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Tenure Game, as a �nite perfect information game it has a value. Let the
initial position consist of ai faculty i rungs from tenure, as before, and set

W =
X

ai2
�i (34)

so that W = E[T ] when Carole plays randomly.

Theorem 10 The value of the generalized Tenure Game is bWc.
Proof. Let V , for the moment, be the value and suppose V > W . If Carole
plays randomly then Paul's expected outcome is W so that his probability
of receiving V > W is less than one. In this perfect information Paul can
always achieve the value V , a contradiction. Hence V � W and, as V is an
integer, V � bW c.

For the other side we use the following: Let x1 � . . . � xl be negative
powers of two with sum at least K, where K is an integer. Then there is a
partition of the xi into two groups so that each group sums to at least K=2.
Let's assume this simple corollary of the Splitting Lemma. Set K = bWc.
Now, as with Theorem 9, Paul always creates a list L so that E[T 1] � K=2
and E[T 2] � K=2 and at the end of the game E[T ] � K so that Paul has
pushed K faculty into tenured positions.

Our �nal example is a reversal of the generalized tenure game. The rules
remain the same except that now the value of the game to Carole is the
number of faculty receiving tenure. Here the Chair Paul is the bad guy
trying to prevent faculty receiving tenure. Call this the Good Dean game.

Theorem 11 The value of the Good Dean game is dWe.
Proof. Let V , for the moment, be the value and suppose V < W . If Carole
plays randomly then Carole's expected outcome is W so that the probability
of Carole receiving V < W is less than one. In this perfect information Paul
can always hold Carole to at most the value V , a contradiction. Hence
V � W and, as V is an integer, V � dWe.

For the other side we use the following: Let x1 � . . . � xl be negative
powers of two with sum at most K, where K is an integer. Then there is a
partition of the xi into two groups so that each group sums to at most K=2.
Let's assume this simple corollary of the Splitting Lemma. Set K = dWe.
Now, as with Theorem 9, Paul always creates a list L so that E[T 1] � K=2
and E[T 2] � K=2 and at the end of the game E[T ] � K so that Paul has
held the number of faculty in tenured positions to at most K.
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groups so that each group sums to at precisely one half.
Proof. We place the xi into groups largest �rst, always placing xi into the
group with the currently smaller sum. Let us say we are stuck at l if after
placing x1; . . . ; xl the di�erence of the sums of the groups (in absolute value)
is greater than the sum xl+1+. . .+xr of the as yet unplaced x's. We show by
induction on l, 0 � l � r, that we are never stuck. We are trivially not stuck
at l = 0, assume by induction that we are not stuck at l�1. Case 1: the two
groups currently have di�erent sums. As all x1; . . . ; xl�1 are multiples of xl
the di�erence of the sums of the groups must be a multiple of xl. Hence the
di�ence is at least xl and so placing xl in the smaller group cannot make us
stuck. Case 2: the two groups currently have the same sum. This sum, as
in Case 1, must be of the form Axl, A integral. Thus x1 + . . . + xl is of the
form (2A+ 1)xl and hence

xl+1 + . . . + xr = 1� (2A+ 1)xl � xl (32)

so that after placing xl in either group we are not stuck. Hence we will not
be stuck at l = r which means that after placement of all x1; . . . ; xl the sums
are precisely the same. 2
Corollary. Let x1 � . . . � xl be negative powers of two with sum at least
one. Then there is a partition of the xi into two groups so that each group
sums to at least one half.
Proof. If x1+. . .+xl > 1 then, since it is a multiple of xl, x1+. . .+xl�1 � 1.
Remove xl; xl�1; . . . until x1 + . . . + xr = 1 and apply the Splitting Lemma.
2

Theorem 9 If X
ak2

�k � 1 (33)

then Paul wins the Tenure Game.

