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Abstract
Belief propagation over Markov random fields has
been successfully used in many AI applications
since it yields accurate inference results by itera-
tively updating messages between nodes. However,
its high computation costs are a barrier to practical
use. This paper presents an efficient approach to
belief propagation. Our approach, Quiet, dynami-
cally detects converged messages to skip unneces-
sary updates in each iteration while it theoretically
guarantees to output the same results as the stan-
dard approach used to implement belief propaga-
tion. Experiments show that our approach is sig-
nificantly faster than existing approaches without
sacrificing inference quality.

1 Introduction
Markov random fields is one of the popular graphical models
in AI and machine learning [Nakatsuji and Fujiwara, 2014;
Fujiwara et al., 2014; Shiokawa et al., 2013; Zhu et al., 2008].
Belief propagation is known to be very effective in perform-
ing inference on Markov random fields [Choi and Darwiche,
2008]. It was first applied to infer the label of each node by
solving the energy minimization problem [Sun et al., 2003;
Weiss and Freeman, 2001]. The label of a node represents
some property in the real world such as the same object or the
disparity in given images, where nodes correspond to pixels.
Belief propagation performs inference by iteratively updating
messages between nodes for each label. While belief propa-
gation was originally intended for graphical models without
loops, for which it is guaranteed to provide the globally opti-
mal solution, it is empirically effective on a number of loopy
graphical models including Markov random fields [Cozman
and Polastro, 2008].

Due to its effectiveness and solid theoretical foundation,
belief propagation is used by many applications. For exam-
ple, stereo matching is one of the most popular applications
[Ogawara, 2010]. It is exploited to extract 3D information
from digital images, and is highly important in the fields of
telecommunications and robotics since depth information al-
lows for a system to separate occluding image components
[Pérez and Sánchez, 2011]. Another popular application is
the computation of optical flow [Lipski et al., 2010]; optical

flow is the apparent motion of the brightness pattern between
images [Szeliski, 2010]. It can be used in image morphing to
change an image into another through a seamless transition
in the field of computer art [Lipski et al., 2010]. Other than
above, belief propagation is used in a variety of applications
such as image restoration [Felzenszwalb and Huttenlocher,
2006], computer-assisted colorization [Noma et al., 2009],
and image segmentation [Zhao et al., 2014]. We omit detail
descriptions due to the space limitations.

Although belief propagation is effective in various applica-
tions, one of the most important research concerns is its speed
since a naive approach of belief propagation incurs quadratic
computation cost in the number of labels [Sun et al., 2003;
Weiss and Freeman, 2001]. If N , K, and T are the num-
ber of nodes, labels, and iterations, respectively, it needs
O(NK2T ) time. The proposal by Felzenszwalb et al. can
reduce the computation cost from O(NK2T ) to O(NKT )
[Felzenszwalb and Huttenlocher, 2006; 2004]; it is linear in
the number of labels. Their approach is now regarded as the
standard approach in implementing belief propagation [Pérez
and Sánchez, 2011]. However, current belief propagation
applications involve many nodes (pixels); this indicates that
N can have large a value. In the early 2000’s, when be-
lief propagation was first applied to the inference problem
[Sun et al., 2003; Weiss and Freeman, 2001], image size was
around 640 × 480 or so. Recently, images of 1280 × 720
pixels must be processed in real-time to realize 3D telep-
resence systems [Pérez and Sánchez, 2011]. Moreover, re-
cent optical flow-based image morphing systems must pro-
cess 1920×1080 images [Lipski et al., 2010]. To increase the
processing speed, Ogawara proposed to enhance the standard
approach by averaging the outgoing messages from the nodes
[Ogawara, 2010]. Although it is more efficient than the stan-
dard approach by reducing the number of updated messages,
the computation cost of their approach isO(NKT ); the same
as the standard approach. Furthermore, its inference results
are different from those of the standard approach. Sacrificing
the inference results makes it difficult to realize truly effective
applications [Fujiwara et al., 2013].

This paper proposes Quiet a novel, highly-efficient algo-
rithm for belief propagation that provably guarantees to out-
put the same inference results as the standard approach. In or-
der to reduce the computation cost, we dynamically skip un-
necessary updates by identifying converged messages in each



iteration. This approach reduces the computation cost from
O(NKT ) to O(MKT ), where M is the average number of
message updates in the given image and we have M � N .
Experiments demonstrate that our approach cuts the process-
ing time by over 80% from the standard approach.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the existing approaches. Section 3 de-
tails our approach. Section 4 reviews the results of our exper-
iments. Section 5 provides our conclusion.

