the basic parameter p is bounded away from 0 and 1, that is we restrict
p to ζ0 ≤ p ≤ 1 − ζ0 for some small strictly positive ζ0. No further mention of ζ0 will
be made. Many constants Ci appear in this paper. These are always finite and strictly
positive, even when this is not indicated. In different formulae the same symbol Ci may
denote different constants. All these constants depend on ε, d, ζ0 and the constants which
appear in the postulates. This dependence will not be indicated in the notation. I[A]
denotes the indicator function of the event A.

All results in this section are proven under Postulates (I) — (IV) or a subset of these. In
fact, none of the statements of this section rely directly on Postulates (I) and (II). Instead,
they use the following two assumptions, which are much weaker than Postulates (I) and
(II). The first is the assumption that the sponge crossing probabilities at pc are bounded
away from one, that is,

1−Rn,3n(pc) > ε, n ≥ 1, (4.1)

for some ε > 0, and the second is the assumption that (4.1) can be extended to p > pc,
provided n ≤ L0(p). Actually, we only need the slightly weaker assumption that there are
some constants ε > 0 and σ3 > 0 such that

1−Rn,3n(p) > ε for all p > pc and all n ≤ σ3L0(p) . (4.2)

To see that (4.1) follows from Postulates (I) and (II), we note that these postulates imply
that A0(p) → ∞ as p ↓ pc, which in turn implies the statement (4.1). The bound (4.2)
follows directly from Postulate (II), since, by the definition of A0(p),

1−Rr,3r(p) > ε for rd−1 < A0(p) and p > pc.

By the equivalence of A0(p) and L0(p)d−1 (see Postulate (II)) this means that there exists
some σ3 > 0 such that (4.2) holds for p > pc and all n ≤ σ3L0(p). We caution the reader
that above pc, the definition of the correlation length L0(p) in [BCKS99] is slightly different
from the definition here (compare (2.17) in [BCKS99] to our equation (2.24)). However,
as noted in Remark (vi) in [BCKS99], all results there remain valid for any definition of
L0(p) above pc that obeys Postulates (3.15) and (3.16) in [BCKS99]. While Postulate (3.16)
of [BCKS99] is identical to our Postulate (III), Postulate (3.15) in [BCKS99] is slightly
stronger than our assumption (4.2) — the former corresponds to (4.2) with σ3 = 1. Here,
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we need only one result which uses Postulate (3.15), namely Theorem 3.6 of [BCKS99],
which we cite to establish the last statement in our Proposition 4.8 below. However, a
careful reading of the proof of Theorem 3.6 in equations (5.32) – (5.35) of [BCKS99] shows
that actually only our weaker assumption (4.2) is needed.

4.1 General Moment Estimates.
The first lemma is a direct consequence of Postulate (IV). It is identical to Lemma 4.4

in [BCKS99].

Lemma 4.1. If Postulate (IV) holds, then for β > 1/ρ1 − 1 (and a fortiori for β >
d/2− 1 = (d− 2)/2) there exists constants C1 = C(β, d) and C2 = C2(d) such that

L∑

m=0

(m + 1)βπm(pc) ≤ C1L
β+1πL(pc) if L ≥ 1, (4.3)

and
L∑

m=0

(m + 1)d−1π2
m(pc) ≤ C2L

dπ2
L(pc) if L ≥ 1. (4.4)

The next lemma, which is identical to Lemma 6.1 in [BCKS99], gives a basic moment
estimate. For d = 2 such an estimate was already given in [Ngu88].

Lemma 4.2. Assume Postulate (IV) holds. Define

V (L) := number of sites in ΛL connected to ∂Λ2L. (4.5)

Then for some constants Ci, it holds that

EpV
k(L) ≤ C1k!

(
C2L

dπL(pc)
)k

(4.6)

provided p ≤ pc, k ≥ 1 and L ≥ 1. Consequently

Ep exp(tV (L)) ≤ C1[1− tC2L
dπL(pc)]−1 (4.7)

whenever p ≤ pc and 0 ≤ t < [C2L
dπL(pc)]−1. When Postulates (III) and (IV) hold, then

(4.6) and (4.7) remain valid for p > pc and L ≤ L0(p).

The next proposition, which is one of the main technical results of [BCKS99] (Proposi-
tion 6.3 in [BCKS99]), follows from the above moment estimate Lemma 4.2. It is crucial
for our proofs in Section 5.1 and 5.3.

Proposition 4.3.
i) Assume that Postulate (IV) holds. Then there exist constants Ci such that

Prp

{
W

(1)
Λn

≥ xs(L0(p))
}
≤ C1

(
n

L0(p)

)d

e−C2x (4.8)
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if x ≥ 0, n ≥ L0(p), and p < pc. In particular

Prp

{
W

(1)
Λn

≥ ys(L0(pn)) log

(
n

L0(pn)

)}
→ 0 (4.9)

if y > d/C2 and g(pn, p) → −∞.

ii) Assume that Postulate (IV) holds, and if p > pc, that also Postulate (III) holds. Then
there exist constants Ci such that

Prp

{
W

(1)
Λn

≥ xs(n)
}
≤ C1e

−C2x if x ≥ 0 and n ≤ L0(p). (4.10)

iii) Assume that Postulates (III) and (IV) hold. Then there exist constants Ci such that

Prp

{
W

(1)
Λn

≥ xs(L0(p))
}
≤ C1

(
n

L0(p)

)d

exp

[
−C2x + C3

(
n

L0(p)

)d
]

(4.11)

if x ≥ 0, n ≥ L0(p) and p > pc.

The next lemma summarize several additional results which follow from Postulate (IV).
To state it, we introduce the diameter of a cluster C as

diam(C) = max
v,w∈C

|v − w|∞. (4.12)

Lemma 4.4. Assume that Postulate (IV) holds. Then there exist constants Ci such that

Prp{diam(C(0)) ≥ xL0(p)} ≤ C1πL0(p)(p)e−C2x if x ≥ 2 and p < pc, (4.13)

and

Prp{∃ cluster C in Λn with diam(C) ≤ yn and |C| ≥ xs(n)} ≤ C1y
−de−C2x/yd/2

(4.14)

if x ≥ 0, 0 < y ≤ 1, p ≤ pc and 4/y ≤ n ≤ L0(p).

Proof. The bound (4.14) was proved in [BCKS99], see Remark (xiii) at the end of Section
6 in [BCKS99].

To prove (4.13) we note that for x ≥ 2,

Prp{diam(C(0)) ≥ xL0(p)} ≤ Prp{0 ↔ ∂BL0(p) and ∂BL0(p) is connected to at least

bx/2c distinct boxes BL0(p)(jL0(p)), j ∈ 2Z
d \ {0}}

= πL0(p)(p)Prp{∂BL0(p) is connected to at least

bx/2c distinct boxes BL0(p)(jL0(p)), j ∈ 2Z
d \ {0}}

(see (2.11) for the definition of Bn(v)). As in the proof of Proposition 6.3 (ii) of [BCKS99],
(more precisely, as in the proof of the bound (6.39) in [BCKS99]), the renormalized Peierls
argument of Theorem 5.1 in [Kes82] shows that for suitable constants C1, C2 the probability

Prp{∂BL0(p) is connected to at least

bx/2c distinct boxes BL0(p)(jL0(p)), j ∈ 2Z
d \ {0}}

is bounded above by C1e
−C2x. �
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4.2 Some Important Scaling Properties.

In this subsection we state a number of properties of the functions πn, Ps and χ(p),
most of which have already been proved in [BCKS99]. The first lemma provides an upper
bound for πm(pc)/πn(pc) which complements the lower bound of Postulate (IV).

5.1

Lemma 4.5. i) There are constants C1 < ∞ and C2 > 0 such that

πn(p)

πL0(p)(p)
≤ C1e

−C2n/L0(p) if p < pc and n ≥ L0(p) . (4.15)

ii) Assume that (4.1) holds for some ε > 0. Then

Prpc{∂Bn(0) ↔ ∂B3n(0)} ≤ 1− ε2d if n ≥ 1. (4.16)

iii) Assume that (4.1) holds for some ε > 0. Then there exist constants C1, ρ2 < ∞ such
that

πm(pc)

πn(pc)
≤ C1

(m

n

)−1/ρ2

if m ≥ n ≥ 1. (4.17)

Proof. Statements i) and iii) are the content of Theorem 3.8 of [BCKS99]. To prove ii),
we show that for any p ∈ [0, 1] and any n ≥ 1, one has

Prp{∂Bn(0) 6↔ ∂B3n(0)} ≥ [1−R2n,6n(p)]2d. (4.18)

Indeed, by the definition of Rn,m, the probability that there is no occupied crossing in the
1-direction of the block

[n, 3n]× [−3n, 3n]d−1 (4.19)

is equal to 1−R2n,6n. The cube B3n(0) is the union of Bn(0) and the block in (4.19) plus
2d−1 more blocks congruent to the block in (4.19). Let Fn be the event that none of these
2d blocks congruent to (4.19) has an occupied crossing in the short direction. Obviously,
the event Fn implies that ∂Bn(0) is not connected to ∂B3n(0), so that the probability on
the left hand side of (4.18) is bounded from below by the probability of Fn. Since Prp{Fn}
is at least [1−R2n,6n(p)]2d by the Harris–FKG inequality, the bound (4.18) follows. �

The next proposition summarizes the results of Theorem 3.7 and the first statement
of Theorem 3.4 in [BCKS99]. Assuming existence of the critical exponents ρ and δ, the
first statement implies the hyperscaling relation dρ = δ + 1. The second statement is the
analogue of Postulate (III) for P≥s(p).

Proposition 4.6. Assume that (4.1) holds for some ε > 0 and that Postulate (IV) holds.
Then there exists constants C1 > 0 and C2 < ∞ such that

C1πn(pc) ≤ P≥s(n)(pc) ≤ C2πn(pc) . (4.20)
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If Postulate (III) holds as well, then there exists constants C3 > 0, C4 < ∞ and 0 < σ0 =
σ0(ε, d) ≤ 1 such that

C3P≥s(n)(pc) ≤ P≥s(n)(p) ≤ C4P≥s(n)(pc) if n ≤ σ0L0(p) . (4.21)

Our last two propositions in this section summarizes the results of several theorems
in [BCKS99], namely Theorem 3.5, Theorem 3.6 and Theorem 3.9. Proposition 4.8 in
particular has two upper bounds complementing lower bounds in the postulates, and a
hyperscaling relation. Assuming the existence of the corresponding exponents, this relation
implies γ = (d− 2/ρ)ν.

Lemma 4.7. Assume Postulate (IV) holds. Then there exist constants 0 < Ci < ∞ such
that

P≥xs(L0(p))(p)

πL0(p)(pc)
≤ C1e

−C2x if p < pc and x ≥ 1. (4.22)

Proposition 4.8. Assume that (4.1) is valid for some ε > 0, and that Postulates (III)
and (IV) hold. Then there exist constants 0 < Ci < ∞ such that, with σ0 as in Proposition
4.6, it holds that

P≥xs(L0(p))(p)

P≥s(σ0L0(p))(p)
≤ C1 exp[−C2x] if x ≥ 1 and p < pc, (4.23)

and
C3L0(p)d[πL0(p)(pc)]2 ≤ χ(p) ≤ C4L0(p)d[πL0(p)(pc)]2, p < pc. (4.24)

If (4.1) and (4.2) are valid for some ε > 0 and some σ3 > 0, and if Postulate (IV) holds,
then there exists a constant C5 > 0 such that

C5L0(p)d[πL0(p)(pc)]2 ≤ χfin(p), p > pc. (4.25)

5. Proof of the Theorems, Given the Postulates

In this section, we prove our principal results, Theorems 3.1–3.5. The section is divided
into three subsections. These correspond to the proof of results within, above and below
the scaling window: Theorem 3.1 i), Theorem 3.3 and Theorem 3.4 in Section 5.1, Theorem
3.1 iii) and Theorem 3.2 in Section 5.2, and finally, Theorem 3.1 ii) and Theorem 3.5 in
Section 5.3.