Proof. Initially E[T ] � 1. From the Lemma Paul may create a list L so that
E[T 1] � 1 and E[T 2] � 1. (Note that E[T 1] is de�ned after Carole plays
Option One and so is double the sum of the original weights of the faculty
in list L.) Regardless of what Carole does E[T ] � 1 at the end of the round.
At the end of the game E[T ] � 1 and thus someone has received tenure and
Paul has won. 2

Lets generalize a bit. The rules remain the same except that now the
value of the game to Paul is the number of faculty receiving tenure. That
is, Chair Paul wants to maximize the number of faculty receiving tenure
and Dean Carole wants to minimize that number. Call this the generalized
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as those f which are k rungs from tenure each have E[If ] = 2�k . Note that
Carole wins if and only if T = 0. Our assumption 28 may be restated that
E[T ] < 1 and hence

Pr[Carole wins] = Pr[T = 0] > 0 (30)

Now comes the slick part. The Tenure Game is a �nite perfect informa-
tion game with no draws so that either Paul or Carole has a perfect strategy.
Had Paul had a perfect strategy then by playing it the probability of Carole
winning would be zero, which is not the case. Hence, Carole must have a
winning strategy! 2

The above proof is a nice example of the probabilistic method, the use
of probabilistic analysis to prove a deterministic result. As often the case
with the probabilistic method it leaves open the question of actually �nding
the desired object { in this case Carole's strategy.
Proof 2. De�ne the weight of a position as the expected number E[T ] of
faculty receiving tenure if Carole plays randomly. Explicitly, with ak faculty
k rungs from tenure the weight is

P
ak2

�k . Now Paul presents a list L to
Carole. Let T 1 be the number of faculty receiving tenure if Carole now plays
Option One and then plays randomly in all succeeding rounds. Let T 2 be
the same with Carole �rst playing Option Two. Carole's strategy is to pick
Option One if E[T 1] < E[T 2], otherwise to pick Option Two. (Suppose
Option One leaves bk players k rungs from tenure after its application while
Option Two leave ck players k rungs from tenure. Then Carole simply checks
if
P
bk2�k <

P
ck2�k and hence this is a very e�cient strategy.) The key

point here is that

E[T ] =
1

2

�
E[T 1] + E[T 2]

�
(31)

since playing randomly throughout is the average of playing Option One and
then randomly and playing Option Two and then randomly. As E[T ] < 1
either E[T 1] < 1 or E[T 2] < 1 and employing this strategy Carole insures
that E[T ] < 1 at the end of the round. Continuing this at the end of the
game E[T ] < 1. But at the end of the game E[T ] is simply the number of
faculty who have received tenure. An integer less than one must be zero so
Carole has won. 2

The Tenure Game has the nice property that when the condition for
Carole winning does not hold Paul can use this same weight function to give
a winning strategy for himself. We need in this case an amusing lemma.
Splitting Lemma. Let x1 � x2 � . . . � xr all be negative powers of two
with sum x1+ . . .+ xr = 1. Then there exists a partition of the xi into two
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tenure { Carole wins if no faculty member receives tenure. Each year (or
round if you will) Chair Paul creates a promotion list L, a subset of the
faculty2, and gives it to Dean Carole who has two options. Option One:
Carole may promote all faculty on list L one rung and simultaneously �re
all other faculty. Option Two: Carole may promote all faculty not on list
L one rung and simultaneously �re all faculty on list L. With the example
above, suppose L = fWALTER; JARIKg. If Carole applies Option One
WALTER receives tenure and Paul has won. So Carole would apply Op-
tion Two: WALTER and JARIK would disappear, RON and BELA would
become level two Assistant Professors and INGO and HANS would become
level one Assistant Professors. The next year Paul presents another list L
and Carole picks one of the two options. The Tenure Game represents an
extreme form of \publish or perish", within four years all faculty will either
have been promoted to tenure or �red. With perfect play on both sides,
who wins the Tenure Game?

Naturally we shall consider a general opening position, let us suppose
that there are ak faculty that are k rungs from tenure and that k can be
arbitrarily large, though bounded.

Theorem 8 If X
ak2

�k < 1 (28)

then Carole wins.

