We look around the world and we see many problems. But equally we look around the world and we find many solutions.

Jane Goodall

Total Time: 80 Minutes

1. (15) Let $A[1\cdots N]$ be an array with all entries integers between 0 and $N - 1$. How long would RADIX-SORT take to sort A assuming that we use base 2 (that is, binary)? (Assume the entries $A[i]$ are already given as binary strings in the input.) You must give an argument for your answer. Give (no proofs required!) a faster way to sort this data.

2. (15) Frank is an algorithm similar to the Karatsuba algorithm discussed in class. It multiplies two n digit numbers by making five recursive calls to multiplication of two $n/4$ digit numbers plus forty additions and subtractions. Each of the additions and subtractions take time $O(n)$. Give the recursion for the time $T(n)$ for Frank and use the Master Theorem to find the asymptotics of $T(n)$. Compare with the time $\Theta(n^{\log_2 3})$ of Karatsuba. Which is faster when n is large? (If you don’t have a calculator handy, tell what quantities you need compare to tell which is faster.)

3. (20) Let A be an array of length 1023 in which the values are distinct and in increasing order.

 (a) In the procedure $\text{BUILD-MAX-HEAP}(A)$ precisely how many times will two elements of the array be exchanged? (Reason, please!)

 (b) Now suppose the values are distinct and in decreasing order. Again, in the procedure $\text{BUILD-MAX-HEAP}(A)$ precisely how many times will two elements of the array be exchanged? (Reason, please!)

4. (20) Consider the recursion

 $$T(3n) = 9T(n) + 4n^2$$

 with initial value $T(1) = 5$.

(a) (5) Find $T(9)$ precisely.

(b) (5) Use the Master Theorem to give the asymptotics of $T(n)$ in Theta-land. (Brief explanation, please.)

(c) (10) Using a suitable auxiliary variable find a precise formula for $T(n)$ where n is a power of 3. (Write $n = 3^t$. Your formula can use n and/or t.)

5. (20) Give an algorithm TINYPieces that does the following. As input you have an array \textit{PRICE}[1 \cdots N] where, for $1 \leq i \leq N$, \textit{PRICE}[i] is the price of a rod of length i. You are given a rod of total length N^5. You wish to cut it into pieces (but all pieces must be of length at most N) so as to maximize the total price. Your algorithm should output \textit{VALUE}, where this represents the maximal total price. (Note: You are not being asked to find the actual cutting of the rod.) Analyze (in \Theta-land) the total time your algorithm takes. You must give a description in clear words of what the algorithm is doing.

6. (20) Describe the algorithm \texttt{QUICKSORT}(p, r) which sorts the elements \textit{A}[i], $p \leq i \leq r$. (You can assume $p \leq r$.) You may, and should, use auxiliary arrays. Subroutines must be described in full. Explain in clear words what the algorithm is doing. Give (without proof!) both the average and the worst-case time for \texttt{QUICKSORT}(1, n).

7. (20) Here is a psuedocode sorting algorithm that uses Binary Search Tree. We wish to sort \textit{A}[1 \cdots N]. (There are no records here, each \textit{A}[I] is itself the key.) Begin with an empty BST T.

Part I: FOR $I = 1$ to N; INSERT \textit{A}[I] into T; ENDFOR

Part II: Apply \texttt{IN-ORDER-TREE-WALK} to T

Analyze both the average time and the worst case time for this algorithm.

Comstock grins and says, ‘You sound awfully sure of yourself, Waterhouse! I wonder if you can get me to feel that same level of confidence.’

Waterhouse frowns at the coffee mug. ‘Well, it’s all in the math,’ he says, ‘If the math works, why then you should be sure of yourself. That’s the whole point of math.’

from \textit{Cryptonomicon} by Neal Stephenson