5.1 Inside the Scaling Window.

We start this subsection with several lemmas and propositions concerning the numbers

NΛ(s1, s2) and ÑΛ(s1, s2) of clusters with size between s1 and s2, defined in (2.1) and
(2.2). Although some of these results are very similar to the theorems we are finally going
to prove, we give them as separate propositions, since this allows us to better keep track
of which postulates are needed in which step.
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At many points in this and the following subsections, we use the fact that, for an
arbitrary configuration ω, and number α, it holds that

∑

i≥1

[
W

(i)
Λ

]α
=

∑

v∈Λ

∑

s≥1

sα−1I[|CΛ(v)| = s]. (5.1)

This is obvious from the fact that in the right hand side, the sum of I[|CΛ(w)| = s] over
all point w in CΛ(v) equals sI[|CΛ(v)| = s]. Taking expectations of (5.1) gives

∑

i≥1

Ep

{[
W

(i)
Λ

]α}
=

∑

v∈Λ

∑

s≥1

sα−1Prp {|CΛ(v)| = s} . (5.2)

This argument for α = 1 will be used in the proof of Proposition 5.5, but even more often
will we use the special case α = 0, which says that the number of clusters of size s can be
rewritten as ∣∣{i | W (i)

Λ = s
}∣∣ =

∑

v∈Λ

1

s
I[|CΛ(v)| = s]. (5.3)

These formulae and some variants form a basic relationship which allows us to relate

estimates on the distributions of W
(i)
Λ and |C(0)|. We use the following consequence of

(5.3):

Ep

{
NΛ(s1, s2)

}
=

s2∑

s=s1

∑

v∈Λ

1

s
Prp

{
|CΛ(v)| = s

}
. (5.4)

In a similar way, we have

Ep

{
ÑΛ(s1, s2)

}
=

s2∑

s=s1

∑

v∈Λ

1

s
Prp

{
|CΛ(v)| = s, v 6↔ ∂Λ

}
. (5.5)

We also need the corresponding representation for the expectation of Ñ2
Λ(s1, s2):

Ep

{
Ñ2

Λ(s1, s2)
}

=
∑

s1≤s≤s2
s1≤s̃≤s2

∑

v,w∈Λ

1

ss̃
Prp

{
|CΛ(v)| = s, v 6↔ ∂Λ, |CΛ(w)| = s̃, w 6↔ ∂Λ

}
.

(5.6)

The next two lemmas will be useful in proving lower bounds for W
(i)
Λ .

Proposition 5.1. Assume that (4.1) holds for some ε > 0 and that Postulates (III) and
(IV) hold. Then there exist constants 0 < Ci < ∞ and 1 ≤ σ1 < ∞ such that

C1

(
n

m

)d

≤ Ep

{
ÑΛn(s(m), s(km))

}
≤ Ep

{
NΛn(s(m), s(km))

}
≤ C2

(
n

m

)d

(5.7)

provided σ1m ≤ min{L0(p), n} and k ≥ σ1.
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Proof. For brevity we write Λ instead of Λn. We start with the upper bound. Using the
representation (5.4) and bounding the factor 1/s in (5.4) by 1/s(m), we get

Ep

{
NΛ(s(m), s(km))

}
≤ 1

s(m)

∑

v∈Λ

∑

s≥s(m)

Prp

{
|CΛ(v)| = s

}

=
1

s(m)

∑

v∈Λ

Prp

{
|CΛ(v)| ≥ s(m)

}

≤ (2n)d

s(m)
P≥s(m)(p) , (5.8)

where in the last step we used the definition (2.4) of P≥s(m)(p) and the fact that |CΛ(v)| ≤
|C(v)|. Without loss of generality we shall take σ1 ≥ 1/σ0 ≥ 1, where σ0 is the constant
of Proposition 4.6. Then σ1m ≤ L0(p) implies m ≤ σ0L0(p), and we may use Proposition
4.6 to bound the right hand side of (5.8). We get for some finite constant C2

(2n)d

s(m)
P≥s(m)(p) ≤ C2

(2n)d

s(m)
πm(pc) = C2

(
n

m

)d

. (5.9)

The estimates (5.8) and (5.9) imply the upper bound.

To prove the lower bound, we use that Postulate (IV) implies that

s(`)

s(`′)
≥ D3

( `

`′

)d/2

if ` ≥ `′ ≥ 1, (5.10)

so that in particular s(`) ≥ s(`′) whenever `/`′ ≥ D
−2/d
3 . We conclude that for any choice

of k̃ ≥ 1 we can find a σ1 ≥ k̃(1 + 1/σ0) such that s(km) ≥ s(k̃m) for all k ≥ σ1. It then
follows from (5.5) that for k ≥ σ1

Ep

{
ÑΛ(s(m), s(km))

}
≥ Ep

{
ÑΛ(s(m), s(k̃m)− 1)

}

≥
s(k̃m)−1∑

s=s(m)

∑

v∈Λ n
2

1

s
Prp

{
|CΛ(v)| = s, x 6↔ ∂Λ

}

=

s(k̃m)−1∑

s=s(m)

∑

v∈Λ n
2

1

s
Prp

{
|C(v)| = s, v 6↔ ∂Λ

}
, (5.11)

where in the second step we bounded the sum over Λ = Λn from below by a sum over Λ n
2

.
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Bounding the factor 1/s in (5.11) from below by 1/s(k̃m), we get

Ep

{
ÑΛ(s(m), s(km))

}

≥ 1

s(k̃m)

∑

v∈Λ n
2

Prp

{
s(m) ≤ |C(v)| < s(k̃m), v 6↔ ∂Λ

}

=
1

s(k̃m)

∑

v∈Λ n
2

[
Prp

{
s(m) ≤ |C(v)| < s(k̃m)

}

− Prp

{
s(m) ≤ |C(v)| < s(k̃m), v ↔ ∂Λ

}]

≥ 1

s(k̃m)

∑

v∈Λ n
2

[
Prp

{
s(m) ≤ |C(v)| < s(k̃m)

}
− πn/2(p)

]

≥ (n− 2)d

s(k̃m)

[
P≥s(m)(p)− P≥s(k̃m)(p)− πn/2(p)

]
. (5.12)

Since n ≥ σ1m ≥ k̃m by the assumption σ1m ≤ min{L0(p), n}, we obtain

Ep

{
ÑΛ(s(m), s(km))

}
≥ (n− 2)d

s(k̃m)

[
P≥s(m)(p)− P≥s(k̃m)(p)− πk̃m/2(p)

]
. (5.13)

Again by the assumption σ1m ≤ min{L0(p), n}, we have m ≤ k̃m ≤ (k̃/σ1)L0(p) ≤
σ0L0(p). We therefore may use Proposition 4.6 in conjunction with Postulate (III) and
the bound πk̃m(pc) ≤ πk̃m/2(pc) to conclude that

Ep

{
ÑΛ(s(m), s(km))

}
≥ (n− 2)d

s(k̃m)

[
C3πm(pc)− C4πk̃m/2(pc)

]
, (5.14)

for suitable constants C3, C4 ∈ (0,∞) which depend only on the constants in Proposition

4.6, but not on the choice of k̃. Finally we appeal to Lemma 4.5 iii) to fix k̃ so large that

C4πk̃m/2(pc) ≤ 1
2C3πm(pc). Here k̃ depends only on C4/C3 and the constants in Lemma

4.5 iii); also k̃ determines the value to take for σ1. We then get

Ep

{
ÑΛ(s(m), s(km))

}
≥ (n− 2)d

s(k̃m)

1
2C3πm(pc). (5.15)

From s(k̃m) ≤ k̃ds(m) we then conclude that for n ≥ 4

Ep

{
ÑΛ(s(m), s(km))

}
≥ C1

(2n)d

s(m)
πm(pc) = C1

(
n

m

)d

, (5.16)

where C1 = 2−2d−1k̃−dC3. This proves the lower bound when n ≥ 4. If we choose σ1 large
enough, then 1 ≤ n < 4 is ruled out by σ1 ≤ σ1m ≤ n. �
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Proposition 5.2. Assume that (4.1) holds for some ε > 0 and that Postulates (III) and
(IV) hold. Then there is a constant C3 < ∞, such that

Var
{
ÑΛn(s(m), s(km))

}

Ep

{
ÑΛ(s(m), s(km))

}2 ≤ C3 , (5.17)

provided σ1m ≤ min{L0(p), n}, k ≥ σ1. Here σ1 is the constant of Proposition 5.1.

Proof. Again we write Λ for Λn. We first will prove that for arbitrary s1, s2 ∈ N, s1 ≤ s2,
and p ∈ (0, 1),

Ep

{
[ÑΛ(s1, s2)]2

}
≤ Ep

{
ÑΛ(s1, s2)

} [
1 +

(2n)d

s1
P≥s1(p)

]
. (5.18)

We need some notation. We denote the set of bonds with both endpoints in Λ by B(Λ),

and the set of bonds with both endpoints in Λ \ ∂Λ by B̃(Λ). Let B be a subset of B(Λ).
With a slight abuse of notation, we say that v is a point in B if v is an endpoint of one of
the bonds in B. We write B is occupied (vacant) for the event that all bonds in B ⊂ B(Λ)
are occupied (respectively, vacant). Given v ∈ Λ, we denote the set of all connected subsets

B ⊂ B̃(Λ) that contain the point v by Bv(Λ). Again with a slight abuse of notation, we
denote the number of points in a cluster B ⊂ Bv(Λ) by |B|. Finally, we write ∂?

ΛB for the
set of all bonds b ∈ B(Λ) \B which share an endpoint with a bond b′ ∈ B.

Using equation (5.6), we rewrite the left-hand side of (5.18) as

Ep

{
ÑΛ(s1, s2)2

}

=
∑

v,w∈Λ

∑

B∈Bv(Λ)
s1≤|B|≤s2

∑

B̃∈Bw(Λ)

s1≤|B̃|≤s2

Prp

{
B ∪ B̃ is occupied, ∂?

ΛB ∪ ∂?
ΛB̃ is vacant

}

|B| |B̃|
.
(5.19)

Next we observe that the event on the right-hand side cannot occur if B ↔ B̃ and B 6= B̃

in Λ, because in this case some occupied bond in B ∪ B̃∪ (a suitable path from B to B̃)

also lies in ∂?
ΛB∪∂?

ΛB̃ . As a consequence, the right-hand side decomposes into two terms:
the term

∑

v,w∈Λ

∑

B∈Bv(Λ)∩Bw(Λ)
s1≤|B|≤s2

Prp {B is occupied, ∂?
ΛB is vacant}

|B|2

=
∑

v∈Λ

∑

B∈Bv(Λ)
s1≤|B|≤s2

Prp {B is occupied, ∂?
ΛB is vacant}

|B|

= Ep

{
ÑΛ(s1, s2)

}
(5.20)
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and the term

∑

v,w∈Λ

∑

B∈Bv(Λ)
s1≤|B|≤s2

∑

B̃∈Bw(Λ)

s1≤|B̃|≤s2,B̃ 6↔B

Prp{B ∪ B̃ is occupied, ∂?
ΛB ∪ ∂?

ΛB̃ is vacant}
|B| |B̃|

(5.21)

By using the second decoupling inequality of [BC96], or, alternatively, the van den Berg-
Kesten inequality [BK85] we see that the last sum equals

∑

v,w∈Λ

∑

B∈Bv(Λ)\Bw(Λ)
s1≤|B|≤s2

∑

B̃∈Bw(Λ)

s1≤|B̃|≤s2

Prp{B ∪ B̃ is occupied, ∂?
ΛB ∪ ∂?