2 Preliminary
This section briefly reviews the standard approach by Felzen-
szwalb et al. and the approximate variant by Ogawara. This
paper focuses on the pairwise model since the higher-order
models are not general to use in applications compared to the
pairwise model as described in [Zikic et al., 2010]. However,
our approach can be easily applied for other models [Singla
et al., 2014; Sato, 2007].

Let P, L, and f be the set of pixels in an image, a set of
labels, and a function that assigns label li ∈ L to each pixel
p∈P, respectively. Inference quality of a labeling is given by
energy function E(f):

E(f) =
∑

p∈PDp(li) +
∑

(p,q)∈N Vpq(li, lj), (1)

where N are the neighbor edges in the four-connected image
grid. Dp(li) is the matching cost of assigning label li to pixel
p which is set to suit the application. For example, in stereo
matching, the matching cost is typically set as follows:

Dp(li) = min{||Il(x, y)− Ir(x− li, y)||, τ}. (2)
In this equation, label li is a non-negative integer, and Il(x, y)
are the values of pixel p = (x, y) of the left image, and
Ir(x, y) the values of pixel p = (x, y) of the right image
[Ogawara, 2010]. τ is a positive constant to suppress the ef-
fect of outliers. In addition, Vpq(li, lj) is the smoothness cost
of assigning label li and lj to neighboring pixels p and q, re-
spectively. The most widely used smoothness cost is Potts
model, which can prevent edge oversmoothing [Chen et al.,
2012]. Potts model takes the following form:

Vpq(li, lj) =

{
0 (li = lj)

d (li 6= lj).
(3)

In this model, the cost is zero for equal labels and a positive
constant, d, for different labels (i.e., d > 0). Finding a label-
ing with minimum energy corresponds to the inference prob-
lem for the graphical model of the given image as described
in the previous papers [Felzenszwalb and Huttenlocher, 2006;
2004]. In order to optimize the labeling, belief propaga-
tion iteratively passes messages around the graph accord-
ing to the connectivity given by the edges the same as
other approaches in machine learning [Nakatsuji et al., 2014;
Fujiwara and Irie, 2014; Farahmand et al., 2010; Chen et al.,
2009]. Each message is a vector whose dimension is given by
the number of labels, K. In particular, the max-product algo-
rithm is used to find an approximate minimum cost labeling
of the energy function [Fujiwara et al., 2011]. If mt

pq(lj) is
the message of node p to node q for label lj in the t-th itera-
tion, the message is iteratively computed as follows:
mt

pq(lj)=minli{Vpq(li, lj)+Dp(li)+
∑

s∈N(p)\qm
t−1
sp (li)},(4)

where N(p) \ q are the neighbors of node p other than q.
In addition, mt

pq(lj) is the normalized message of mt
pq(lj)

which is computed to prevent overflow/underflow [Martin et
al., 2011]. Note that mt

pq(lj) and mt
pq(lj) are initialized to

zero. After T iterations, label l∗q at node q is selected by us-
ing the following equation:

l∗q = argminlj{Dq(lj) +
∑

p∈N(q)m
T
pq(lj)}. (5)

The naive implementation of belief propagation requires
O(NK2T ) time; it is quadratic in the number of labels.
Therefore, reducing the computation cost of belief propaga-
tion is crucial to enhancing its usefulness.

In order to reduce the computation cost, the proposal of
Felzenszwalb et al. exploits three techniques [Felzenszwalb
and Huttenlocher, 2006; 2004]. The first technique computes
message updates efficiently. They express Equation (4) as
follows with the Potts model of Equation (3):

mt
pq(lj) = min{ht−1p (lj),minli{ht−1p (li)}+ d}, (6)

where htp(li) is computed as follows:

htp(li) = Dp(li) +
∑

s∈N(p)\qm
t
sp(li). (7)

In Equation (6), the minimization over label li is performed
once independently of the value of lj ; we can update the mes-
sage in linear time w.r.t. the number of labels. Their sec-
ond technique updates messages to every other pixel on even
iterations and vice versa on odd iterations. This technique
eliminates the need to store messages from the previous it-
eration when updating current messages. Their multi-level
technique runs the belief propagation algorithm in a coarse-
to-fine manner. It efficiently computes messages over long-
range distances by progressively increasing the resolutions to
get estimates for the messages at the next finer level; the b-
th level corresponds to a labeling problem where blocks of
2b−1 × 2b−1 pixels are grouped together (b ≥ 1). By us-
ing the three techniques, their approach reduces the computa-
tion cost from O(NK2T ) to O(NKT ), and is now regarded
as the standard approach to implementing belief propagation
[Pérez and Sánchez, 2011].

