We examine the number of solutions to the equation $x^2 + y^2 = n$ with $x, y \in \mathbb{Z}$. We call $\alpha = x + iy$ the related Gaussian integer. Call two solutions equivalent if you can get from one to the other by adding minus signs and/or flipping x, y. For example, $(3, 11)$ and $(11, -3)$ are the same. We actually count the solutions up to equivalence. (While we don’t quite do it, these methods yield the answer for all n.)

1. Show (easy!) (x, y) is a solution iff $\alpha \overline{\alpha} = n$. Now write $\alpha \sim \alpha'$ or $\overline{\alpha} \sim \alpha'$. ($\overline{\alpha}$ denotes the complex conjugate and $\alpha \sim \beta$ means $\beta = u\alpha$, u a unit.) Show that two solutions $(x, y), (x', y')$ are equivalent iff their related α, α' have $\alpha \equiv \alpha'$.

Solution: With α related to (x, y) we have $i\alpha, -\alpha, -i\alpha$ related to $(-y, x), (-x, -y), (y, -x)$, $\overline{\alpha}$ to $(x, -y), i\overline{\alpha}, -i\overline{\alpha}$ to $(y, x), (-x, y), (-y, -x)$.

2. (This problem counts double!) Let $n = p_1 \cdot p_r$ where the p_i are all integer primes and all are of the form $4k + 1$. In $\mathbb{Z}[i]$ write each $p_i = \alpha_i \beta_i$ with $\beta_i = \overline{\alpha_i}$. $\gamma = \gamma_1 \cdots \gamma_r$ with each $\gamma_i \in \{\alpha_i, \beta_i\}$. Note there are 2^r choices here.

(a) Setting $\gamma = x + iy$ show that $x^2 + y^2 = n$.

Solution: $\gamma \overline{\gamma} = \prod_i \alpha_i \beta_i = \prod_i p_i = n$.

(b) Show that if $x^2 + y^2 = n$ then there is such a $\gamma = x + iy$.

Solution: Setting $\kappa = x + iy$ we have $\kappa \overline{\kappa} = n$. In $\mathbb{Z}[i]$, $n = \prod_i \alpha_i \overline{\alpha_i}$. By Unique Factorization, κ must have precisely one of each $\alpha_i, \overline{\alpha_i}$.

(c) Show that two choices for γ, γ' give $\gamma \equiv \gamma'$ iff they were either exactly the same choice or exactly the opposite choice.

Solution: By Unique Factorization if $\gamma \sim \gamma'$ they have precisely the same factors. Also, if $\gamma' \sim \overline{\gamma}$ they must have precisely the conjugate factors.

(d) Using the above, find the number of solutions to $x^2 + y^2 = n$.

Solution: The 2^r choices split into pairs so there are $2^r - 1$ solutions.

(e) Setting $n = 5 \cdot 13 \cdot 17$ use the above to find the four solutions to $x^2 + y^2 = n$ explicitly.
Solution: We factor

\[n = (2 + i)(2 - i)(3 + 2i)(3 - 2i)(4 + i)(4 - i) \]

We can assume (going to the complex conjugate if needed) \(2 + i\) is chosen. The four solutions are then

\[
\begin{align*}
(2 + i)(3 + 2i)(4 + i) &= 9 + 32i \\
(2 + i)(3 + 2i)(4 - i) &= 23 + 24i \\
(2 + i)(3 - 2i)(4 + i) &= 33 + 4i \\
(2 + i)(3 - 2i)(4 - i) &= 31 - 12i
\end{align*}
\]

That is,

\[
1105 = 9^2 + 32^2 = 23^2 + 24^2 = 33^2 + 4^2 = 31^2 + 12^2
\]

3. (Just for Fun) Presidential Trivia:

(a) Which president had a great stamp collection?
 Solution: Franklin Delano Roosevelt. He had the State Department forward him interesting stamps.

(b) Which was the fattest president?
 Solution: Taft. Yet, surprisingly, he was an excellent dancer.

(c) Which two presidents died on the same day?
 Solution: John Adams and Thomas Jefferson, precisely on the 50th anniversary of the signing of the Declaration of Independence.

(d) Which presidents were divorced?
 Solution: Ronald Reagan and Donald Trump

4. Here we examine the nature of the ideals of \(\mathbb{Z} [\sqrt{-5}] \) Let \(R \) be the rectangle \(\{(x, y) : 0 \leq x \leq 1, 0 \leq y \leq \sqrt{5}\} \).

(a) Let \(\beta \in \mathbb{Z} [\sqrt{-5}], \beta \neq 0 \). The elements of the ideal \((\beta) \) split the complex plane into equal rectangles. What are the dimensions of these rectangles?
 Solution: The basic rectangle has corners \(0, \beta, \sqrt{-5}\beta, (1 + \sqrt{5})\beta\) and has dimensions \(|\beta| \times \sqrt{5}|\beta|\).
(b) Show that for any \(P = (a, b) \in R \) either \(P \) or \(2P \) (maybe both) lies less than one away from one of the corners. Here we define \(2P = (2a \mod 1, 2b \mod \sqrt{5}) \).

Solution: By rectangular symmetry assume \(a \leq 1/2, b \leq \sqrt{5}/2 \). The unit disks around \((0,0), (0,1)\) cover everything (look at the picture!) with \(b \leq \sqrt{3}/2 \). For \(b > \sqrt{3}/2 \) look at \((2a, 2b)\). \(\sqrt{5} > 2b > \sqrt{3} \) so \(2b \) is within \(\sqrt{5} - \sqrt{3} \) from the top and \(2a \) is within \(1/2 \) of one of the sides so \((2a, 2b)\) is within

\[
\sqrt{(\sqrt{5} - \sqrt{3})^2 + (1/2)^2} < 1
\]

of one of the corners.

(c) Let \(I \) be an ideal of \(\mathbb{Z}[\sqrt{-5}] \). Let \(\beta \in I \) be a nonzero element with \(|\beta| \) minimal. Set \(\beta = c + d\sqrt{-5} \) and assume \(c, d \) are both odd. (Other cases could also be done.) Prove that either \(I = (\beta) \) or \(I = (\beta, \beta(1 + \sqrt{-5})/2) \).

Solution: If \(I \neq (\beta) \) there exists an \(\alpha \in I, \alpha \notin (\beta) \). So \(\alpha \) lies in a \(|\beta| \times \sqrt{5}|\beta|\) rectangle. And \(2\alpha \) can be considered in the rectangle as we can subtract multiples of \(\beta \). But \(\alpha, 2\alpha \in I \) and one (or both) of them lies within \(|\beta| \) of one of the corners, which are in \((\beta)\) and so we get an element \(\gamma \) of \(I \) with \(|\gamma| < |\beta|\). Contradiction? Not quite!! We might have \(2\alpha \in (\beta) \). In the rectangle, \(\alpha \) could, a priori, be a midpoint of one of the sides or the midpoint of the rectangle. In our particular case with \(a, b \) odd the midpoints of the sides, \(\beta/2 \) and \(\beta\sqrt{-5}/2 \) are not in \(\mathbb{Z}[\sqrt{-5}] \). So we must have \(\alpha \) the midpoint of the rectangle, \(\alpha = \beta(1 + \sqrt{-5})/2 \). And, indeed, this does give an ideal.

Remark: The other parities of \(a, b \) can also be examined and one can get a full description of \textit{all} ideals of \(\mathbb{Z}[\sqrt{-5}] \).