ΛB̃ is vacant}
|B| |B̃|

≤
∑

v,w∈Λ

1

s1

∑

B∈Bv(Λ)\Bw(Λ)
s1≤|B|≤s2

Prp{B is occupied, ∂?
ΛB is vacant, |CΛ(w)| ≥ s1}
|B|

≤
∑

v,w∈Λ

1

s1

∑

B∈Bv(Λ)\Bw(Λ)
s1≤|B|≤s2

Prp{B is occupied, ∂?
ΛB is vacant} Prp{|CΛ(w)| ≥ s1}

|B|

≤ Ep

{
ÑΛ(s1, s2)

} ∑

w∈Λ

Prp{|CΛ(w)| ≥ s1}
s1

. (5.22)

Combining the two terms (5.20) and (5.22), and observing that Prp {|CΛ(w)| ≥ s1} ≤
Prp{|C(w)| ≥ s1}, we obtain (5.18). The bound (5.17) now follows from (5.18), (5.9) and
the lower bound in (5.7). �

The next proposition is a consequence of Proposition 5,1, Proposition 5.2 and the fact
that

ÑΛ(s(m), s(km)) ≥ ÑΛ1(s(m), s(km)) + ÑΛ2(s(m), s(km)),

provided Λ1 ⊂ Λ and Λ2 = Λ \ Λ1.

Proposition 5.3. Assume that (4.1) holds for some ε > 0 and that Postulates (III) and
(IV) hold. Then there are constants C4, C5 > 0 such that

Prp

{
ÑΛn(s(m), s(km)) ≥ C4

(
n

m

)d}
≥ 1− C5

(
m

n

)d

(5.23)

provided σ1m ≤ min{L0(p), n} and k ≥ σ1. Here σ1 is the constant of Proposition 5.1.

Proof. Let k̃ = bn/dσ1mec be the largest integer less than or equal to n/dσ1me, and

ñ = k̃dσ1me. Note that then σ1m ≤ ñ ≤ n. Since ÑΛ(s(m), s(km)) is increasing in Λ, i.e.,

ÑΛ(s(m), s(km)) ≥ ÑΛ̃(s(m), s(km)) if Λ̃ ⊂ Λ , (5.24)
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we get that for Λ = Λn, Λ̃ = Λñ,

Prp

{
ÑΛ(s(m), s(km)) ≥ C4

(
n

m

)d}
≥ Prp

{
ÑΛ̃(s(m), s(km)) ≥ C4

(
n

m

)d}
. (5.25)

Next we note that Λ̃ contains k̃d disjoint subvolumes Λ(i) of size (2dσ1me)d, and introduce
the random variable

X =

k̃d∑

i=1

ÑΛ(i)(s(m), s(km)) . (5.26)

Since X ≤ ÑΛ̃(s(m), s(km)) ≤ ÑΛ(s(m), s(km)), we have

Prp

{
ÑΛ(s(m), s(km)) ≥ C4

(
n

m

)d}
≥ Prp

{
X ≥ C4

(
n

m

)d}
. (5.27)

Observing that the random variables ÑΛ(i)(s(m), s(km)) in (5.26) are i.i.d. and using
Proposition 5.2, we have

VarX

(EpX)2
=

1

k̃d

Var{ÑΛ(1)(s(m), s(km))}
Ep{ÑΛ(1)(s(m), s(km))}2

≤ C6

k̃d
. (5.28)

Noting that

Prp

{
X ≤ 1

2EpX
}
≤ Prp

{
|X − EpX|2 ≥ 1

4 (EpX)2
}
≤ 4VarX

(EpX)2
, (5.29)

we find that

Prp

{
X ≥ 1

2EpX
}
≥ 1− 4C6

k̃d
≥ 1− C5

(
m

n

)d

, (5.30)

where C5 = (4σ1)d4C6 (note that 1/k̃ = bn/dσ1mec−1 ≤ 4σ1m/n). Using finally the lower
bound

EpX = k̃dEp

{
ÑΛ(1)(s(m), s(km))

}
≥ C1(k̃σ1)d = C1

(
ñ

m

)d

,

which comes from (5.7), we obtain the desired bound (5.23), provided C4 > 0 is chosen
small enough. �

Proposition 5.4. Suppose that Postulates (III) and (IV) hold, and that (4.1) and (4.2)
are valid for some ε > 0 and some σ3 > 0. Then there are strictly positive constants C1

and σ4 such that

Prp

{
W

(1)
Λn

≤ s(m)
}
≥ C

1+(n/m)d

1 , (5.31)

provided m ≤ σ4L0(p).

Proof. It follows from (4.10) and (5.10) that there exists a constant σ4 > 0 such that

Prp

{
W

(1)
Λ3r

≤ s(m)
}
≥ 1

2
if r ≤ σ4m and r ≤ 1

3
L0(p). (5.32)
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In addition, it follows (4.18) that

Prp {v 6↔ ∂Λ3r for all v ∈ Λr} ≥ [1−Rr,3r(p)]2d. (5.33)

For p ≤ pc,

1−Rr,3r(p) ≥ 1−Rr,3r(pc) > ε

(see (4.1)). We still have 1 − Rr,3r(p) > ε for p > pc and r ≤ σ3L0(p), by virtue of (4.2).
Consequently, as in (4.16),

Prp {v 6↔ ∂B3r for all v ∈ Λr} ≥ ε2d if r ≤ σ3L0(p). (5.34)

Using the Harris-FKG inequality we obtain from (5.32) and (5.34) that

Prp

{
|C(v)| ≤ s(m) for all v ∈ Λr

}

≥ Prp

{
W

(1)
3r ≤ s(m) and v 6↔ ∂B3r for all v ∈ Λr

}

≥ 1

2
ε2d if r ≤ (σ3 ∧ 1/3)L0(p) ∧ σ4m. (5.35)

We are now ready to prove (5.31) for arbitrary n. We first estimate

Prp

{
W

(1)
Λ ≤ s(m)

}
≥ Prp

{
|C(v)| ≤ s(m) for all v ∈ Λ

}
(5.36)

and note that the right-hand side of (5.36) is decreasing in Λ. Let m ≤ σ4L0(p) and choose
0 < σ5 ≤ σ4 such that σ4σ5 ≤ (σ3 ∧ 1/3). Then choose an integer r ≥ 1 in [σ5m/2, σ5m];
if this is not possible, because σ5m < 1, then take r = 1. For this choice of r

Prp {|C(v)| ≤ s(m) for all v ∈ Λr} ≥ C1 > 0

for some constant C1, by virtue of (5.35). If n < r, then this already implies (5.31).
Otherwise, choose an integer k such that n ≤ ñ := kr ≤ 2n. We then get

Prp

{
W

(1)
Λn

≤ s(m)
}
≥ Prp

{ ⋂

v∈Λ
ñ

{
|C(v)| ≤ s(m)

}}
. (5.37)

Decomposing Λñ into kd subvolumes Λ(i) of diameter 2r, and using the Harris-FKG in-
equality for the intersection of the events ∩v∈Λ(i){|C(v)| ≤ s(m)}, we obtain

Prp

{
W

(1)
Λn

≤ s(m)
}
≥

[
Prp

{ ⋂

v∈Λr

{|C(v)| ≤ s(m)}
}]kd

≥ Ckd

1 . (5.38)

The proof is concluded by observing that k ≤ 2n/r ≤ 4n/(σ5m). �
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Proof of Theorem 3.1 i). For this proof we only use (4.1) and Postulates (III) and (IV).
As before, abbreviate Λn to Λ. Since lim supn→∞ |g(pn, n)| < ∞, we have

n ≤ λL0(pn) for all n ≥ n1 , (5.39)

where λ and n1 are finite constants depending on the sequence {pn}.
The fact that Ep

{
W

(1)
Λ

}
/s(n) is bounded above is immediate from Proposition 4.3. If

n ≤ L0(pn) then (4.10) suffices. If L0(pn) ≤ n ≤ λL0(pn), then we use (4.8) or (4.11) plus
the fact that s(n) ≥ D3s(L0(pn)) (by (5.10)). Note that this proof only requires Postulates
(III) and (IV), and does not rely on the assumptions (4.1).

In order to complete the proof, we need lower bounds on Ep

{
W

(i)
Λ

}
. To this end, we

first note that Proposition 5.3 implies that for any δ > 0 there are constants 1 ≤ σ(i) =
σ(i)(λ, δ) < ∞ such that

Prp

{
W

(i)
Λn

≥ s(m)
}
≥ 1− δ (5.40)

provided σ(i)m ≤ n ≤ λL0(p). Indeed, choose σ(i)(λ, δ) ≥ σ1 (with the constant σ1 as in
Proposition 5.1) so large that i) σ(i)m ≤ λL0(p) implies σ1m ≤ L0(p), ii) C4(σ(i))d ≥ i, and
iii) C5(σ(i))−d ≤ δ, where C4, C5 are as in Proposition 5.3. Then for σ(i)m ≤ n ≤ λL0(p),
we get

Prp

{
W

(i)
Λ ≥ s(m)

}
= Prp

{
NΛ(s(m),∞) ≥ i

}
≥ Prp

{
ÑΛ(s(m), s(σ1m)) ≥ i

}

≥ Prp

{
ÑΛ(s(m), s(σ1m)) ≥ C4

( n

m

)d}
, (5.41)

where we used that σ(i)m ≤ n implies C4(n/m)d ≥ i in the last step. Combined with
Proposition 5.3 and the fact that the assumption σ(i)m ≤ n implies C5(m/n)d ≤ δ by our
choice of σ(i), the bound (5.41) implies (5.40).

In order to prove a lower bound on lim inf
n→∞

Epn{W (i)
Λn
}, we now assume that n ≥ n

(i)
1 :=

max{n1, σ
(i)}, where n1 and λ are the constants from (5.39), and σ(i) = σ(i)(λ, 1

2 ). Choos-

ing m = bn/σ(i)c, we have m ≥ 1 and σ(i)m ≤ n ≤ λL0(pn). Thus, by (5.40)

Epn

{
W

(i)
Λn

}
≥ 1

2s(m) . (5.42)

Since m ≤ n/σ(i) ≤ m + 1 ≤ 2m by the definition of m, we have

s(n)/s(m) ≤ (n/m)d ≤ (2σ(i))d, (5.43)

and hence s(m) ≥ s(n)(2σ(i))−d. Thus, with C
(i)
1 (λ) = 1

2 (2σ(i))−d, we have

Epn

{
W

(i)
Λn

}
≥ C

(i)
1 (λ)s(n) . (5.44)

This completes the proof of the lower bound. �
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Proof of Theorem 3.3. For this proof use (4.1), (4.2) and Postulates (III) and (IV). We

start with a lower bound on Prpn

{
W

(i)
Λn

≥ K−1Epn(W
(i)
Λn

)
}

. We again have (5.39) for some
λ and n1, and by Theorem 3.1 i) (whose proof only used (4.1) and Postulates (III) and

(IV)) there exists some constant C
(i)
2 , which depends on the sequence {pn}, such that

Epn

{
W

(i)
Λn

}
≤ C

(i)
2 s(n).

