Basic Algorithms, Assignment 13
Solutions

1. Suppose that we are doing Dijkstra’s Algorithm on vertex set \(V = \{1, \ldots, 500\} \) with source vertex \(s = 1 \) and at some time we have \(S = \{1, \ldots, 100\} \). What is the interpretation of \(\pi[v], d[v] \) for \(v \in S \)?

Solution: \(d[v] \) is the minimal cost of a path from \(s \) to \(v \) and \(\pi[v] \) will be the vertex just before \(v \) on that path.

What is the interpretation of \(\pi[v], d[v] \) for \(v \not\in S \)?

Solution: \(d[v] \) is the minimal cost of a path \(s, v_1, \ldots, v_j, v \) where all the \(v_1, \ldots, v_j \in S \). \(\pi[v] \) will be the vertex just before \(v \) in this path, here \(v_j \).

Which \(v \) will have \(\pi[v] = \text{NIL} \) at this time.

Solution: Those \(v \) for which there is no directed edge from any vertex in \(S \) to \(v \).

For those \(v \) what will be \(d[v] \)?

Solution: Infinity

2. (Extra from last week!) You may use Agarwal/Kayal/Saxena but, if so, mark clearly how it is used.

 (a) Call a positive integer \(n \) **TONG** if it has at least one prime divisor \(p \) of the form \(p = 10k + 7 \). Show \(\text{TONG} \in \text{NP} \).

 Solution: Oracle gives the value \(p \). Verifier must check that
 i. \(p \) divided by 10 gives a remainder of 7
 ii. \(p \) is prime – using AKS
 iii. \(p \) divides \(n \)

 (b) (harder!) Call a positive integer \(n \) **LAYLA** if it has exactly one prime divisor \(p \) of the form \(p = 10k + 7 \). Show \(\text{LAYLA} \in \text{NP} \).

 Solution: Oracle gives the prime factorization (possibly with repetition) \(n = p_1 \cdots p_r \) with \(p_1 \) of the form \(10k + 7 \). Verifier must check that
 i. \(p_1 \) divided by 10 gives a remainder of 7
 ii. All other \(p_i \) divided by 10 do not give a remainder of 7
 iii. All \(p_i \) are prime – using AKS.
 iv. \(n = p_1 \cdots p_r \)

 (Note: As all \(p_i \geq 2 \) the number of factors \(r \leq d, d \) the number of digits of \(n \). So if AKS takes \(O(d^c) \) applying AKS to each factor takes \(O(d^c+1) \), still polynomial.)
3. Let G be a DAG on vertices $1,\ldots,n$ and suppose we are given that the ordering $1\cdots n$ is a Topological Sort. Let $\text{COUNT}[i,j]$ denote the number of paths from i to j. Let s, a “source vertex” be given. Give an efficient algorithm (appropriately modifying the methods of §24.1) to find $\text{COUNT}[s,j]$ for all j.

Solution: Let $s = 1$ (we can ignore the earlier vertices, if any) and write $\text{COUNT}[j]$ for $\text{COUNT}[1,j]$. We set $\text{COUNT}[1] = 1$. The key is that $\text{COUNT}[1,j]$ is the sum, over all $i < j$ with i,j a directed edge, of $\text{COUNT}[1,i]$. Why? Well, every path from 1 to j will have a unique penultimate point $i < j$ and given i there will be precisely $\text{COUNT}[i]$ such paths. One way to implement this is to make a reverse adjacency list, create for every j a list $\text{Adjrev}[j]$ of those i with a directed edge from i to j. This can be done in time $O(E)$ by going through the original adjacency lists and when $j \in \text{Adj}[i]$ adding i to $\text{Adjrev}[j]$. Then we can implement this sum. The total time (assuming addition takes unit time) is $O(E)$.