Fields to Groups and Back Again II

Let us fix some finite extension \(F \subset K \) of subfields of \(C \) and set \(G \) to be the Galois Group \(\Gamma(K : F) \). However, we now assume \(K \) is a Normal Extension of \(F \). Recall that we have already defined the map \(* \) from intermediate fields to subgroups and the map \(\dagger \) from subgroups to intermediate fields.

Theorem 0.1 Let \(F \subset K \) be subfields of \(C \) with \(K \) a Normal extension of \(F \) and set \(G \) to be the Galois Group \(\Gamma(K : F) \). Then for any intermediate field \(L \)

\[
(L^*)\dagger = L
\]

Proof: We already know \(L \subset (L^*)\dagger \). Now suppose \(\beta \in K \) and \(\beta \notin L \). Our goal is to show \(\beta \notin (L^*)\dagger \). Recall that as \(K \) is a normal extension of \(F \), \(K \) is a normal extension of \(L \).

Let \(p(x) \) be the minimal polynomial for \(\beta \in L[x] \) and let \(\beta_1 \) be another root of \(p(x) \). As \(K \) is a normal extension of \(L \), \(\beta_1 \in K \). Thus there is an isomorphism \(\sigma : L(\beta) \to L(\beta_1) \) which fixed \(L \) and has \(\sigma(\beta) = \beta_1 \). Applying the Full Isomorphism Extension Theorem we extend \(\sigma \) to an isomorphism \(\sigma^{++} \) with domain \(K \). But as \(\sigma^{++} \) fixes \(L \) and \(K \) is normal over \(L \), the range of \(\sigma^{++} \) must be \(K \). That is, \(\sigma^{++} \) is an automorphism of \(K \) which fixes all \(\alpha \in L \) but does not fix \(\beta \). So \(\beta \notin (L^*)\dagger \). End of Proof.