Thus if m is such that
s(m) ≥ K−1C

(i)
2 s(n), (5.45)

then
Prpn

{
W

(i)
Λn

≥ K−1Epn

{
W

(i)
Λn

}}
≥ Prpn

{
W

(i)
Λn

≥ s(m)
}

. (5.46)

We now choose m = bn/σ(i)(λ, δ)c, where the σ(i) are the constants introduced above
(5.40). Then (5.45) will be satisfied for large enough K (by (5.43)). Since n ≥ n1 and
n ≥ σ(i)(λ, δ) implies m ≥ 1 and mσ(i)(λ, δ) ≤ n ≤ λL0(pn), we now can use (5.40) to
conclude that

lim inf
n→∞

Prpn

{
W

(i)
Λn

≥ K−1Epn

{
W

(i)
Λn

}}
≥ 1− δ , (5.47)

provided K is large enough. Together with Markov’s inequality,

Prpn

{
W

(i)
Λn

≥ KEpn

{
W

(i)
Λn

}}
≤ K−1 , (5.48)

(5.47) implies Theorem 3.3 i).
In order to complete the proof of Theorem 3.3, we choose m(n) as the maximal m ≤

(σ4/λ ∧ 1)n such that K−1C
(i)
1 (λ)s(n) > s(m), where σ4 is as in Proposition 5.4, λ as in

(5.39) and C
(i)
1 as in (5.44). Then, by (5.44) and W

(i)
Λ ≤ W

(1)
Λ , we have

lim sup
n→∞

Prpn

{
W

(i)
Λn

≥ K−1Epn

{
W

(i)
Λn

}}
≤ lim sup

n→∞
Prpn

{
W

(i)
Λn

≥ K−1C
(i)
1 (λ)s(n)

}

≤ lim sup
n→∞

Prpn

{
W

(1)
Λn

≥ K−1C
(i)
1 (λ)s(n)

}

≤ lim sup
n→∞

[
1− Prpn

{
W

(1)
Λn

≤ s(m(n))
}]

.
(5.49)

Since n/m(n) is bounded above by virtue of Postulate (IV) (see (5.10)), Proposition 5.4
shows that the right-hand side of (5.49) is bounded away from 1. This proves Theorem
3.3 ii). �

Proof of Theorem 3.4. For this proof we only use (4.1), and Postulates (III) and (IV).
Theorem 3.4 follows immediately from Proposition 5.1. Indeed, let λ and n1 be the con-
stants from (5.39), and C1, C2 and σ1 be those from Proposition 5.1. Choose σ2 ≥
max{σ1, λσ1, n1}. We note that then m ≥ 1 and σ2m ≤ n imply n ≥ n1, and hence
n ≤ λL0(pn) and σ1m ≤ L0(pn). The conditions of Theorem 3.4 therefore imply those
of Proposition 5.1, proving that Theorem 3.4 under the assumption that (4.1), as well as
Postulate (III) and (IV) hold. �
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5.2 Above the Scaling Window.

In this subsection, we prove Theorem 3.1 iii) and Theorem 3.2. To this end, we consider

separately those clusters C(i)
Λ which intersect the infinite cluster C∞ and those which do

not. We denote the clusters intersecting C∞ by C(1)
Λ,∞, C(2)

Λ,∞, · · · C(k)
Λ,∞, ordering them again

from largest to smallest size, with lexicographic order between clusters of the same size.

In the same way, C(1)
Λ,fin, C(2)

Λ,fin, · · · C(k)
Λ,fin denote the clusters in Λ which do not intersect the

infinite cluster C∞. Finally, W
(i)
Λ,fin = |C(i)

Λ,fin| and W
(i)
Λ,∞ = |C(i)

Λ,∞| denote the sizes of the
ith largest clusters in the corresponding classes.

Proposition 5.5. Suppose that Postulates (V) and (VI) hold. Then there exists a constant
C1 < ∞ such that

Ep{W (1)
Λn,fin}

|Λn|P∞(p)
≤ C1

(L0(p)

n

)d/2

if P > pc, (5.50)

so that in particular

Epn{W (1)
Λn,fin}

|Λn|P∞(pn)
→ 0 as n →∞ (5.51)

whenever pn > pc is a sequence of densities such that n/L0(pn) →∞ as n →∞.

Proof. Let t(n) = (2nL0(p))d/2πL0(p)(pc). Analogously to (5.2) we have

Ep{W (1)
Λn,fin} ≤ t(n) + Ep{W (1)

Λn,fin; W
(1)
Λn,fin ≥ t(n)}

≤ t(n) +
∑

v∈Λn

Prp{|CΛn(v)| = W
(1)
Λn,fin, |CΛn(v)| ≥ t(n), v 6↔ ∞}

≤ t(n) + |Λn|Prp{|C(0)| ≥ t(n),0 6↔ ∞}. (5.52)

Using Markov’s inequality and Postulate (V) we obtain

Ep{W (1)
Λn,fin} ≤ t(n) +

(2n)d

t(n)
χfin(p)

≤ t(n) + D4
(2n)d

t(n)
Ld

0(p)π2
L0(p)(pc)

= t(n)
(
1 + D4

)
. (5.53)

Observing that t(n)/|Λn|P∞(p) � (L0(p)/n)d/2 by Postulate (VI), we obtain (5.50) and
hence (5.51). �

In order to estimate the size of the clusters C(1)
Λ,∞, C(2)

Λ,∞, · · · C(k)
Λ,∞, we make extensive use

of the facts that ∑

i≥1

W
(i)
Λ,∞ = |Λn ∩ C∞| =

∑

v∈Λn

I[v ↔∞] (5.54)

and
Epn{|Λn ∩ C∞|} =

∑

v∈Λn

Prpn{v ↔∞} = |Λn|P∞(pn) . (5.55)
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Lemma 5.6. Suppose that Postulates (V) and (VI) hold. Let pn > pc be a sequence of
densities such that n/L0(pn) →∞ as n →∞. Then as n →∞

|Λn ∩ C∞|
|Λn|P∞(pn)

→ 1 in probability . (5.56)

Proof. We bound the variance of |Λn ∩ C∞| by

Varpn{|Λn ∩ C∞|} =
∑

v,w∈Λn

Covpn(v ↔∞; w ↔∞)

≤
∑

v∈Λn
w∈Zd

Covpn(v ↔∞; w ↔∞) = |Λn|χcov(pn) . (5.57)

Note that we used here the positivity of Covpn(v ↔; w ↔∞); this follows from the Harris–
FKG inequality. Combined with (5.55) and Postulates (V) and (VI), we obtain that for a
suitable constant C1 < ∞

Varpn{|Λn ∩ C∞|}
E2

pn
{|Λn ∩ C∞|}

≤ C1L0(pn)d

|Λn|
= C1

(
L0(pn)

2n

)d

. (5.58)

By our assumption on pn, the right-hand side goes to zero as n →∞. This implies (5.56).
�

Proposition 5.7. Suppose that Postulates (II), (V) and (VI) hold. Let pn > pc be a
sequence of densities such that n/L0(pn) →∞ as n →∞. Then, as n →∞,

W
(1)
Λn,∞

|Λn|P∞(pn)
→ 1 in probability . (5.59)

Proof. We have to show that for all δ > 0

Prpn{W (1)
Λn,∞ ≥ (1− δ)|Λn|P∞(pn)} → 1 as n →∞ (5.60)

and

Prpn{W (1)
Λn,∞ ≤ (1 + δ)|Λn|P∞(pn)} → 1 as n →∞. (5.61)

Since W
(1)
Λn,∞ ≤ |Λn ∩ C∞| by (5.54), the result (5.61) follows from (5.56). We are there-

fore left with proving (5.60). Again by (5.56), this amounts to showing that with high

probability, the main contribution to the left-hand side of (5.54) comes from W
(1)
Λn,∞.

We consider suitable volumes Λm ⊂ Λn with

lim
n→∞

|Λm|/|Λn| > 1− δ . (5.62)
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Since
|C∞ ∩ Λm|
|Λm|P∞(pn)

→ 1 in Prpn -probability (5.63)

as n →∞ (the proof is identical to the proof of Lemma 5.6), we conclude that

Prpn{|C∞ ∩ Λm| ≥ (1− δ)|Λn|P∞(pn)} → 1 as n →∞ . (5.64)

We shall next show that for a suitable choice of Λm

Ppn

{
#{i | C(i)

Λn,∞ ∩ Λm 6= ∅} ≥ 2
}
→ 0 as n →∞ . (5.65)

If #{i | C(i)
Λn,∞ ∩ Λm 6= ∅} = 1, then all pieces of C∞ ∩ Λm are connected in Λn and

|C(1)
Λn,∞| ≥ |C∞ ∩ Λm|,

so that (5.65) together with (5.64) will prove the desired result (5.60).
In order to show that Λm can be chosen so that (5.62) and (5.65) hold, we define, for

0 < α < 1/6 and n ≥ 1/α,

x =
2

α
− 3, L(n) = bαnc, M(n) = bxL(n)c and m =

M(n) + 1

2
. (5.66)

Note that with this choice m < n for all n ≥ 1/α, and

lim
n→∞

|Λm|
|Λn|

=

(
1− 3α

2

)d

. (5.67)

A sufficiently small choice of α therefore ensures the condition (5.62). Note also that Λm

is isomorphic to [0,M(n)]d, while Λn is isomorphic to [−L̃(n),M(n) + L̃(n)]d, where

L̃(n) := n−m ≥ L(n) . (5.68)

Using these observations and recalling the definition (2.23) of Sfin
L̃,M

(pn), we then bound

Ppn{#{i | C(i)
Λn,∞ ∩ Λm 6= ∅} ≥ 2} ≤ Sfin

L̃(n),M(n)
(pn) ≤ Sfin

L(n),M(n)(pn) , (5.69)

where in the last step we have used that Sfin
L,M (pn) is decreasing in L.

In order to complete the proof, we use that for any ε̃ > 0,

L0(p, ε̃; x) � L0(p) = L0(p, ε; 1) (5.70)

by Postulate (II). Our assumption n/L0(pn) → ∞ therefore implies that L0(pn, ε̃; x)/n,
and hence L0(pn, ε̃, x)/L(n), goes to zero as n → ∞. Since this is true for all ε̃ > 0, we
can use the definition (2.25) of L0(pn, ε̃, x) to conclude that

Sfin
L(n),M(n)(pn) = Sfin

L(n),bxL(n)c(pn) → 0 as n →∞ . (5.71)
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Equations (5.71) and (5.69) imply (5.65), and hence the proposition. �

Proof of Theorem 3.1 iii). For this proof use Postulates (II) and (V) and (VI). Let pn > pc

be such that n/L0(pn) →∞. We may then use (5.59) to conclude that that

lim inf
n→∞

Epn{W (1)
Λn,∞}

|Λn|P∞(pn)
≥ 1 . (5.72)

Since
Epn{W (1)

Λn,∞} ≤
∑

i≥1

Epn{W (i)
Λn,∞} = |Λn|P∞(pn) (5.73)

for all n, it follows that

lim
n→∞

Epn{W (1)
Λn,∞}

|Λn|P∞(pn)
= 1 . (5.74)

Combined with (5.51) and W
(1)
Λn,∞ ≤ W

(1)
Λn

≤ W
(1)
Λn,∞ + W

(1)
Λn,fin, this proves (3.10).

In order to prove (3.11), we note that (5.74) together with (5.54) and (5.72) imply that

Epn{W (2)
Λn,∞}

|Λn|P∞(pn)
≤ 1−

Epn{W (1)
Λn,∞}

|Λn|P∞(pn)
→ 0 (5.75)

as n →∞. Combined with (5.51), this implies (3.11). �

Proof of Theorem 3.2. We again use Postulates (II) and (V) and (VI). As before, by
assumption, pn > pc for all sufficiently large n, and n/L0(pn) → ∞. Using Markov’s
inequality and Proposition 5.5, we therefore get

W
(1)
Λn,fin

|Λn|P∞(pn)
→ 0 in probability . (5.76)

Combined with Proposition 5.7, this implies Theorem 3.2. �

5.3 Below the Scaling Window.

We start with a lemma which will play a similar role below the window to that played
by the lower bound in Proposition 5.1 inside the window.

Lemma 5.8. Assume that (4.1) holds for some ε > 0 and that Postulates (III), (IV) and
(VII) hold. Then there exist constants 0 < C3 < ∞ and 1 ≤ σ6, σ7 , σ8 < ∞ such that

Ep

{
ÑΛn(ks(L0(p)), kσ6s(L0(p)))

}
≥ C3

e−D6k

k

( n

L0(p)

)d

(5.77)

provided k ≥ σ7, n ≥ σ8kL0(p) and p < pc. Here D6 is the constant from Postulate (VII).

Proof. Let C1 and C2 be the constants from Lemma 4.4. Combining the bound (4.13)
with Postulate (VII) and Proposition 4.6 we see that for suitable constants C4, C5, with
C2C4 > D6, and k sufficiently large, say k ≥ C7, one gets

Prp{|C(0)| ≥ ks(L0(p)), but diam(C(0)) < C4ksL0(p)}
≥ Prp{|C(0)| ≥ ks(L0(p))} − Prp{diam(C(0)) ≥ C4kL0(p)}
≥ C5πL0(p)(pc)e−D6k. (5.78)
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We want to restrict |C(0)| further. For this we use Lemma 4.7, which tells us that

Prp{|C(0)| ≥ σ6ks(L0(p))} ≤ C1πL0(p)(pc)e−C2σ6k.