Proof 1. Let us imagine that Carole plays randomly, i.e., each round after
Paul has determined the promotion list L Carole ips a fair coin to decide
whether to use Option 1 or Option 2. Fix some deterministic strategy for
Paul. Now each faculty has a probability of reaching tenure { for the example
above RON has probability 1

8 = 2�3 of receiving tenure since for the next
three years Carole must select the Option that promotes, rather than �res,
RON. Note critically that this probability is 2�3 regardless of Paul's strategy;
when Paul puts RON in L Carole must choose Option One while when Paul
leaves RON out of L Carole must choose Option Two but each occurs with
probability 1

2 . Let T be the number of faculty receiving tenure so that T
is a random variable. For each faculty member f let If be the indicator
random variable for f receiving tenure so that T =

P
If . Then by Linearity

of Expectation
E[T ] =

X
E[If ] =

X
ak2

�k (29)

2The faculty are only pawns in this game!
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formulation) but simultaneously create Sn+i = Si, 1 � i � n. Stop after n
rounds, as this can only help Paul. Some

j��(Si)j = j�(Si)� �(Sn+i)j (25)

� V AL�(n) > c
p
n
p
ln n

and so for some 1 � i � 2n

j�(Si)j � 1

2
c
p
n
p
ln n (26)

Putting the results together we have the best result (originally given with a
di�erent proof, in [10]) up to constant factor:

Theorem 7 V AL(n) = �(
p
n
p
lnn)

In 1985 this author [9] improved Theorem 3 and showed that given any
family F consisting of n sets on n points there was a coloring � with

disc(F ; �)< 6
p
n (27)

(The 6 was a constant which was improvable by more precise calculations.)
Unlike the situation with the weaker O(

p
n ln n) bound, there is no poly-

nomial time algorithm known that will �nd such a coloring � and it seems
quite possible to this author that no such algorithm exists. The results on
V AL(n), while certainly not contradicting the possibility of such an algo-
rithm, argue that such an algorithm would have to be \global", there could
be no such algorithm that considered and colored the points one at a time.

3 The Tenure Game

HANS
INGO RON
JARIK BELA WALTER

�� �� � �� �� �� � � ��� � ���
PostD AP1 AP2 Assoc Tenure

The tenure game is a perfect information game between two players, Paul
- chairman of the department - and Carole - dean of the school. An initial
position is given in which various faculty (HANS , INGO, etc.) are at var-
ious pre-tenured positions. Paul will win if some faculty member receives
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(a1x; . . . ; anx) the values wR; wB satisfy

wR � wB =
nX
i=1

aix(w
R
i � wB

i ) (19)

Carole will select aix to minimize the absolute value of this sum. While
computing the minimum may be di�cult a simple greedy algorithm allows
Carole to select the aix so that

jwR � wBj � max
i
jwR

i � wB
i j (20)

Let y = n� 1� x, be the number of rounds remaining after the x-th round.
How much can the choice of �x a�ect the weight of i? Some thought shows
that wR

i �wB
i can be at most the probability that the random �x+1+. . .+�n �

Zy is a particular value. This happens with probability at most
� y
y=2

�
2�y =

O(y�1=2), with the understanding that when y = 0 this is at most one. That
is:

jwR � wBj = O(y�1=2) (21)

Let wO; wN be the weights before and after the x-th round, with Carole
using this strategy. Then regardless of what Paul does

wN � min[wR; wB] = wO �
�����
wr � wB

2

����� = wO �O(y�1=2) (22)

Let wI and wF be the initial and �nal weights respectively. Then

wF � wI �
n�1X
y=0

O(y�1=2) � wI �O(
p
n) (23)

Now suppose n; � are such that wI > c
p
n with c the constant of the

O-term above. Then with Carole playing this strategy wF > 0. But wF is
simply the number of i with jLij > � so there would be at least one such i

and therefore Carole would win the game. Here

wI = nPr[jZnj > �] (24)

with Zn given by 9. Again Large Deviation results can be used to show that
with n = c

p
n
p
ln n, c a small constant, wI � n1=2 and so Carole wins. 2

From this we may easily derive a lower bound on V AL(2n). Let Car-
ole create sets Si, 1 � i � n according to the VAL�(n) game (in the set
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on the x-th round Carole decides the pro�le of x and then Paul decides
�(x) = �1. Now, however, we de�ne

��(Si) = �(Si)� �(Si) (16)

and let the payo� to Carole be the maximal j��(Si)j over 1 � i � n. Let
V AL�(n) denote the value to Carole of this new game. It will also be
convenient to describe this game geometrically. On the x-th round Carole
selects a vector vx = (a1x; . . . ; anx) with all aix = �1. Paul then selects
�x = �1. Set

