Fields to Groups and Back Again II

Let us fix some finite extension $F \subset K$ of subfields of \mathbb{C} and set G to be the Galois Group $\Gamma(K : F)$. However, we now assume K is a Normal Extension of F. Recall that we have already defined the map $*$ from intermediate fields to subgroups and the map \dagger from subgroups to intermediate fields.

Theorem 0.1 Let $F \subset K$ be subfields of \mathbb{C} with K a Normal extension of F and set G to be the Galois Group $\Gamma(K : F)$. Then for any intermediate field L

$$(L^*)^\dagger = L$$

Proof: We already know $L \subset (L^*)^\dagger$. Now suppose $\beta \in K$ and $\beta \notin L$. Our goal is to show $\beta \notin (L^*)^\dagger$. Recall that as K is a normal extension of F, K is a normal extension of L.

Let $p(x)$ be the minimal polynomial for $\beta \in L[x]$ and let β_1 be another root of $p(x)$. As K is a normal extension of L, $\beta_1 \in K$. Thus there is an isomorphism $\sigma : L(\beta) \to L(\beta_1)$ which fixed L and has $\sigma(\beta) = \beta_1$. Applying the Full Isomorphism Extension Theorem we extend σ to an isomorphism σ^{++} with domain K. But as σ^{++} fixes L and K is normal over L, the range of σ^{++} must be K. That is, σ^{++} is an automorphism of K which fixes all $\alpha \in L$ but does not fix β. So $\beta \notin (L^*)^\dagger$. End of Proof.

This has a perhaps surprising followup.

Theorem 0.2 Let $F \subset K$ be subfields of \mathbb{C} with K a normal extension of F. Then there are only finitely many intermediate fields L.

Proof: From Theorem 0.2, L is determined by L^* but as $G = \Gamma(K : F)$ is finite there can be only finitely many subgroups H, only finitely many possible L^*.

Theorem 0.3 Let K be a finite extension of F, both subfields of \mathbb{C}. Then there are only finitely many intermediate fields L.

Proof: Extend K to K^+ so that K^+ is a normal extension of F. From Theorem 0.2 there are only finitely many intermediate fields between F and K^+ and thus only finitely many intermediate fields between F and the smaller K. 1
Theorem 0.4 Let F be a subfield of C and $\alpha, \beta \in C$, both algebraic over F. Then there exists $\gamma \in C$ with

$$F(\gamma) = F(\alpha, \beta)$$

Proof: As α, β are algebraic over F, $F(\alpha, \beta)$ is a finite extension of F. Now for each integer i set $F_i = F(\alpha + i\beta)$. Each of these are subfields of $F(\alpha, \beta)$ but by Theorem 0.3 there are only finitely many such subfields so there must be $i \neq j$ with $F_i = F_j$. Thus F_i contains $\alpha + i\beta$ and $\alpha + j\beta$. But then it contains $\alpha = \frac{1}{j-i}(\alpha + i\beta) - i(\alpha + j\beta)$ and $\beta = \frac{1}{j-i}((\alpha + j\beta) - (\alpha + i\beta))$. Thus F_i must be all of $F(\alpha, \beta)$ and so we can take $\gamma = \alpha + i\beta$.

Theorem 0.5 Single Generator Theorem. Let K be a finite extension of F, both subfields of C. Then there is an element $\gamma \in K$ such that $K = F(\gamma)$.

Proof: We claim that for any $\alpha_1, \ldots, \alpha_r \in C$, all algebraic over F, there exists a $\gamma \in C$ with $F(\gamma) = F(\alpha_1, \ldots, \alpha_r)$. This comes from repeatedly applying Theorem 0.4 to replace two of the generators by one. (Formally we apply induction on r.) Now as K is a finite extension of F we can write $K = F(\alpha_1, \ldots, \alpha_r)$ for some finite set of α’s and then replace them by a single γ.