Ogawara proposed to use approximate values of messages
to enhance the processing speed of the standard approach
[Ogawara, 2010]. Specifically, their approach updates mes-
sages as follows:

mt
pq(lj) =

minli{V(li, lj)+Dp(li)+ |N(p)|−1
|N(p)|

∑
s∈N(p)m

t−1
sp (li)},

(8)

where |N(p)| is the number of nodes included in N(p). In
the original algorithm, messages have different values even if
they are sent from the same node as shown in Equation (4).
However, in the approximate approach, all messages from a
node are made identical to each other. Therefore, the num-
ber of message updates for a node is reduced to 1 from the
|N(p)| of the original algorithm. However, while their ap-
proach is more efficient than the standard approach, it does
not guarantee the same inference results as the standard ap-
proach. In addition, their approach requires O(NKT ) time
which is the same as the standard approach.



3 Proposed Approach
This section introduces Quiet, our efficient approach for be-
lief propagation; it gives the same inference results as the
standard approach. We first give an overview and then a full
description. We also give theoretical analyses and extensions
of our approach in this section.

3.1 Adaptive Message Update
The second technique of the standard approach updates mes-
sages to every other pixel in even iterations and vice versa in
odd iterations as described in the previous section. It splits
the nodes into two sets by coloring the pixels of the image in
a checkerboard pattern. As a result, messages can be divided
into two sets based on the nodes that send the messages. Let
M, Me, and Mo be the set of all the messages, the set of mes-
sages updated at even iterations, and the set of messages up-
dated at odd iterations, respectively; we have Me∪Mo = M
and Me ∩Me = ∅. In Equation (4), messages in Me can be
computed only by the messages in Mo and vice versa. The
standard approach exploits this property to reduce memory
cost. However, the standard approach still incurs high com-
putation cost, especially for images of high-resolution since
they entail large numbers of nodes and messages.

We reduce the computational cost of the standard approach
by skipping unnecessary message updates. This technique is
based on the observation that the exactly same values of mes-
sages are repeatedly sent for most pairs in the iterations; we
call these messages convergence. By exploiting this prop-
erty, we dynamically update the messages only if values of
the messages can be changed by the updates in each itera-
tions. Since we can skip most messages, we can reduce the
computational cost of the standard approach.

This section first defines the set of messages whose val-
ues are updated in the current iteration. It next shows three
properties of converged messages. Finally, it introduces the
property of the set of updated messages by utilizing the three
properties.

Let l′p be the label that gives the minimum value of
ht−2p (li), i.e., l′p = argminli∈L{ht−2p (li)}, and mt

pq be the
set of messages that are sent from node p to node q in the
t-th iteration, i.e., mt

pq = {mt
pq(lj) : lj ∈ L}. The set of

messages whose values will be updated in the t-th iteration
(t ≥ 1), Ut, is given as follows:

Definition 1 When t 6= 1, message set mt+1
pq is included in

Ut+1 if at least one of the following conditions holds for mes-
sage mt

sp(li);

(1)mt
sp(li) 6= mt−2

sp (li) and li = l′p,

(2) li 6= l′p and htp(li) < ht−2p (l′p) + d,

(3)mt
sp(li) 6=mt−2

sp (li), li 6= l′p, and ht−2p (li)<h
t−2
p (l′p)+d,

(9)

where mt
sp(li) ∈ Ut and s ∈ N(p)\q. If t = 1, we have

Ut = Mo.

In order to describe the property that defines the set of
updated messages Ut, we introduce the three cases of con-
verged messages for label li ∈ L where (1) li = l′p, (2)
li 6= l′p and ht−2p (li) ≥ ht−2p (l′p) + d, and (3) li 6= l′p and

ht−2p (li) < ht−2p (l′p) + d. Note that these three case are mu-
tually exclusive. The three properties on the converged mes-
sages are as follows (proofs are shown in Appendix);
Lemma 1 For label l′p, mt+1

pq (l′p) = mt−1
pq (l′p) holds if we

have (1) mt
sp(l′p) = mt−2

sp (l′p) for all node s such that s ∈
N(p)\q and (2) htp(li) ≥ ht−2p (l′p) for all label li such that
li 6= l′p.