Li = �1ai1 + . . . + �nain (17)

so that
�1v1 + . . . + �nvn = (L1; . . . ; Ln) (18)

The payo� to Carole is then the maximal absolute value of the Li or, in
geometric terms, the L1 norm of �1v1+. . .+�nvn. The equivalence between
the descriptions is seen by setting �x = �(x) and corresponding aix = +1
with x 2 Si and aix = �1 with x 62 Si. (Perhaps the game is best thought of
dynamically. There is a position vector P 2 Rn, initially set to 0. There are
n rounds. On each round Carole selects a vector v 2 Rn with all coordinates
�1 and then Paul resets P to be P � v, his choice of sign. The payo� to
Carole is the L1 norm of P at the end of the game.)

Theorem 6 V AL�(n) = 
(
p
n
p
ln n)

Proof. At an intermediate position de�ne the weight of i to be the proba-
bility that at the end of the game jLij > � if the remaining �x are randomly
chosen �1. (Note the aix are then immaterial since �xaix = �1 randomly.)
The weight of a position is then the sum over 1 � i � n of the weight of i.
(If the weight of the initial position is less than one then one can argue as
before that Paul will win but now we want Carole to win.) Let wO be the
weight (we'll leave o� the asterisks) at the beginning of the x-th round. A
move by Carole would generate values wR; wB of new weights should Paul
select �x = +1 or �1 respectively. As before wO = 1

2(w
R + wB). Carole's

strategy will be to make that move so that wR and wB are as close together
as possible, i.e., to minimize jwR � wBj.

Let wR
i , w

B
i be the weights of i if Carole selects aix = +1 and Paul selects

�x = +1 or �1 respectively. If, instead, Carole were to select aix = �1 the
roles of wR

i and wB
i would be reversed. Summing over i, when Carole selects

8



smallgame is entirely inside Paul's mind!) We claim

1

2
(wR + wB) � wO (13)

Once again, by additivity, it su�ces to show this where the w's are the
contributions by a single Sj . If smallgame (beginning with x) is restricted by
requiring Carole to pick x 2 Sj then Carole's optimal probability of winning
is 1

2(w
R + wB) as after the coin ip for �(x) Carole will play optimally.

Removing that restriction gives the actual game starting at x and Carole's
optimal probability wO when she has no restrictions cannot be smaller than
when she has restriction.

As with 5, this implies wN � wO.
As before, let wI ; wF denote the initial and �nal weights respectively.

Assume wI < 1. Then wF � wI < 1. In the �nal position the game is over
so that the smallgame has no rounds to it and wF is simply the number of
Sj with j�(Sj)j > �. This nonnegative integer is less than one and therefore
zero and therefore Paul would have won.

The above paragraphs are very general, now we must estimate wI in
terms of n and �. By symmetry wI = np where p is Carole's optimal
probability of winning smallgame from the initial position. Determination
of p is known to probabilists as a stopping rule problem and can be expressed
more colorfully in gambling language. Carole begins with $0: but unlimited
credit. There are n rounds and on each round she can either pass (x 62 Sj)
or bet $1: at even odds. Her Dostoyevskian goal is to end with either a win
or a loss greater than �. It is intuitively clear (and rigorously provable) that
her best strategy is to always bet until she reaches her goal and then pass
forevermore. Let Xi = �1 be uniform and independent and set

Mn = max
1�i�n

jX1 + . . . +Xij (14)

Carole wins if and only if Mn > � so that

wI = pn = nPr[Mn > �] (15)

We have actually shown that if Pr[Mn > �] < n�1 then Paul wins. From
elementary probability (the reection principle) one can show Pr[Mn > �] <
4Pr[Zn > �] with Zn given 9. From 10 the condition wI < 1 then holds for
� =

p
(2n)

p
( ln(8n)). 2

Now let us \reverse" the game analysis to give a lower bound on VAL(n).
It is technically convenient to consider a slightly di�erent game. As before
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before wO = 1
2(w

R + wB) and so the new weight wN has wN � wO. At the
end of this procedure the �nal position has weight wF � wI < 1. But wF is
simply the number of Sj with j�(Sj)j > �. A nonnegative integer less than
one must be zero so that � is the desired coloring. 2

