Fundamental Algorithms, Assignment 4

Solutions

1. Consider the recursion \(T(n) = 9T(n/3) + n^2 \) with initial value \(T(1) = 1 \). Calculate the precise values of \(T(3), T(9), T(27), T(81), T(243) \).

Solution: \(T(3) = 9(1) + 3 = 12 \), \(T(9) = 9(12) + 9^2 = 135 \), \(T(27) = 9(135) + 27^2 = 2979 \), \(T(81) = 9(2979) + 81^2 = 273729 \), \(T(243) = 9(273729) + 243^2 = 29303564 \). In general, \(T(3i) = 3^{i+1} + 1 \).

2. Use the Master Theorem to give, in Thetaland, the asymptotics of these recursions:

(a) \(T(n) = 6T(n/2) + n\sqrt{n} \)

Solution: Since \(\log_2 6 = \frac{\log 6}{\log 2} = 2.58 \cdots < 3/2 \), we have Low Overhead and \(T(n) = \Theta(n^{\log_2 6}) \).

(b) \(T(n) = 4T(n/2) + n^{5} \)

Solution: Since \(\log_2 4 = 2 < 5 \), we have High Overhead and \(T(n) = \Theta(n^{5}) \).

(c) \(T(n) = 4T(n/2) + 7n^{2} + 2n + 1 \)

Solution: Since \(\log_2 4 = 2 \) and the Overhead is \(\Theta(n^{2}) \), we have \(T(n) = \Theta(n^{2}\lg n) \).
3. **Toom-3** is an algorithm similar to the Karatsuba algorithm discussed in class. (Don’t worry how Toom-3 really works, we just want an analysis given the information below.) It multiplies two n digit numbers by making five recursive calls to multiplication of two $n/3$ digit numbers plus thirty additions and subtractions. Each of the additions and subtractions take time $O(n)$. Give the recursion for the time $T(n)$ for Toom-3 and use the Master Theorem to find the asymptotics of $T(n)$. Compare with the time $\Theta(n \log_2 3)$ of Karatsuba. Which is faster when n is large?

Solution: $T(n) = 5T(n/3) + O(n)$ as the thirty is absorbed into the big oh n term. From the master theorem $T(n) = \Theta(n \log_3 5)$. As $
\log_3 5 = \frac{\ln 5}{\ln 3} = 1.46 \cdots < 1.58 \cdots = \log_2 3$

it is better that the $\Theta(n \log_2 3)$ of Karatsuba. (In practice unless n is really large Karatsuba does better because Toom-3 has large constant factors.)

4. Write the following sums in the form $\Theta(g(n))$ with $g(n)$ one of the standard functions. In each case give reasonable (they needn’t be optimal) positive c_1, c_2 so that the sum is between $c_1 g(n)$ and $c_2 g(n)$ for n large.

(a) $n^2 + (n + 1)^2 + \ldots + (2n)^2$

Solution: $\Theta(n^3)$. There are $\sim n$ terms all between n^2 and $4n^2$ so the sum is between $n^3(1 + o(1))$ and $4n^3(1 + o(1))$.

(b) $\lg^2(1) + \lg^2(2) + \ldots + \lg^2(n)$

Solution: $\Theta(n \lg^2 n)$. There are n terms all at most $\lg^2(n)$ so an upper bound is $n \lg^2(n)$. Lopping off the bottom half of the terms we still have $n/2$ terms and each is at least $\lg^2(n/2) = (\lg(n) - 1)^2 \sim \lg^2 n$ so the lower bound is $(1 + o(1))(\frac{n}{2}) \lg^2 n$.

(c) $1^3 + \ldots + n^3$.

Solution: $T(n) = \Theta(n^4)$. Upper bound n^4 as n terms, each at most n. Lopping off bottom half yields $n/2$ terms, each at least $(n/2)^3$ giving a lower bound $(n/2)(n/2)^3 = n^4/16$.

5. Give an algorithm for subtracting two n-digit decimal numbers. The numbers will be inputted as $A[0 \cdots N]$ and $B[0 \cdots N]$ and the output should be $C[0 \cdots N]$. How long does your algorithm take, expressing your answer in one of the standard $\Theta(g(n))$ forms.
Solution: Here is one way, the term `BORROW` being the truth value of whether you have “borrowed.”

BORROW=false;
FOR I=0 TO N;
IF BORROW=false THEN X=A[I]-B[I];
IF BORROW=true THEN X=A[I]-1-B[I];
IF X ≥ 0 THEN
 C[I]=X;
 BORROW=false;
ELSE
 C[I]=X+10;
 BORROW=true;
ENDFOR
IF BORROW=true THEN ERROR;
END

This takes only a single pass and so is a linear time, that is $\Theta(N)$ algorithm.

Another approach (my thanks to Yahui Cui) more matches what is actually learned in grade school. When $A[I] < B[I]$ you need to borrow from place $I+1$. But you may have $A[I+1] = 0$. You put in a WHILE loop, starting at $J = I + 1$, that increments J until reaching $A[J] \neq 0$. Then you slide back down from J to I appropriately. For example, at

```
6 5 4 3 2 1 0 (index)
2 6 0 0 0 0 4 (A)
- 1 7 3 5 8 2 6 (B)
```

At $I = 0$ the while loop would take you to $I = 5$. Then you go back down resetting to

```
6 5 4 3 2 1 0 (index)
2 5 9 9 9 9 14 (A)
- 1 7 3 5 8 2 6 (B)
```

and then you would subtract with no borrowing until you reached $I = 5$ below.
This also takes time $\Theta(n)$ but the argument is more subtle. Any particular column could itself take time $\Theta(n)$ as you might have to take the while loop all the way up to N. Here is one way: a column can only switch from 0 to 9 once so the WHILE loops must be over disjoint intervals and so can only have total number $O(N)$ steps.