Lemma 2 For label li such that li 6= l′p and ht−2p (li) ≥
ht−2p (l′p) +d, we have mt+1

pq (li) = mt−1
pq (li) if (1) mt

sp(l′p) =

mt−2
sp (l′p) holds for all node s such that s ∈ N(p) \ q and (2)

htp(li) ≥ ht−2p (l′p) + d holds for all label li such that li 6= l′p.

Lemma 3 We have mt+1
pq (li) = mt−1

pq (li) for label li such
that li 6= l′p and ht−2p (li)<h

t−2
p (l′p)+d if we have mt

sp(li)=

mt−2
sp (li) for all node s such that s ∈ N(p) \ q where (1)

li = l′p or (2) li 6= l′p and ht−2p (li)<h
t−2
p (l′p)+d.

Lemma 1, 2, and 3 correspond to the three cases in Defini-
tion 1. By exploiting these lemmas, we introduce the property
of set of updated messages Ut as follows:
Lemma 4 If message mt+1

pq is not included in the set of up-
dated messages Ut+1, mt+1

pq (lj) = mt−1
pq (lj) holds for all

messages such that mt+1
pq (lj) ∈mt+1

pq .
Proof We consider three cases of label li ∈ L for message
mt+1

pq (li); (1) li = l′p, (2) li 6= l′p and ht−2p (li) ≥ ht−2p (l′p)+d,
and (3) li 6= l′p and ht−2p (li) < ht−2p (l′p)+dwhich correspond
to the three lemmas.

In the first case, from Lemma 1, we have mt+1
pq (l′p) 6=

mt−1
pq (l′p) if (1)mt

sp(l′p) 6=mt−2
sp (l′p) holds where s∈N(p)\q or

(2) htp(li)<h
t−2
p (l′p) holds where li 6= l′p. If htp(li)<h

t−2
p (l′p)

holds, htp(li)<h
t−2
p (l′p)+d must hold for label li since d>0.

Therefore, from the first and second conditions of Defini-
tion 1, mt+1

pq must be included in Ut+1 if at least one message
included in mt+1

pq is not converged in the (t+1)-th iteration.
In the second case, we have mt+1

pq (li) 6= mt−1
pq (li) if (1)

mt
sp(l′p) 6= mt−2

sp (l′p) where s ∈ N(p)\ q or (2) htp(li) <

ht−2p (l′p) + d holds from Lemma 2. Therefore, if at least one
message included in mt+1

pq is not converged in the (t+1)-th
iteration, mt+1

pq must be included in Ut+1 from the first and
second conditions of Definition 1.

In the third case, mt+1
pq (li) 6= mt−1

pq (li) holds if we have
mt

sp(li) 6=mt−2
sp (li) for node s such that s ∈ N(p)\q where

(1) li = l′p or (2) li 6= l′p and ht−2p (li) < ht−2p (l′p)+d from
Lemma 3. As a result, from the first and third conditions of
Definition 1, mt+1

pq must be included in Ut+1 if at least one
message included in mt+1

pq is not converged in the (t+1)-th
iteration. 2

Lemma 4 indicates that, a message can change its value in
the (t+1)-th iteration only if the message is included in the
set of updated messages Ut+1. As shown in Definition 1, we
can compute Ut+1 without messages in the (t+1)-th iteration.
Therefore, we can dynamically identify messages whose val-
ues are to be updated in the (t+1)-th iteration from the mes-
sages of the t-th iteration which makes it possible to improve
the efficiency.