Therefore, if we take σ6 > D6/C2, then for sufficiently large k, say k ≥ C̃7,

Prp{ks(L0(p)) ≤ |C(0)| ≤ σ6ks(L0(p)), but diam(C(0)) < C4kL0(p)}

≥ 1

2
C5πL0(p)(pc)e−D6k. (5.79)

Now let n ≥ 2C4kL0(p), ñ = n− bC4kL0(p)c, Λ = Λr and Λ̃ = Λñ. Observe that if v ∈ Λ̃
and diam(C(v)) ≤ bC4kL0(p)c, then C(v) ⊂ Λ and CΛ(v) = C(v). Using this observation
we now find

Ep

{
ÑΛr (ks(L0(p)), kσ6s(L0(p)))

}

≥
∑

v∈Λ̃

σ6ks(L0(p))∑

s=ks(L0(p))

1

s
Prp{|CΛ(v)| = s, but diam(C(v)) < bC4kL0(p)c}

≥ 1

σ6ks(L0(p))

∑

v∈B

Prp{ks(L0(p)) ≤ |C(0)| ≤ C6ks(L0(p)),

but diam(C(0)) < bC4kL0(p)c}

≥ C3
(2n)d

ks(L0(p))
πL0(p)(pc)e−D6k = C3

( n

L0(p)

)d

k−1e−D6k.

Choosing σ7 = max{C7, C̃7} and σ8 = 2C4, this proves the lemma. �

Proof of Theorem 3.1 ii) and Theorem 3.5. For the proof, we will need (4.1), and Postulates
(III), (IV) and (VII). Assume that pn < pc for sufficiently large n, and n/L0(pn) →∞. It
follows from (4.8) that for z ≥ 0 and n large

Epn{W (1)
Λn
} ≤ s(L0(pn)) log

(
n

L0(pn)

)

×
[
z +

∫ ∞

z

Prpn

{
W

(1)
Λn

≥ ys(L0(pn)) log

(
n

L0(pn)

) }
dy

]

≤ s(L0(pn)) log

(
n

L0(pn)

)

×
[
z + C1

∫ ∞

z

(
n

L0(pn)

)d−C2z

exp[−C2(y − z) log

(
n

L0(pn)

)
]dy

]
.

By choosing C2z = d we see that

Epn{W (1)
Λn
} ≤ C3s(L0(pn)) log

(
n

L0(pn)

)
(5.80)
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for a suitable constant C3 < ∞. This proves the upper bound for Epn{W (1)
Λn
}, where we

have so far only used Postulate (IV).

The lower bound for Epn{W (1)
Λn
} follows immediately from Theorem 3.5 so that it suffices

to prove (3.16). Also, we only have to prove that

lim inf
n→∞

Prpn

{
K−1 ≤

W
(i)
Λn

s(L0(pn)) log n
L0(pn)

} → 1, as K →∞, (5.81)

since the other part of (3.16) is obvious from Markov’s inequality and the upper bound
(5.80).

For brevity we write p instead of pn for the remainder of this proof. The lower bound
(5.77) will play a similar role to that played by Proposition 5.1. However, instead of using
an analogue of Proposition 5.2 for a second moment, we now appeal to the BK-inequality
[BK85]. This tells us that

Prp{∃ r disjoint clusters in Bdσ8kL0(p)e of size ≥ ks(L0(p))}
≤

[
Prp{∃ at least one cluster in Bdσ8kL0(p)e of size ≥ ks(L0(p))}

]r
.

Consequently if we set

κ = Prp{∃ at least one cluster in Bdσ8kL0(p)e of size ≥ ks(L0(p))}, (5.82)

then

Ep{number of disjoint clusters in Bdσ8kL0(p)e of size ≥ ks(L0(p))} ≤ κ

1− κ
.

By (5.77) the left hand side here is at least C8k
d−1 exp[−D6k], C8 = C3σ

d
8 , so that

κ ≥ min

(
1

2
,
C8

2
kd−1e−D6k

)
. (5.83)

Now choose

k = k(n) =
⌊
C9 log

(
n

L0(p)

) ⌋

with the constant C9 > 0 but so small that D6C9 < d/2. Then we can find in Λn

approximately (
n

2σ8kL0(p)

)d

≥
(

n

L0(p)

)d/2

disjoint boxes Bdσ8kL0(p)e(vi). Each of these boxes contains a cluster of size

≥ k(n)s(L0(p)) ∼ C9s(L0(pn)) log

(
n

L0(pn)

)
(5.84)
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with a probability at least

min

(
1

2
,
C8

2
kd−1e−D6k

)
. (5.85)

Moreover, as in (4.16) we also have

Prp{∂Bdσ8kL0(p)e(vi) 6↔ ∂B3dσ8kL0(p)e(vi)} ≥ ε2d.

For large n this gives

Prp{Bdσ8kL0(p)e(vi) contains a cluster of size
C9

2
s(L0(pn)) log

(
n

L0(pn)

)

and this cluster is not connected to ∂B3dσ8kL0(p)e(vi)}
≥ 1

2ε2dC8k
d−1 exp[−D6k]. (5.86)

Since the number of boxes times the right hand side of (5.86) tends to infinity (by our
choice of k(n) or C9), the probability that at least i of these boxes contains a cluster
of size (5.84), and that these clusters are not connected to each other tends to 1. This
establishes (3.16). �

6. Verification of the Postulates in Two Dimensions

In this section we prove Theorem 3.6, which states that the Scaling Postulates (I) –
(VII) hold for d = 2. Before we start on the proof we discuss some general tools. The
fundamental tool for two-dimensional bond percolation is duality.3 This rests on the
following observations. Let Z

∗ denote the lattice Z
2 + ( 1

2 , 1
2 ), which is called the dual

lattice of Z
2. Each dual edge e∗ bisects exactly one edge e of the original lattice and vice

versa. We call such a pair e∗ and e, associated. For each configuration ω of occupied and
vacant edges of Z

2 we obtain a configuration on Z
∗ by declaring a dual edge e∗ occupied

(repectively, vacant) if its associated edge is occupied (respectively, vacant). It is a well
known result that there exists an occupied horizontal crossing of the rectangle [0, L]×[0,M ]
if and only if there does not exist a vertical vacant dual crossing of [ 1

2 , L− 1
2 ]× [− 1

2 ,M + 1
2 ]

(see [SmW78], Section 2.1 and [Kes82] , Sections 2.6, 2.4). This translates into

RL,M (p) = 1−RM+1,L−1(1− p). (6.1)

This relation can be used to relate quantities in the subcritical regime to similar quantities
in the supercritical regime. For instance, define the two-dimensional finite-size scaling
length as

L̃0(p, ε) =

{
min{L | RL,L(p) ≤ ε} if p < pc

min{L | RL,L(p) ≥ 1− ε} if p > pc .
(6.2)

3Here we can use duality since we are dealing with bond percolation, which is self-dual. However, with

a good deal more work, similar results can be proven for other two-dimensional models which are not
self-dual – see [Kes87] (equation (1.23) and Section 4).
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(Note that this is in the spirit of definition (1.21) of [Kes87]. However, [Kes87] treats
bond percolation on Z

2 as site percolation on the covering graph of Z
2, so that the formal

definition there is somewhat different. For the purposes of the proofs here this difference
in the definitions is without significance.) It follows easily from duality and monotonicity

of RL,M in L and M that for bond percolation on Z
2, L̃0(p, ε) ≥ L̃0(1 − p, ε) for p < pc.

From the rescaling lemma (Lemmas 3.4 and 4.12 in [ACCFR83]) and duality one obtains

that for sufficiently small ε > 0 also 2L̃0(1 − p, ε) − 1 ≥ L̃0(p, ε) for p < pc. We therefore
have that

L̃0(p, ε) � L̃0(1− p, ε), p < pc =
1

2
. (6.3)

Similarly, using the rescaling lemma and the Russo-Seymour-Welsh lemma ([Rus78],
[SW78], Section 3.4) it is straightforward to show that in d = 2, the definition (6.2) is
equivalent to our finite-size scaling correlation length below threshold, see (2.20):

L̃0(p) � L0(p) for p < pc , (6.4)

and to our finite-size scaling inverse surface tension above threshold, see (2.26):

L̃0(p) � A0(p) for p > pc . (6.5)

As usual, the constants implicit in the equivalences (6.3)–(6.5) depend on ε.

It also follows from the Russo-Seymour-Welsh lemma that for each x > 0 and integer

k ≥ 1 there exists a constant h(x, k, ε) > 0 such that for p ≤ pc, L ≤ kL̃0(p), M/L ≥ x, it
holds that

RL,M (p) ≥ h(x, k, ε). (6.6)

Thus, sponge crossing probabilities of rectangles with the ratio of the sides bounded away

from 0 and ∞ and with a size comparable to L̃0(p) are bounded away from 0. By means
of the Harris-FKG inequality it is then also easy to see that the probability of an occupied
circuit surrounding the origin in the annulus A = [−M,M ]2 \ (−L,L)2 is bounded away
from 0, provided L ≤ kL0(p),M/L ≥ 1 + x > 1. Indeed, by obvious monotonicity we
may assume that M ≤ 2L. The annulus A is the union of four M − L × M rectangles,
and if each of these has an occupied crossing in the long direction (i.e., a crossing in
the direction of the side of length M), then A contains a circuit of the desired kind
(compare [SmW78], Lemma 3.5). By the above, each of these crossings has a probability
of RM,M−L(p) ≥ h(x/(1 + x) ∧ 1/2, 2k, ε), and by the Harris-FKG inequality the desired
occupied circuit exists with a probability at least h4(x/(1 + x) ∧ 1/2, 2k, ε).

Now consider two adjacent rectangles [0, L]×[0,M ] and [L, 2L]×[0,M ], and assume that
each of these contains an occupied horizontal crossing, r1 and r2, say. If, in addition there
exist occupied vertical crossings of [0, L]× [−L,M +L] and [L, 2L]× [−L,M +L] as well as
occupied horizontal crossings of [0, 2L]× [−L, 0] and [0, 2L]× [M,M + L], then these four
crossings contain a circuit which necessarily intersects r1 and r2 and therefore connects r1

and r2 (see Figure 1). Therefore, another application of the Harris-FKG inequality shows
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that

Prp{all horizontal crossings of [0, L]× [0,M ] and of [L, 2L]× [0,M ] are connected
∣∣

there exists at least one horizontal crossing in each of

[0, L]× [0,M ] and [L, 2L]× [0,M ]}

≥ h2(
L

M + 2L
,
M + 2L

L0(p)
, ε)h2(

1

2
,

2L

L0(p)
, ε). (6.7)

If M/L and L/L0(p) are bounded, then the right hand side of (6.7) is bounded away from
zero. By minor variations of this argument one sees that there is a lower bound for the
probability that two occupied crossings r1 and r2 over length L which are within distance
of order L from each other are connected (by a circuit of diameter also of order L), provided
L/L0(p) is bounded. We shall say in such a situation that r1 and r2 can be connected by
a Harris ring.

y0

Fig. 1. Harris ring construction for the proof of (6.7)

We now prove the postulates for d = 2 in several subsections. These proofs rely to a
large extent on the results and methods of [Kes86] and [Kes87].

6.1. Proof of Postulates (I) and (II).

Postulate (II) is the relation

A0(p, ε) � L0(p, ε; 1) � L0(p, ε̃; x) (6.8)

for all p > pc, x ≥ 1 and ε, ε̃ ∈ (0, ε0). Once we prove this, Postulate (I) follows e.g. from
the equivalence in equation (6.5) and Postulate (II):

L0(p) � A0(p) � L̃0(p) , (6.9)
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equation (6.3) and the known behavior (2.27). Hence it suffices to establish Postulate (II).
We claim that in order to prove (6.8), it suffices to show that for all x ≥ 1 and ε̃ ∈

(0, ε0/2), there exists an ε ∈ (0, ε0) and a λ = λ(ε, ε̃, x) such that

L̃0(p, 2ε) ≤ L0(p, ε̃, x) ≤ λL̃0(p, ε) + 1 as p ↓ pc. (6.10)

Indeed, given (6.10), we can deduce (6.8) for ε, ε̃ < ε0/2 from (6.5) and the known equiv-

alence of L̃0(p, ε) at different values of ε, i.e.,

L̃0(p, ε1) � L̃0(p, ε2) as p ↓ pc for 0 < ε1, ε2 < ε0, (6.11)

which follows from the rescaling lemma. Finally we must replace ε0 by ε0/2 to obtain
Postulate (II).