This approach to derandomization of an algorithm via a weight function
has been more fully developed in Spencer [8] and Raghavan [7]. Now we
resurrect Carole and make a game version of Theorem 4. At the end of
the game there will be a family S1; . . . ; Sn of subsets of f1; . . . ; ng but at
the beginning these have not been determined. On the j-th round Carole
gives the pro�le of point j - i.e., she says if j 2 Si for each 1 � i � n -
and then Paul determines �(j). At the end of the game F and � have been
determined and the payo�, to Carole, is disc(F ; �). Carole need not have a
particular family of Si in mind at the start of the game but rather gives the
best pro�le in each round given the history. This is a perfect information
game and so it has a value, call it V AL(n), to Carole.

Theorem 5 V AL(n) = O(
p
n
p
lnn)

Proof. We �x � = c
p
n
p
lnn for an appropriately large c and give a strategy

for Paul that assures that at the end of the game all j�(Sj)j < �. Again
there is a weight function but this time there is a new twist. Consider an
intermediate position and a particular Sj which has some �(i) = �1 and
others undetermined.

Consider the following solitaire game by Carole, lets call it smallgame.
For each undetermined i, sequentially, Carole decides if i 2 Sj and then a
fair coin is ipped to determine �(i) = �1. Carole wins smallgame if at
the end of the game j�(Sj)j > �. (By way of illustration, if the sum of
the already determined �(i) with i 2 Sj is bigger than � at the start then
Carole can say that no new i are in Sj and so she will win with probability
one.) De�ne the weight of Sj to be the probability that Carole will win
smallgame, assuming she plays an optimal strategy. As before, the weight
of a position is the sum of the weights of the Sj .

At some intermediate position call the weight, as de�ned above, wO. In
the next round Carole decides the pro�le of, say, x and then Paul determines
�(x). Paul calculates wR and wB, what the new weights would be should
he select �(x) = +1 or �(x) = �1 respectively. Paul's strategy is to select
�(x) so as to minimize the new weight, which we call wN . (Let us be clear
that we are making no assumptions about what strategy Carole really uses,

6



Theorem 3 There is a � for which

disc(F ; �)� � = (2n ln(2n))1=2 (8)

Proof. We require a basic fact about Large Deviations. Let X1; . . . ; Xa be
independent random variables with Pr[Xi = +1] = Pr[Xi = �1] = 1

2 and
set

Za = X1 + . . . +Xa (9)

(This is usually denoted Sa but here we use S for sets.) Then (see, e.g., the
appendix of [1]) for any positive �

Pr[jZaj > �] < 2e��
2=2a (10)

Now let � be random. For each 1 � j � n the random variable �(Sj) has
distribution Za with a = jSj j. Letting Aj be the event j�(Sj)j > �

Pr[Aj ] < 2e��
2=2a � 2e��

2=2n =
1

n
(11)

by the choice of �. Letting A be the disjunction of the Aj ,

Pr[A] �
X

Pr[Aj ] < n
1

n
= 1 (12)

and so the event A has positive probability. Thus there is a point in the prob-
ability space, a particular �, for which A fails - i.e., for which all j�(Sj)j � �.
2

The weight function approach can be easily modi�ed to handle this result

Theorem 4 There is a polynomial time algorithm to �nd the � guaranteed

by Theorem 3.

Proof. The values �(i), 1 � i � n, will be found by Paul sequentially.
At an intermediate stage some �(i) = +1, some �(i) = �1 and some �(i)
are undetermined. The weight of a set Sj is de�ned as the probability
that j�(Sj)j > � if the undetermined �(i) are set equal �1 randomly. Ob-
serve that this weight, being the sum of appropriate binomial coe�cients, is
rapidly calculatable. The weight of a position is the sum of the weights of
the Sj . Initially each Sj has weight less than

1
n so that the initial position

has weight wI < n 1
n = 1. Consider a position with x the next point to

be colored. As before let wO be the weight of the current position and let
wR; wB be the new weights if �(x) is set equal to +1 or �1 respectively. As

5



some Blue points, no Red points, and s uncolored points its weight is again
2�s. If, as in the beginning, it has n uncolored points it has weight 21�n.
The weight of a position is the sum of the weights of the Sj . The initial
position thus has weight m21�n < 1 and if the �nal position contains any
monochromatic sets it will have weight at least one. Paul colors a new x 2 