Algorithm 1 Quiet
1: for b = B to 1 do
2: for each message do
3: if b = B then
4: initialize the message to zero;
5: else
6: initialize the message by the results of the previous level;
7: U1 = Mo;
8: for t = 1 to T do
9: for each mt

sp(li) ∈ Ut do
10: compute mt

sp(li) from Equation (4);
11: compute mt

sp(li) for mt
sp(li);

12: Ut+1 = ∅;
13: for each mt

sp(li) such that mt
sp(li) ∈ Ut do

14: if mt
sp(li) 6= mt−2

sp (li) and li = l′p then
15: add mt+1

pq to Ut+1 where q ∈ N(p)\s;

16: if li 6= l′p and ht
p(li) < ht−2

p (l′p) + d then
17: add mt+1

pq to Ut+1 where q ∈ N(p)\s;

18: if mt
sp(li)6=mt−2

sp (li), li 6=l′p, and ht−2
p (li)<ht−2

p (l′p)+d then
19: add mt+1

pq to Ut+1 where q ∈ N(p)\s;

20: for each node do
21: determine the label of the node from Equation (5);

3.2 Algorithm
Algorithm 1 gives the full description of our approach, Quiet.
Similar to the previous approximate approach [Ogawara,
2010], it is based on the standard approach [Felzenszwalb
and Huttenlocher, 2006; 2004] which utilizes the multi-level
technique. In Algorithm 1, B is the number of levels. Note
that, in the b-th level, blocks of 2b−1 × 2b−1 are grouped
together as described in Section 2. Algorithm 1 first ini-
tializes the messages to zero if b = B (lines 3-4). Other-
wise, it initializes the messages by the results of the previous
level (lines 5-6). The details of these processes are shown in
the previous papers [Felzenszwalb and Huttenlocher, 2006;
2004]. In the iterations, it updates messages that are included
in Ut from Equation (4), and it normalizes messages (lines
9-11). By using the normalized message, it determines the
set of updated messages Ut+1. If mt

sp(li) 6= mt−2
sp (li) holds

where li = l′p, message set mt+1
pq is included in the set of

updated messages Ut+1 from the first condition of Defini-
tion 1 (lines 14-15). In addition, if htp(li) < ht−2p (l′p) + d

holds where li 6= l′p, mt+1
pq is added to Ut+1 from the sec-

ond condition of Definition 1 (lines 16-17). Similarly, if we
have mt

sp(li) 6=mt−2
sp (li), li 6= l′p, and ht−2p (li)<h

t−2
p (l′p) + d,

mt+1
pq is added to Ut+1 from the third condition of Defini-

tion 1 (lines 18-19). After the iterations, it determines the
label of each node (lines 20-21).

3.3 Theoretical Analyses
We introduce the properties of our approach in this section.
The first property is the inference results of our approach:

Theorem 1 Algorithm 1 outputs exactly the same results as
the standard algorithm of belief propagation.

Proof Prior to proving Theorem 1, we first prove that we
have Ut ⊆ Mo in the odd iterations and Ut ⊆ Me in the
even iterations by mathematical induction.
Initial step: We have U1 =Mo from Definition 1. As shown
in Definition 1 and Lemma 4, a message is included in Ut+1

only if the message can change its value by update in the t-th
iteration. In addition, messages included in Me are updated
from messages included in Mo by using Equation (4). As a
result, since U1 = Mo, it is clear that U2 ⊆Me.
Inductive step: From Lemma 4, if a message is not included in
Ut, the message cannot change its value in the t-th iteration.
Therefore, we can identify unconverged messages in the (t+
1)-th iteration from Ut. In addition, messages in Mo can be
computed only by the messages in Me and vice versa. Thus,
it is clear that we have Ut+1 ⊆ Mo and Ut+1 ⊆ Me in
the odd and even iterations, respectively, if Ut ⊆ Mo and
Ut ⊆Me hold in the odd and even iterations, respectively.

Therefore, from the result of the mathematical induction
and from Lemma 4, we can compute messages exactly the
same as the standard approach which computes messages in-
cluded in Mo and Me in even and odd iterations. Conse-
quently, our approach provably guarantees the same inference
results as the standard approach. 2

As described in Section 2, the standard approach needs
O(NKT ) time. We have the following property for the com-
putation cost of our approach:
Theorem 2 IfM is the average number of updated messages
in the given image, Algorithm 1 requires O(MKT ) time.
Proof As shown in Algorithm 1, our approach iteratively
updates and normalizes messages; these processes need
O(MKT ) time. It then determines the set of updated mes-
sages Ut+1. As shown in Algorithm 1, we can compute Ut+1

from the messages included in Ut. Thus, this process also
requires O(MKT ) time. As a result, our approach needs
O(MKT ) time. 2

Theorem 1 and 2 indicate that we can obtain the inference
results more efficiently than the standard approach without
sacrificing the inference results.