We establish (6.10) via an upper and a lower bound. For the upper bound, we note
that for all L,M

Sfin
L,M (p) ≤ 1− Pp(∃ an occupied circuit in HL,M surrounding ∂IHL,M ) . (6.12)

Given ε, ε̃ ∈ (0, ε0) and x ≥ 1, it is not hard to show, by means of the rescaling lemma
(compare the argument for (6.7)), that there exists a λ = λ(ε, ε̃; x) such that if M = bxLc
and L ≥ λL̃0(p, ε), then the probability of the circuit described in (6.12) is strictly bounded

below by 1− ε̃ for p > pc. Hence Sfin
L,bxLc(p) < ε̃ for all L ≥ λL̃0(p, ε) . But it follows from

the definition (2.25) that Sfin
L,bxLc(p) ≥ ε̃ if L = L0(p, ε̃; x)− 1. Thus

L0(p, ε̃; x) ≤ λL̃0(p, ε) + 1 . (6.13)

Next we establish a lower bound of the same form. To this end, note that the annulus
HL,bxLc consists of four non-overlapping L× bxLc rectangles and four L× L corners. Let
us call the rectangles the left, right, upper and lower rectangles. Clearly, for all L

Sfin
L,bxLc(p) ≥ Pp(∃ an occupied left-right crossing in the left rectangle and

a vacant dual left-right crossing in the right rectangle,

each connecting ∂IHL,bxLc to ∂EHL,bxLc) . (6.14)

Since x ≥ 1, the lower bound in (6.14) is only strengthened by requiring that the occupied
crossing occur in an L× L sub-box of the corresponding L× bxLc rectangle and that the
vacant dual crossing occur in an (L + 1)× (L− 1) rectangle. By (6.1) this gives

Sfin
L,bxLc(p) ≥ RL,L(1−RL,L) ≥ 1

2
(1−RL,L), (6.15)

since p > pc. Now let L = L0(p, ε̃; x). It then follows from the definition (2.25) that
Sfin

L,bxLc(p) ≤ ε̃, so that (6.15) implies RL,L ≥ 1 − (2ε̃) if L = L0(p, ε̃; x). Comparing this

with the definition (6.2) for p > pc, we conclude

L0(p, ε̃; x) ≥ L̃0(p, 2ε̃) , (6.16)

a lower bound of the desired form. �
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6.2. Proof of Postulate (III).

Postulate (III) is almost identical to Theorem 1 of [Kes87], except that the latter uses the

condition n ≤ L̃0(p, ε), whereas Postulate (III) assumes n ≤ L0(p, ε). Thus, to establish
Postulate (III), it suffices to show that for all ε ∈ (0, ε0), there exists an ε̃ ∈ (0, ε0) such
that

L0(p, ε) ≤ L̃0(p, ε̃) . (6.17)

To prove (6.17) we note that by (6.9) we have L0(p, ε) ≤ λ(ε)L̃0(p, ε) for p > pc and
a suitable λ < ∞. This relation also holds for p < pc, as observed in (6.4). Therefore, it
suffices to show that for all p 6= pc, λ < ∞, and ε ∈ (0, ε0), there exists an ε̃ ∈ (0, ε0) such
that

λL̃0(p, ε) ≤ L̃0(p, ε̃) . (6.18)

Finally, by (6.3), it suffices to establish (6.18) only for p < pc, and by iteration, to establish
the latter only for λ = 2. To this end, we note that by the Russo-Seymour-Welsh lemma
([Rus78],[SW78], Section 3.4), rescaling and the obvious monotonicity of RL,M , we have

RM,M (p) ≥ f(RL,L(p)) if L ≤ M ≤ 3L , (6.19)

for some function f on [0, 1] which is strictly positive on (0, 1]. Without loss of generality

we may take f(ε) ≤ ε. Using the definition (6.2) of L̃0(ε, p), we conclude that

RM,M (p) > f(ε) if M ≤ 3L̃0(p, ε)− 3 . (6.20)

As a consequence,

L̃0(p, f(ε)) ≥ 3L̃0(ε, p)− 2 ≥ 2L̃0(p, ε) , (6.21)

where we have used that R1,1(p) ≥ p > ε, and hence L̃0(p, ε) > 1 in the last step. This
establishes (6.18) and hence Postulate (III). �

6.3. Proof of Postulate (IV).

We will establish Postulate (IV) for all p such that m ≤ L0(p) (a somewhat stronger
result than the stated postulate at pc). This postulate with ρ1 = 2 follows from the claim
that for some C1 > 0

πm(p)

πn(p)
≥ C1

(m

n

)−1/2

if n ≤ m ≤ L0(p) . (6.22)

In order to establish (6.22), we assume that kn ≤ m ≤ (k + 1)n for some integer k ≥ 1.
By (2.12) and monotonicity of πn,

πm ≥ π(k+1)n ≥ π̃(k+1)n . (6.23)

Recall the definition (2.9) of π̃(k+1)n and observe that one mechanism to ensure that the
origin is connected to the line at x1 = (k + 1)n is to have (1) the origin connected to some
point in ∂Bn(0), (2) some point on ∂Bn(0) connected to the line at x1 = (k + 1)n, and (3)
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Harris rings in the annuli Bn \Bn/2 and B2n \Bn and a rectangle crossing from (say) the
right boundary of Bn/2 to the central quarter of the right boundary of B2n to “glue” the
connections in (1) and (2) together. Since n ≤ L0(p), the probability of the third event
is bounded away from zero, uniformly in n (as in (6.7)). Denote the probability of the
event described in (2) above by Gn,kn. Equation (6.23) and the Harris-FKG inequality
then imply that for some constant C2 > 0

πm ≥ C2πnGn,kn . (6.24)

By an argument almost identical to the proof of corollary (3.15) in [BK85], kn ≤ L0(p)

implies Gn,kn ≥ C3/
√

k, where C3 is a lower bound on the probability of an occupied
crossing of a 2kn × 2kn square. The constant C3 > 0 by virtue of (6.17) and (6.20).
(Essentially this same argument is used in [Kes87], equation (3.6) and its proof on p. 143.)
Thus (6.24) implies the desired bound (6.22). �

6.4. Proof of Postulate (V).

Theorem 3 of [Kes87] gives the second inequality in Postulate (V). Thus it suffices to
prove that for a suitable constant D4 and all p > pc

χcov(p) ≤ D4L
2
0(p)π2

L0(p)(pc) . (6.25)

To this end, we decompose the sum defining χcov(p) (with |v| short for |v|∞ and L0 for
L0(p) ):

χcov(p) =
∑

|v|≤2L0

Covp(0 ↔∞; v ↔∞) +
∑

|v|>2L0

Covp(0 ↔∞; v ↔∞) . (6.26)

To control the first term, we use the bound (4.4) in Lemma 4.1 and Postulate III to
estimate

∑

|v|≤2L0

Covp(0 ↔∞; v ↔∞) ≤
∑

|v|≤2L0

Pp{0 ↔∞, v ↔∞}

≤
∑

|v|≤2L0

τ(0, v) ≤
∑

|v|≤2L0

π2
[|v|/2](p) � L2

0π
2
L0

(pc) . (6.27)

Next, we bound the second term in (6.26). To this end, let B(w) = BL0(w) be the box of
radius L0 centered at w. For |v| > 2L0, we have

Covp(0 ↔∞; v ↔∞) = Covp(0 6↔ ∞; v 6↔ ∞)

= Covp(0 6↔ ∞,0 ↔ ∂B(0); v 6↔ ∞, v ↔ ∂B(v))

+ Covp(0 6↔ ∞,0 ↔ ∂B(0); v 6↔ ∂B(v))

+ Covp(0 6↔ ∂B(0); v 6↔ ∞, v ↔ ∂B(v))

+ Covp(0 6↔ ∂B(0); v 6↔ ∂B(v))

= Covp(0 6↔ ∞,0 ↔ ∂B(0); v 6↔ ∞, v ↔ ∂B(v))

+ 2 Covp(0 6↔ ∂B(0); v 6↔ ∞, v ↔ ∂B(v)) , (6.28)
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where in the last step we have used that Covp(0 6↔ ∂B(0); v 6↔ ∂B(v)) = 0 by the
independence of the events {0 6↔ ∂B(0)} and {v 6↔ ∂B(v)} when B(0) and B(v) are
disjoint, and also the symmetry of the roles played by 0 and v. Now we bound the second
term on the right hand side of (6.28) according to

Covp(0 6↔ ∂B(0); v 6↔ ∞, v ↔ ∂B(v))

= Covp(0 6↔ ∂B(0); v 6↔ ∞, v ↔ ∂B(v), v ↔ ∂B(0))

+ Covp(0 6↔ ∂B(0); v 6↔ ∞, v ↔ ∂B(v), v 6↔ ∂B(0))

= Covp(0 6↔ ∂B(0); v 6↔ ∞, v ↔ ∂B(0))

= −Covp(0 ↔ ∂B(0); v 6↔ ∞, v ↔ ∂B(0))

≤ Pp{0 ↔ ∂B(0)}Pp{v 6↔ ∞, v ↔ ∂B(0)} , (6.29)

where we have used that the two events {v 6↔ ∞} ∩ {v ↔ ∂B(v)} ∩ {v 6↔ ∂B(0)} and
0 6↔ ∂B(0) are independent. Using the Harris-FKG inequality and obvious monotonicities,
the second factor on the right hand side of (6.29) is in turn bounded according to

Prp{v 6↔ ∞, v ↔ ∂B(0)}
≤ Prp{v ↔ ∂B(0)}

Prp{∃w ∈ ∂B(0) such that w and v are surrounded by a vacant dual contour}
(6.30)

We now follow a coarse-graining argument along the lines of the proof of Theorem 3 in
[Kes87] (see (3.12), (3.13) and (2.25) there). Let v = (v1, v2) and for the sake of argument
let v1 = |v| = |v|∞. If there exists a vacant dual contour surrounding w ∈ ∂B(0) and v,
then there exists a vacant dual path from B(0) to some B(v1 +j, v2) with j ≥ 0. By (2.25)
in [Kes87] the probability that such a vacant path exists is at most C1 exp[−C2|v|/L0].
Together with (6.29) and Postulate III this leads to a bound of

C3π
2
L0

(pc) exp[−C2|v|/L0] (6.31)

for the second term in the right hand side of (6.28).
Next we bound the first term in the right hand side of (6.28) by means of the BK

inequality as follows:

Prp{0 6↔ ∞,0 ↔ ∂B(0); v 6↔ ∞, v ↔ ∂B(v)}
≤ Prp{0 ↔ ∂B(0), v ↔ ∂B(v) and there exist vacant dual contours

C1, C2 surrounding 0 and v, respectively}
≤ Prp{0 ↔ ∂B(0), v ↔ ∂B(v) and there exist edge-disjoint vacant dual contours

C1, C2 surrounding 0 and v, respectively}
+ Prp{0 ↔ ∂B(0), v ↔ ∂B(v) and there exist vacant dual contours C1, C2

surrounding 0 and v, respectively, and C1 and C2 have an edge in common}.
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By the BK inequality the first term in the right hand side is no more than

Prp{0 ↔ ∂B(0) and there exists a vacant dual contour C1 which surrounds 0}
× Prp{v ↔ ∂B(v) and there exists a vacant dual contour C2 which surrounds v}

= Prp{0 6↔ ∞,0 ↔ ∂B(0)}Prp{v 6↔ ∞, v ↔ ∂B(v)}.