Red or Blue so as the minimize the weight of the new position. Let wO be
the weight before coloring x and wR; wB the new weights if x is colored Red
or Blue respectively. We claim

wO =
1

2
(wR + wB) (4)

By addititivity it su�ces to look at the weight of any particular Sj . The
contribution to wR is the probability Sj becomes monochromatic if x is col-
ored Red and the remaining points randomly. The contribution to wB is
the probability Sj becomes monochromatic if x is colored Blue and the re-
maining points randomly. Then their average is the probability Sj becomes
monochromatic if x is colored randomly and then the remaining points ran-
domly, precisely the contribution to wO. Let wN be the weight after coloring
x. Paul's strategy assures

wN = min(wR; wB) � 1

2
(wR + wO) = wO (5)

Let wI ; wF denote the initial and �nal weights respectively. As the weight
never increases wF � wI < 1 and so the �nal coloring has no monochromatic
sets. Ignoring points in no sets we have m sets on at most mn points.
This algorithm takes polynomial (in m;n) time to �nd the desired coloring.
Observe that an exhaustive search could take time 2m or more.

2 Discrepancy

Now let us restrict F to be a family of n sets S1; . . . ; Sn of undetermined
sizes, all subsets of an n-set 
 = f1; . . . ; ng. Here the object will be to color
so that the sets Sj are evenly balanced. For any � : 
! f�1;+1g de�ne

�(Sj) =
X
x2Sj

�(x) (6)

and de�ne the discrepancy disc(F ; �) of F with respect to � by

disc(F ; �) = min
1�j�n

j�(Sj)j (7)

The following bound is due to Erd}os.
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by Paul has weight 2�0 = 1. The weight of a position is de�ned as the sum
of the weights of the Sj . Initially all sets have weight 2�n and so the initial
position has weight m2�n < 1.

Carole's strategy is always to select that previously unselected x 2 
 so
that the weight of the new position is minimized. Consider a single round in
which Carole selects x and then Paul selects y. The selection of x decreases
the position weight by the sum of all the weights of the sets containing x.
The selection of y increases the position weight by the sum of all the weights
of the sets containing y but not x. (If a set had had s unselected points,
with weight 2�s, the selection of y by Paul increases its weight by 2�s to
2�(s�1).) With Carole going �rst and optimizing the decrease by selecting x
is no less than the increase by Paul's selecting y; thus the weight at the end
of the round is not greater than when the round began. The initial position
has weight less than one, hence the �nal position has weight less than one.
But had Paul selected an entire Sj the weight would be at least one. Thus
Paul has lost and therefore Carole has won. 2

Erd}os and Selfridge also show that the condition m < 2n is best possible.
For let 
 = f1; . . . ; 2ng and consider the \Chinese Menu" F consisting of all
n-sets S � 
 which have, for all 1 � t � n, precisely one of the pair 2t�1; 2t.
This family has 2n sets and Paul wins by the natural pairing strategy. The
situation with Theorem 1 is less clear. Erd}os has de�ned m(n) to be the
minimal size of a family F of n-sets having the property that every coloring
leaves some Sj 2 F monochromatic. Theorem 1 then gives m(n) � 2n�1

but this is not best possible. The best known asymptotic bounds on m(n)
are

c12
nn1=3 < m(n) < c22

nn2 (3)

due to Jozsef Beck [2] and Erd}os [4] respectively. These bounds, while
leaving a fascinating and important problem, will not further concern us
here.

The weight function approach of Erd}os and Selfridge can be adapted to
give an algorithm implementation of Theorem 1. Again let F consist of m
sets Sj � 
, each of size n, with m < 2n�1. 
 is ordered in some way.
Paul (Carole disappears for a while) wants to �nd the coloring guaranteed
by Erd}os. Paul colors the points sequentially. At an intermediate position
there are Red points, Blue points and uncolored points. De�ne the weight of
Sj at this position to be the probability that it will be monochromatic if its
remaining uncolored points are randomly colored Red and Blue. That is, if
Sj already has a Red and a Blue point its weight is zero. If it has some Red
points, no Blue points, and s uncolored points its weight is 2�s. If it has
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if all the �(x), x 2 Sj are the same. In 1963 Erd}os [3] gave the following
result.

