1. Suppose that we are doing Dijkstra’s Algorithm on vertex set \(V = \{1, \ldots, 500\} \) with source vertex \(s = 1 \) and at some time we have \(S = \{1, \ldots, 100\} \). What is the interpretation of \(\pi[v], d[v] \) for \(v \in S \)?

Solution: \(d[v] \) is the minimal cost of a path from \(s \) to \(v \) and \(\pi[v] \) will be the vertex just before \(v \) on that path.

What is the interpretation of \(\pi[v], d[v] \) for \(v \notin S \)?

Solution: \(d[v] \) is the minimal cost of a path \(s, v_1, \ldots, v_j, v \) where all the \(v_1, \ldots, v_j \in S \). \(\pi[v] \) will be the vertex just before \(v \) in this path, here \(v_j \).

Which \(v \) will have \(\pi[v] = NIL \) at this time.

Solution: Those \(v \) for which there is no directed edge from any vertex in \(S \) to \(v \).

For those \(v \) what will be \(d[v] \)?

Solution: Infinity

2. Suppose, as with Dijkstra’s Algorithm, the input is a directed graph, \(G \), a source vertex \(s \), and a weight function \(w \). But now further assume that the weight function only takes on the values one and two. Modify Dijkstra’s algorithm – replacing the \textsc{Min-Heap} with a more suitable data structure – so that the total time is \(O(E + V) \).

Solution: There are a number of approaches here. Start with \(S = \{s\} \) and sets \textsc{One} (those \(v \) adjacent to \(s \) via an edge of weight one), \textsc{Two} (those \(v \) adjacent to \(s \) via an edge of weight two), and \textsc{Infty} (those not adjacent to \(s \)). Now rather than going one vertex at a time \(S \) will be all points at weighted distance \(d \) or less from \(s \) and \textsc{One,Two} will be those \(v \) adjacent to a \(v \in S \) be an edge of weight one or two (if both, one). Suppose, first, \textsc{One} is empty. Add all points \(v \in \textsc{Two} \) to \(S \). Each new (not in \(S \)) neighbor of each such \(v \) is put in \textsc{One} or \textsc{Two} depending on its weight. Suppose, otherwise, \textsc{One} is not empty. Add all points \(v \in \textsc{One} \) to \(S \). All points of \textsc{Two} move to \textsc{One}. Each new (not in \(S \)) neighbor of each such \(v \) is put in \textsc{One} or \textsc{Two} depending on its weight. **Alternate Approach:** Whenever \(w(x, y) = 2 \) create a new vertex \(z \), delete edge \((x, y)\) and add edges \((x, z), (z, y)\), each of weight one. Now all the weights are one so that BFS will give the distances.

3. Let \(G \) be a \textsc{Dag} on vertices \(1, \ldots, n \) and suppose we are given that the ordering \(1 \cdots n \) is a Topological Sort. Let \(\text{COUNT}[i, j] \) denote the
number of paths from i to j. Let s, a “source vertex” be given. Give
an efficient algorithm (appropriately modifying the methods of §24.1)
to find $\text{COUNT}[s, j]$ for all j.

Solution: Let's assume $s = 1$ (we can ignore the earlier vertices, if any)
and write $\text{COUNT}[j]$ for $\text{COUNT}[1, j]$. We set $\text{COUNT}[1] = 1$.
The key is that $\text{COUNT}[1, j]$ is the sum, over all $i < j$ with i, j a
directed edge, of $\text{COUNT}[1, i]$. Why? Well, every path from 1 to
j will have a unique penultimate point $i < j$ and given i there will
be precisely $\text{COUNT}[i]$ such paths. One way to implement this is
to make a reverse adjacency list, create for every j a list $\text{Adjrev}[j]$
of those i with a directed edge from i to j. This can be done in time
$O(E)$ by going through the original adjacency lists and when $j \in \text{Adj}[i]$
adding i to $\text{Adjrev}[j]$. Then we can implement this sum. The total
time (assuming addition takes unit time) is $O(E)$.