Therefore,

Covp(0 6↔ ∞,0 ↔ ∂B(0); v 6↔ ∞, v ↔ ∂B(v)}
≤ Prp{0 ↔ ∂B(0), v ↔ ∂B(v) and there exist vacant dual contours C1, C2

surrounding 0 and v, respectively, and C1 and C2 have an edge in common}
≤ Prp{0 ↔ ∂B(0)}Prp{v ↔ ∂B(v)}Prp{∃ vacant dual contours C1, C2

surrounding 0 and v respectively, and C1 and C2 have an edge in common} ,
(6.32)

where we have used the Harris-FKG inequality and disjointness of B(0) and B(v) in the
last step. If the two dual contours C1, C2 in (6.32) have an edge in common, and if again
v = (v1, v2) with v1 = |v|, then C1 ∪ C2 contains a vacant dual path from some B(−j1, 0)
to some B(v1 + j2, v2) with j1, j2 ≥ 0. The same argument as used for (6.31) now shows
that also the first term in the right hand side of (6.28) is bounded by (6.31). Finally, then

∑

|v|>2L0

Covp(0 ↔∞; v ↔∞) ≤
∑

|v|>2L0

2C3π
2
L0

(pc) exp[−C2|v|/L0] ≤ C(ε)L2
0π

2
L0

(pc) .

(6.33)
Together with (6.26), (6.27) this yields (6.25). �

6.5. Proof of Postulate (VI).

Postulate (VI) for d = 2 goes back to [Ngu85]. We can also immediately obtain this
from Theorem 2 in [Kes87], which states that P∞(p) is of the same order as πL̃0(p,ε)(pc).

But by (6.10), (6.11) there exists a λ = λ(ε) ≥ 1 such that L̃0(p, ε) ≤ λL0(p, ε). Therefore,
by Postulate (IV)

πL̃0(p,ε)(pc) ≥ πλL0(p,ε)(pc) ≥ D3λ
−1/ρ1πL0(p,ε)(pc).

Combined with Theorem 2 of [Kes87] this gives one inequality of Postulate (VI). In the
other direction, it is trivial that P∞(p) ≤ πL0(p)(p) and further πL0(p)(p) � πL0(p)(pc), by
Postulate (III). �

6.6. Proof of Postulate (VII).

We shall build a cluster of size at least ks(L0(p)) by connecting together C1k clusters of
size at least C2s(L0(p)) (for suitable constants C1, C2) in adjacent squares of size 2L0(p).
These clusters will be connected by means of Harris rings.
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By Postulate (IV) and Proposition 4.6 (which relies only on Postulate (I) — (IV)) there
exists a σ0 ∈ (0, 1] such that for n0 = bσ0L0(p)/2c

P≥s(L0(p))(p) ≤ P≥s(n0)(p) ≤ C3πn0(pc);

in the first inequality we used that Postulate (IV) implies (5.10), which in turns implies
that s(m) ≥ s(n) if m/n is large enough. In turn, by Postulate (III), the right hand
side here is at most C4πn0(p). It therefore suffices to show that for p < pc and suitable
constants C5, D6

P≥ks(L0(p))(p) ≥ C5e
−D6kπn0(p). (6.34)

First we use Theorem 3.3 and Lemma 4.4, (4.14). These results show that there exist
constants K0 < ∞ and y0 > 0 such that

Prp{∃ cluster C ⊂ ΛL0(p) with diam(C) ≥ y0L0(p) and |C| ≥ K−1
0 s(L0(p))}

= Prp{W (1)
L0(p) ≥ K−1

0 s(L0(p))}
− Prp{∃ cluster C ⊂ ΛL0(p) with diam(C) < y0L0(p) and |C| ≥ K−1

0 s(L0(p))}

≥ 1

2
− C1y

−2
0 exp[−C2(K0y0)−1] ≥ 1

4
, (6.35)

provided L0(p) ≥ 4/y0. The estimate (6.35) shows that with a probability of at least 1/4
there is a cluster with a “large” size and “large” diameter in ΛL0(p). We wish to locate
this large cluster more precisely. In fact we want to show that we may assume that it
crosses a certain rectangle in the first coordinate direction. To this end we note that if
diam(C) ≥ y0L0(p), then there are two points v, w ∈ C so that wi − vi ≥ y0L0(p) for i = 1
or i = 2. Assume that this holds for i = 1. Then for some −2/y0 ≤ j ≤ 2/y0 the event

M(p, j) :={∃ cluster C ∈ ΛL0(p) with |C| ≥ K−1
0 s(L0(p)) that contains

points v, w with v1 ≤ jy0L0(p)/2 < (j + 1)y0L0(p)/2 ≤ w1}
(6.36)

must occur. Therefore there exists a j0 ∈ [−2/y0, 2/y0] for which

Prp{M(p, j0)} ≥ y0

8(y0 + 1)
. (6.37)

From (6.37) and translation invariance it follows that each of the events

{∃ cluster C` ∈ [2`L0(p), (2` + 2)L0(p))× [−L0(p), L0(p)) with |C`| ≥ K−1
0 s(L0(p))

and which crosses [(2` + j0)y0L0(p)/2, (2` + j0 + 1)y0L0(p)/2]× [−L0(p), L0(p))

in the horizontal direction} , ` ≥ 0, (6.38)

has probability at least y0/(8y0+8). Let k ≥ 1 be given and take r = dkK0e. If the event in
(6.38) occurs for ` = 0, 1, . . . , r and 0 ↔ ∂Bn0(0), and the paths from 0 to ∂Bn0(0) and the
horizontal crossings of [(2` + j0)y0L0(p)/2, (2` + j0 + 1)y0L0(p)/2]× [−L0(p), L0(p)) , 0 ≤
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` ≤ r are all connected by Harris rings, then the cluster of the origin has size at least
rK−1

0 s(L0(p)) ≥ ks(L0(p)). The Harris-FKG inequality now shows that

P≥ks(L0(p))(p) ≥ πn0(p)C6[C6
y0

8(y0 + 1)
]r.

This proves (6.34) with

D6 = log
8(y0 + 1)(K0 + 1)

C6y0
,

and Postulate (VII) follows for all p < pc with L0(p) ≥ 4/y0. If L0(p) < 4/y0, the postulate

follows from the trivial bound P≥ks(L0(p)) ≥ pks(L0(p)) ≥ p64y−2
0 k. �

7. Proof of Theorem 3.7.

In this section, we introduce Postulate (VII alt), which is slightly stronger than Postulate
(VII), and prove Theorem 3.7. To state the Postulate (VII alt), we need some notation.
For k ≥ 1, let [k]d = {1, . . . , k}d. Given an integer k ≥ 1, and a choice of vertices v(j) in

Λ̃(j) := 2jL0(p) + ΛbL0(p)/4c, j ∈ [k]d, we define sets Λ(j) = 2jL0(p) + ΛL0(p) and

Ξ =
⋃

j∈[k]d

Λ(j),

as well as events
G(j) = G(j; x) = {|CΛ(j)(v(j))| ≥ xs(L0(p))},

Gk = Gk(x) =
⋂

j∈[k]d

G(j; x),

H(j) = {v(j) ↔ v(j± ei) in Ξ, 1 ≤ i ≤ d},
where the i-th component of j± ei equals ji ± 1. We also define

Hk = {all v(j) with j ∈ [k]d are connected in Ξ} =
⋂

2≤ji≤k−1
1≤i≤d

H(j).

Postulate (VII alt) For all 0 < x ≤ 1 there exists a constant D7 = D7(x) > 0 such that

Prp{Hk | Gk(x)} ≥ Dkd

7 (7.1)

for all ζ0 ≤ p < pc, k ≥ 1 and all choices of v(j), j ∈ [k]d. We remind the reader that ζ0 is
some arbitrary number in (0, pc).

Note that there are kd choices for j ∈ [k]d. Condition (7.1) therefore roughly speaking
says that the conditional probability of H(j), given that |C(v(j))| ≥ xs(L0(p)) and each
|C(v(j±ei))| ≥ xs(L0(p)), is at least D7. Or still more intuitively, “clusters of size of order
s(L0(p)) and a distance of order L0(p)) apart have a reasonable conditional probability
of being connected.” We also mention that (7.1) is actually not needed for all x ∈ (0, 1],
but only for one fixed value of x for which Prp{G(j)} ≥ C1πL0(p)(pc) for some constant
C1 > 0, independent of p < pc. Such x and C1 can be shown to exist by means of the
bound (5.40) which follows from Proposition 5.3.
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7.1. Proof of Theorem 3.7i.

In this subsection we always assume Postulates (I)–(IV) and ζ0 ≤ p < pc. For brevity
we write in many places L for L0(p) and Λ for ΛL0(p). In steps i–v we also use Postulate
(VII alt), but we only shall use that (7.1) is valid for 0 < x ≤ x0 for some x0 > 0. The
value of x0 is irrelevant. All constants in this section are independent of k.

Step i There exists an x ∈ (0, 1] and a constant C2 > 0 such that uniformly for

v(j) ∈ Λ̃(j) = 2jL0(p) + ΛbL0(p)/4c ,

Prp{G(j)} ≥ C2πL(pc). (7.2)

To prove (7.2) we use the relation (5.3) between the distribution of W
(1)
Λ and P≥s. For

r ≥ 1 and any 0 < C1 < ∞, we get

Prp{W (1)
Λr

≥ C1s(r)} ≤
∑

v∈Λr

∑

s≥C1s(r)

1

s
Prp{|CΛr (v)| = s}

≤ |Λr|
C1s(r)

sup
v∈Λr

Prp{|CΛr (v)| ≥ C1s(r)}. (7.3)

On the other hand, by (5.10), s(m) ≥ s(r) and hence

Prp{W (1)
Λr

≥ C1s(r)} ≥ Prp{W (1)
Λr

≥ s(m)} (7.4)

whenever m ≥ r(C1/D3)2/d. Setting r = bL0(p)/4c, m = rd(C1/D3)2/de, and choosing
C1 > 0 small enough to guarantee that d(C1/D3)2/deσ(1)(1/4, 1/2) ≤ 1, where σ(1)(λ, δ) is
the constant introduced before (5.40), we can now use the bound (5.40). Combined with

(7.4) we get Prp{W (1)
Λr

≥ C1s(r)} ≥ 1/2. Using (7.3), we therefore conclude that there
exists a constant C3 > 0 and a w0 ∈ Λr such that

Prp{|CΛr (w0)| ≥ C1s(r)} ≥ 1
2C2πr(p) ≥ C3πr(pc), (7.5)

where we used Postulate (III) in the last step. Now for any v ∈ Λr, Λr shifted by v − w0

is contained in Λ3r ⊂ Λ. Therefore for all v ∈ Λr = ΛbL0(p)/4c and sufficiently small C4

Prp{|CΛ(v)| ≥ C4s(L)} ≥ Prp{|CΛr (w0)| ≥ C1s(r)} ≥ C3πr(pc) ≥ C2πL(pc). (7.6)

This proves (7.2) for j = 0 and x = C4∧1. But then it clearly holds for all j by translation
and for all 0 < x ≤ C4 ∧ 1.

Step ii Now fix k and for brevity write M = kd. Let C2 and C4 be such that (7.6)
holds. Also fix x = C4 ∧ 1 ∧ x0 and take D7 = D7(x). It is useful to indicate the choice
of the v(j) more explicitly in our notation. With some abuse of notation we denote the
possible values of j by 1, . . . ,M, and we occasionaly write Gk(v(1), . . . , v(M)) instead of
Gk, and similarly for Hk(v(1), . . . , v(M)).
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We have defined the Λ(j) such that they are disjoint. Consequently, for any choice of

v(j) in Λ̃(j), we have by (7.2)

Prp{Gk(v(1), . . . , v(M))} =
∏

j

Prp{G(j)} ≥ [C2πL(pc)]M ,

and then by Postulate (VII alt)

Prp{Gk(v(1), . . . , v(M)) ∩Hk(v(1), . . . , v(M))} ≥ [D7C2πL(pc)]M . (7.7)

We sum this over all v(j) ∈ Λ̃(j) for j 6= 1. We indicate this sum by
∑

(k). We therefore
have for some constants C5, C6

∑
(k)Prp{Gk(v(1), . . . , v(M)) ∩Hk(v(1), . . . , v(M))

≥ [D7C2πL(pc)]M [2bL0(p)/4c]M−1 ≥ C5πL(pc)[C6s(L)]M−1. (7.8)

Step iii We next work on an upper bound for the left hand side of (7.8). To this end we
note that on the event Gk ∩Hk, v(j) is connected to v(1) and therefore to ∂Λ(j) whenever
j 6= 1. We therefore define

Ṽ (j) = number of v ∈ Λ̃(j) which are connected to ∂Λ(j).

