Fundamental Algorithms, Assignment 9
Due April 12 in Recitation

The cautious seldom err. – Confucius

1. Text Alignment (see the webnotes) can be done in a forward manner. Let \(l[1], \ldots, l[n], L \), penalty function \(0 = P[0], \ldots, P[L - 1] \) be given as before. Now set \(FBAD[i] \) (\(F \) for front) as the minimal total badness for the text \(l[1], \ldots, l[i] \). Assume (to avoid the easy case) that \(l[1], \ldots, l[i] \) do not fit on one line. Assume (important!) that \(FBAD[j] \) are already known for all \(j < i \). Give a formula for \(FBAD[i] \) as the minimum of some things. From the formula, create an algorithm to determine \(FBAD[i] \) which takes time \(O(L) \). (Idea; Consider the last line when \(l[1], \ldots, l[i] \) is parsed.)

2. Consider the undirected graph with vertices \(1, 2, 3, 4, 5 \) and adjacency lists (arrows omitted) \(1 : 25, 2 : 1534, 3 : 24, 4 : 253, 5 : 412 \). Show the \(d \) and \(\pi \) values that result from running BFS, using 3 as a source. Nice picture, please!

3. Show the \(d \) and \(\pi \) values that result from running BFS on the undirected graph of Figure A, using vertex \(u \) as the source.

4. We are given a set \(V \) of boxers. Between any two pairs of boxers there may or may not be a rivalry. Assume the rivalries form a graph \(G \) which is given by an adjacency list representation, that is, \(Adj[v] \) is a list of the rivals of \(v \). Let \(n \) be the number of boxers (or nodes) and \(r \) the number of rivalries (or edges). Give a \(O(n + r) \) time algorithm that determines whether it is possible to designate some of boxers as \textsc{Good} and the others as \textsc{Bad} such that each rivalry is between a \textsc{Good} boxer and a \textsc{Bad} boxer. If it is possible to perform such a designation your algorithm should produce it.

Here is the approach: Create a new field \(\text{TYPE}[v] \) with the values \textsc{Good} and \textsc{Bad}. Assume that the boxers are in a list \(L \) so that you can program: For all \(v \in L \). The idea will be to apply \(\text{BFS}[v] \) – when you hit a new vertex its value will be determined. A cautionary note: \(\text{BFS}[v] \) might not hit all the vertices so, just like we had \(\text{DFS} \) and \(\text{DFS-VISIT} \) you should have an overall \(\text{BFS-MASTER} \) (that will run through the list \(L \)) and, when appropriate, call \(\text{BFS}[v] \).

Note: The cognescenti will recognize that we are determining if a graph is bipartite!
5. Show how DFS works on Figure B. All lists are alphabetical except we put R before Q so it is the first letter. Show the discovery and finishing time for each vertex.

6. Show the ordering of the vertices produced by `TOP-SORT` when it is run on Figure C, with all lists alphabetical.

7. Let G be a DAG with a specific designated vertex v. Uno and Dos (Spanish for One and Two) play the following game. A token is placed on v. The players alternate moves, Uno playing first. On each turn if the token is on w the player moves the token to some vertex u with (w, u) an edge of the DAG. When a player has no move, he or she loses. Except for the first part below, we assume Uno and Dos play perfectly.

(a) Argue that the game must end. Indeed, argue that if G has n vertices then the game cannot take more than $n - 1$ moves. (Key: Its a DAG!)

(b) Define $VALUE[z]$ to be the winner of the game (either Uno or Dos) where the token is initially placed at vertex z and Uno plays first. (That is, $VALUE[z]$ being Uno means that the player who has the move will win, $VALUE[z]$ being Dos means that the player who has the move will lose.) When z is a leaf node and Uno plays first, Uno has no move and so loses and therefore $VALUE[z]$ is Dos. But what if z is not a leaf node. Suppose the $VALUE[w]$ are known for all $w \in Adj[z]$. How do those values determine $VALUE[z]$? (To give part of the answer: Suppose there is some $w \in Adj[z]$ with $VALUE[w]$ equal Dos. From z Uno’s winning strategy is to move to w.)

(c) Using the above idea modify `DFS-VIST[v]` to find who wins the original game. In your modified algorithm there will be an extra function $VALUE[w]$ which is originally set to NIL for all vertices w, representing that the winner of the game starting at w has not yet been determined. When the unmodified `DFS-VISIT[w]` would be finished add a couple of lines of pseudocode to give $VALUE[w]$. Give an upper bound on the time of your algorithm.

What is night for all beings is the time of waking for the disciplined soul. Bhavagad Gita, II.69