3.4 Extension of Quiet
The previous sections assumed the use of the Potts model and
the max-product algorithm for belief propagation. This sec-
tion briefly describes the extension of our techniques through
the use of other models and the sum-product algorithm.

Even though the Potts model is the most popular approach
in many applications to the smoothness cost used in Markov
random fields [Chen et al., 2012], we can also use the trun-
cated linear model and the truncated quadratic model, both
are very well known and are given as follows [Felzenszwalb
and Huttenlocher, 2006; 2004]:

Vpq(li, lj) = min{c||li − lj ||, d}, (10)

Vpq(li, lj) = min{c||li − lj ||2, d}, (11)
where c is the rate of increase in the cost, and d determines
when the increase stops. As shown in Equation (10), the
truncated linear model increases the cost linearly based on
the amount of difference between label li and lj while the
truncated quadratic model quadratically increases the cost as
shown in Equation (11). For these models, our approach de-
termines the set of updated messages as follows:

Ut+1 =

{mt+1
pq |∃mt

sp(li) s.t. s∈N(p)\q ∧mt
sp(li) 6=mt−2

sp (li)},
(12)



where li∈L. By using this technique, we can obtain the same
inference results as the standard approach in O(MKT ) time
although we omit the proof due to space limitations.

While the max-product algorithm based belief propagation
is utilized in many applications [Ogawara, 2010; Noma et al.,
2009], the sum-product algorithm can be used for belief prop-
agation. The sum-product based belief propagation computes
the posterior probability by selecting the most probable label
for each pixel. It updates the messages as follows:

mt
pq(lj)=

∑
li
{Ψpq(li, lj)Φp(li)

∏
s∈N(p)\qm

t−1
sp (li)},

(13)
where Ψpq(li,lj)=e−Vpq(li,lj) and Φp(li)=e−Dp(li). The stan-
dard approach updates the message at O(NKT ) time in the
following manner by using the box sum method as described
in the previous paper [Wells, 1986]:

mt
pq(lj)=

∑
li
{Ψpq(li, lj)g

t−1
p (li)}, (14)

where gt−1p (li) = Φp(li)
∏

s∈N(p)\qm
t−1
sp (li). Equation (13)

and (14) indicate that the sum-product algorithm updates
messages by computing the sums of messages instead of tak-
ing the minima of messages as done by the max-product algo-
rithm. Therefore, it is clear that our approach can be directly
exploited to enhance the processing speed for sum-product
algorithm based belief propagation.

4 Experimental Evaluation
We perform stereo matching to compare our approach to the
standard approach [Felzenszwalb and Huttenlocher, 2006;
2004] and the approximate approach [Ogawara, 2010]. We
used Art, Moebius, Shopvac, Flowers, and Umbrella images
obtained from the Middlebury Stereo Datasets1; their sizes
are 1390 × 1110, 1390 × 1110, 2356 × 1996, 2772 × 1980,
2880× 1980, and 2960× 2016, respectively. The six images
are shown in Figure 1. In this section, “Quiet”, “Standard”,
and “Approximate” represent the results of our approach,
the standard approach, and the approximate approaches, re-
spectively. In the experiments, we set the number of labels,
K = 100, the number of iterations in each level, T = 50,
the number of levels, B = 4, and the parameter of the Potts
model, d = 20, by following the previous paper [Felzen-
szwalb and Huttenlocher, 2004]. All experiments were con-
ducted on a Linux 2.70 GHz Intel Xeon server.

4.1 Efficiency
We evaluated the processing time of each approach. Figure 2
shows the results. In addition, Figure 3 shows the numbers
updated messages in the iterations for Art dataset and Table 1
details the numbers of messages updated by each approach
where b = 1. Since we dynamically skip unnecessary mes-
sage updates in the iterations, Table 1 shows the average num-
bers of updated messages for our approach.

Figure 2 shows that our approach is much faster than the
previous approaches; our approach cuts the processing time
by up to 82% and 75% from the standard and the approx-
imate approaches, respectively. As described in Section 2,

1http://vision.middlebury.edu/stereo/data/

(a) Art (b) Moebius (c) Shopvac

(d) Storage (e) Flowers (f) Umbrella

Figure 1: Dataset.

the standard approach updates all messages in each iteration.
In addition, the approximate approach reduces the number of
updated messages by using approximate values for messages
to raise inference efficiency. However, the approximate ap-
proach incurs the same computation cost as described in Sec-
tion 2. On the other hand, since most messages reach conver-
gence in a first few iterations, our approach effectively limits
the updated messages whereas previous approaches update
constant numbers of messages in the iterations as shown in
Figure 3. As a result, our approach reduces the number of
updated messages in the iteration by detecting the converged
messages as shown in Table 1. Thus, our approach has better
processing speed than the previous approaches.