We further define
Ik = Ik(v(1)) = I[|CΞ(v(1))| ≥ Mxs(L)]. (7.9)

Clearly, on the event Gk(v(1), . . . , v(M)) ∩Hk(v(1), . . . , v(M)), it holds that

|CΞ(v(1))| ≥
∑

j

|CΛ(j)(v(j))| ≥ Mxs(L) and v(j) ↔ ∂Λ(j),

and therefore

∑
(k)Prp{Gk(v(1), . . . , v(M)) ∩Hk(v(1), . . . , v(M))}

≤ Ep{Ik(v(1))I[v(1) ↔ ∂Λ(1)]
∏

j6=1

Ṽ (j)}. (7.10)

We continue this inequality. For any γ ≥ 0 the right hand side of (7.10) is at most

eγM [s(L)]M−1Ep{Ik(v(1))}

+ Ep

{
Ik(v(1))I[v(1) ↔ ∂Λ(1)]

∏

j6=1

Ṽ (j);
∏

j6=1

Ṽ (j) ≥ eγM [s(L)]M−1
}

≤ eγM [s(L)]M−1Ep{Ik(v(1))}

+ e−γM [s(L)]−M+1Ep

{
I[v(1) ↔ ∂Λ(1)]

∏

j6=1

Ṽ 2(j)
}

.
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Finally we observe that the Ṽ (j) are independent among each other and of I[v(1) ↔ ∂Λ(1)],
because the Λ(j) are disjoint. Moreover, for each j,

Ep{Ṽ 2(j)} ≤ C7s
2(L),

by virtue of (4.6). Therefore

Ep{I[v(1) ↔ ∂Λ(1)]
∏

j6=1

Ṽ 2(j)} = Prp{v(1) ↔ ∂Λ(1)}
∏

j6=1

Ep{Ṽ 2(j)}

≤ πbL/2c(pc)[C7s(L)]2M−2.

Combining these estimates gives

∑
(k)Prp{Gk(v(1), . . . , v(M)) ∩Hk(v(1), . . . , v(M))}

≤ eγM [s(L)]M−1Ep{Ik(v(1))}+ e−γM [s(L)]−M+1πbL/2c(pc)[C7s(L)]2M−2.
(7.11)

Step iv In this step we complete the deduction of Postulate (VII) from Postulates
(I)–(V) and Postulate (VII alt). From (7.8)–(7.11) we obtain (by means of Postulate (IV))

eγM [s(L)]M−1Ep{Ik(v(1))}
≥ C5πL(pc)

{
[C6s(L)]M−1 − e−γM [s(L)]−M+1(C5D3)−121+1/ρ1 [C7s(L)]2M−2

}
.

Choosing γ so large that

e−γ < C6C
−2
7 ∧

[
1

4
C5D32−1/ρ1

]
,

we find that

Ep{Ik(v(1))} ≥ πL(pc)e−γM 1

2
C5C

M−1
6 . (7.12)

Since, by (7.9), the left hand side is no more than

P≥Mxs(L)(p),

and, by (4.20), πL(pc) ≥ C−1
2 P≥s(L)(pc) ≥ C−1

2 P≥s(L)(p), we obtain Postulate (VII).

Step v Even though we finished the deduction of Postulate (VII), we point out here
that had we summed over v(1) as well, then the derivation given above would have resulted
in

Prp{W (1)
ΛkL

≥ C2Ms(L)}
= Prp{∃ a cluster in

⋃

j

Λ(j) of size ≥ C2Ms(L)}

≥ C9e
−γMCM

6 . (7.13)
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This is basically the estimate (5.83) and we can deduce the lower bound in Theorem 3.5
almost immediately from (7.13) without repeating most of its proof from Postulate (VII).

Also (7.13) can be used to derive the desired counterpart to (3.14), namely, for each
fixed K and i

lim sup Ppn

{ W
(i)
Λn

Epn{W (i)
Λn
}
≤ K

}
< 1, (7.14)

when pn is inside the scaling window, i.e., when (3.5) holds. To see (7.14) for i = 1, fix
some large K. Then choose k such that for large n

KEpn{W (1)
Λn
} ≤ C2C

−1
1

(
k

2

)1/ρ2

s(n) and kL0(p) > 2n, (7.15)

with C1 as in (4.17). Such a k exists because Epn{W (1)
Λn
} and s(n) are of the same order

by Theorem 3.1 i) and pn is inside the scaling window. Finally choose p′n ≤ (pn ∧ pc) such
that

n ≤ kL0(p′n) ≤ 2n.

This can be done by virtue of (2.29). Lemma 4.5 then shows that

C2k
ds(L0(p′n)) ≥ C2C

−1
1

(
k

2

)1/ρ2

s(n) ≥ KEpn{W (1)
Λn
} (see (7.15)).

Finally, then, by (7.13) for p = p′n,

Ppn{W (1)
Λn

≥ KEpn{W (1)
Λn
}} ≥ Ppn{W (1)

Λn
≥ C2k

ds(L0(p′n))}
≥ Pp′n

{W (1)
Λn

≥ C2k
ds(L0(p′n))} ≥ C9e

−γkd

Ckd

6 > 0.

This proves (7.14) for i = 1. For general i a little extra work is needed as in the last few
lines of the proof of Theorem 3.5. �

7.2. Proof of Theorem 3.7ii.

We briefly indicate how to derive Postulate (VII alt) in dimension 2. We first show
that (7.1) holds when x is sufficiently small. In fact, if K0, y0 and j0 are the constants for
which (6.35)–(6.37) hold, then this argument works for x ≤ [K0]−1. With M(p, j) as in
(6.36), we have by a Harris ring construction that for suitable constants C1, C2 > 0 and

all v(j) ∈ Λ̃(j),

Prp{∃ cluster C ∈ ΛL0(p) which contains v(j) and points

v, w with v1 ≤ j0y0L0(p)/2 < (j0 + 1)y0L0(p)/2 ≤ w1

and with |C| ≥ K−1
0 s(L0(p))}

≥ C1Prp{M(p, j0)}Prp{v(j) ↔ ∂BL0(p)(v(j)} ≥ C1y0

8(y0 + 1)
πL0(p)(p)

≥ C2πL0(p)(pc). (7.16)
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On the other hand, by definition of G(j),

Prp{G(j)} ≤ P≥xs(L0(p))(p).

Using the bound

P≥s(p) ≤ πn(p) +
1

s

n∑

m=1

|∂Bm|
[
πbm/2c(p)

]2
,

proven in [BCKS99], equation (4.20), one easily shows that there is a constant C10 =
C10(x) < ∞ such that

P≥xs(L0(p))(p) ≤ C10πL0(p)(pc).

Since the G(j) for different j depend on disjoint regions, they are independent, and

Prp{Gk} ≤ [P≥xs(L0(p))(p)]k
2 ≤ [C10πL0(p)(pc)]k

2

. (7.17)

Finally, denote the event in the left hand side of (7.16) by K(j), that is

K(j) =∃ cluster C ∈ ΛL0(p) which contains v(j) and points

v, w with v1 ≤ j0y0L0(p)/2 < (j0 + 1)y0L0(p)/2 ≤ w1

and with |C| ≥ K−1
0 s(L0(p))}.

Note that K(j) implies G(j) when x ≤ [K0]−1. Therefore another Harris ring construction
shows that for some constant C11 > 0,

Prp{Gk ∩Hk} ≥ Ck2

11 Prp{K(j) for all 1 ≤ ji ≤ k, i = 1, 2}
≥ Ck2

11 [C2πL0(p)(pc)]k
2

,

by virtue of (7.16) and the Harris–FKG inequality. Comparing this with (7.17), we see
that

Prp{Gk ∩Hk} ≥ [C11C2/C10]k
2

Prp{Gk}.

This completes the proof of (7.1) when x ≤ [K0]−1.

For our purposes (7.1) for 0 < x ≤ [K0]−1 is actually good enough, but it is not hard to
obtain (7.1) for general 0 < x ≤ 1 now. In fact, we can apply the same argument as above,
provided we first prove the following strengthening of (7.16) for some constant C12 > 0:

Prp{∃ cluster C ∈ ΛL0(p) which contains v(j) and points

v, w with v1 ≤ j0y0L0(p)/2 < (j0 + 1)y0L0(p)/2 ≤ w1

and with |C| ≥ s(L0(p))}
≥ C12πL0(p)(pc). (7.18)
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But (7.18) can be derived exactly as (7.16) from an analogue of (6.37) if we start from

Prp{∃ cluster C ∈ ΛL0(p) with diam(C) ≥ y0L0(p) and |C| ≥ s(L0(p))}
≥ Prp{W (1)

L0(p) ≥ s(L0(p))}
− Prp{∃ cluster C ⊂ ΛL0(p) with diam(C) ≤ y0L0(p) but |C| ≥ s(L0(p))}

≥ Prp{W (1)
L0(p) ≥ s(L0(p))} − C1y

−2
0 exp[−C3y

−1
0 ]

≥ C13 > 0, (7.19)

which is valid for sufficiently small y0 > 0 and some constant C13 > 0. Equation (7.19) is
the analogue of (6.35) with [K0]−1 replaced by 1. The reason why we can prove this now,
but could not take [K0]−1 = 1 in (6.35) to begin with, is that we first needed to show that

Prp{W (1)
L0(p) ≥ s(L0(p))} is bounded away from 0. But this is now available to us from

(7.14). As we pointed out before (7.14) only needs (7.1) for 0 < x ≤ x0 for some x0 > 0,
and this we just derived. �
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area law to perimeter law in a system of random surfaces, Commun. Math. Phys. 92 (1983),
19–69.

[Aiz97] M. Aizenman, On the number of incipient spanning clusters, Nucl. Phys. B[FS] 485 (1997),

551-582.

[Ald97] D. Aldous, Brownian excursions, critical random graphs and the multiplicative coalescent,
Ann. Probab. 25 (1997), 812–854.

[Ale96] K. Alexander, private communication (1996).

[AN84] M. Aizenman and C. M. Newman, Tree graph inequalities and critical behavior in percolation

models, J. Stat. Phys. 36 (1984), 107–143.

[AS92] N. Alon and J. Spencer, The Probabilistic Method, Wiley Interscience, New York, 1992.

[BBCK98] B. Bollobás, C. Borgs, J. T. Chayes and J.-H. Kim, unpublished (1998).

[BCKS99] C. Borgs, J. T. Chayes, H. Kesten and J. Spencer, Uniform boundedness of critical crossing

probabilities implies hyperscaling, Rand. Struc. Alg. 15 (1999), 368–413.

[BC96] C. Borgs and J. T. Chayes, On the covariance matrix of the Potts model: A random cluster

analysis, J. Stat. Phys. 82 (1996), 1235–1297.

[BI92-1] C. Borgs and J. Imbrie, Finite-size scaling and surface tension from effective one-dimensional

systems, Commun. Math. Phys. 145 (1992), 235–280.



FINITE-SIZE SCALING IN PERCOLATION, December 2000 55

[BI92-2] C. Borgs and J. Imbrie, Crossover finite-size scaling at first order transitions, J. Stat. Phys.

69 (1992), 487–537.

[BK85] J. van den Berg and H. Kesten, Inequalities with applications to percolation and reliability,
J. Appl. Probab. 22 (1985), 556–569.
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