Theorem 1 Let F = fS1; . . . ; Smg with all jSj j = n and with m < 2n�1.
Then there exists a coloring � so that no Si is monochromatic.

Proof. Let � be a random coloring of 
. That is, for each x 2 
,

Pr[�(x) = +1] = Pr[�(x) = �1] = 1

2
(1)

and the values �(x) are mutually independent. (We \ip a fair coin" to
determine each �(x).) To every set Sj we correspond the event Aj that Sj
is monochromatic. Clearly Pr[Aj ] = 21�n. Let A be the event that some Sj
is monochromatic, so that A = _Aj . Then

Pr[A] = Pr[_mj=1Aj ] �
mX
j=1

Pr[Aj ] (2)

= m21�n < 1

given the assumption on m. The event A then has nonzero probability.
Hence there is a point in the probability space - i.e., a coloring � - for which
no Sj is monochromatic. 2

The natural, if vague, question arises: where is the coloring? Before
approaching this from an algorithmic viewpoint we turn to a seminal paper
[6] of Erd}os and John Selfridge in 1973. They considered a game between
two players, who we will call Paul and Carole. A family F = fS1; . . . ; Smg
on a set 
 is given, visible to both players. On each round Carole selects
an x 2 
 and then Paul selects a y 2 
. Once selected a point may not be
selected again. The game ends when all of 
 has been selected. Paul wins
if there is an Sj for which he has selected all x 2 Sj . Carole wins if Paul
doesn't win.

Theorem 2 Assume all jSjj = n and m < 2n. Then Carole wins.

Proof. Consider an intermediate position in the game, when points have
either been selected by Paul, been selected by Carole, or remain unselected.
De�ne the weight of Sj in that position to be zero if any points have been
selected by Carole (i.e., the set has been \killed") and, critically, to be 2�s if
no points have been selected by Carole and there remain s unselected points.
This includes the case s = 0 so that a set which has been entirely selected
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From Erd}os to Algorithms
Joel Spencer1

How can one explain the revolutionary rise of the Discrete over the past half
century. Conditions had to be ripe. Mathematical proof may be absolute
but the directions of mathematical thought are bu�etted by the winds of
social change. We were hit by a full scale hurricane: The Computer. It
has changed everything. The way we do mathematics has changed, from
the methods of printing papers to the obtaining of approximate solutions
to partial di�erential equations. The story for this author is the change
in the paradigms of Mathematics itself. Algorithms have come to center
stage. Hilbert has lost. Existence is no longer enough. Even the recursive-
ness of the �rst half of our century is no longer enough. We now want to
avoid intractibility, we want a polynomial time algorithm for constructing
our objects.

Social conditions do not, by themselves, lead to change. There must be
leaders to catch the winds. Paul Erd}os has done this for Discrete Mathe-
matics. Through his travelling, his discussions, his theorems and, perhaps
most importantly, his conjectures large areas of Discrete Mathematics have
been developed. Here we concentrate on just one of the many areas he has
developed: The Probabilistic Method. There is an irony here. Erd}os himself
has never programmed a computer and rarely speaks of algorithmic ques-
tions. In his own papers to a large extent he holds a Hilbertian philosophy,
he proves the existence of the desired coloring, tournament, design, graph or
whatever and then he moves on to the next problem. The methods he has
developed have been redesigned to �t the Algorithmic paradigms. The Prob-
abilistic Method, and more generally the use of randomness in algorithms,
has proven to be a central idea in Theoretical Computer Science.

But enough chit chat. Lets follow the Erd}os ideal and look at speci�c
problems with speci�c solutions.

1 Monochromatic Sets

Our general format will consist of a universal set 
 and a family F =
fS1; . . . ; Smg of subsets of 
. A coloring is a map � : 
! f�1;+1g. (We'll
often identify +1 with Red and �1 with Blue. Throughout this paper all

colorings shall be with two colors.) A set Sj is monochromatic (under �)

1Adapted from Lectures at the SODA conference, Orlando, FL; SIAM conference,

Vancouver, BC Canada; and the Bielefeld meeting, all 1992
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