4.2 Effectiveness

One major advantage of our approach is that it outputs the
same results as the standard approach of belief propagation
while the approximate approach yields different results. In
this section, we evaluated the precision of the inference re-
sults by the proposed approach and the approximate approach
against the standard approach. Precision is the fraction of in-
ference results of an approach that match the inference results
of the standard approach. Precision takes a value between 0
and 1; precision is 1 if the inference results are identical to
those of the standard approach. We show precision of each
approach in Figure 4.

Figure 4 shows, as expected, the precision of our approach
is 1 under all conditions examined. This is because our ap-
proach has the theoretical property that the inference results
are same as the standard approach, see Theorem 1. In con-
trast, the approximate approach has precision under 1; the ap-
proximate approach and the standard approach output differ-
ent inference results. This is because, in the approximate ap-
proach, all the messages from the same node are made iden-
tical to each other, even though the messages actually have
different values in the standard approach.

Figure 4, along with Figure 2, indicates that the approxi-
mate approach enhances the processing speed by sacrificing
the quality of inference results. On the other hand, our ap-
proach achieves higher processing speed than the previous
approaches while its inference results replicate those of the
standard approach. This indicates that our approach is an at-
tractive option for the research community in performing be-
lief propagation.
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Figure 2: Processing time of each ap-
proach.
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Table 1: Average numbers of updated messages (b = 1).

Dataset Approach
Quiet Approximate Standard

Art 1.46×107 1.54×108 6.17×108

Moebius 1.58×107 1.54×108 6.17×108

Shopvac 3.99×107 4.70×108 1.88×109

Storage 4.70×107 5.49×108 2.20×109

Flowers 5.25×107 5.70×108 2.28×109

Umbrella 5.32×107 5.97×108 2.39×109

5 Conclusions
In this paper, we proposed an efficient algorithm that gives
the same inference results as the standard approach to be-
lief propagation. The proposed approach skips unnecessary
updates by detecting the converged messages in each itera-
tion to enhance the processing speed. Experiments showed
that the proposed approach achieves high efficiency without
sacrificing inference quality; our approach outputs the same
results as the standard approach unlike the approximate ap-
proach. The proposed approach will allow many applications
to be processed more efficiently, and help to improve the ef-
fectiveness of future applications.

Appendix
In this section, we show proofs of Lemma 1, 2, and 3.

Lemma 1
Proof From Equation (6), we have

mt−1
pq (l′p)=min{ht−2p (l′p),minli{ht−2p (li)}+d}=ht−2p (l′p),(15)

since we have minli{ht−2p (li)} = ht−2p (l′p) from the defini-
tion of l′p.

In addition, from Equation (7), if we have mt
sp(l′p) =

mt−2
sp (l′p) for all s such that s ∈ N(p)\q,

htp(l′p) = Dp(l′p) +
∑

s∈N(p)\qm
t
sp(l′p)

= Dp(l′p) +
∑

s∈N(p)\qm
t−2
sp (l′p) = ht−2p (l′p).

(16)

Therefore, from Equation (6), we have

mt+1
pq (l′p) = min{htp(l′p),minli{htp(li)}+ d}

= min{ht−2p (l′p),minli 6=l′p
{htp(li)}+ d}.

(17)

If htp(li) ≥ ht−2p (l′p) holds for all label li such that li 6= l′p,

minli 6=l′p
{htp(li)}+d≥ht−2p (l′p)+d. (18)

As a result, mt+1
pq (l′p) = ht−2p (l′p) from Equation (17) and

(18). Therefore, from Equation (15), we have mt+1
pq (l′p) =

ht−2p (l′p) = mt−1
pq (l′p). 2

Lemma 2
Proof From Equation (6) and the definition of l′p, we have

mt−1
pq (li)=min{ht−2p (li),minlk{ht−2p (lk)}+d}=ht−2p (l′p)+d,(19)

for label li such that li 6= l′p and ht−2p (li)≥ht−2p (l′p)+d.
In addition, for all such label li, if htp(li)≥ht−2p (l′p)+d,

minli 6=l′p
{htp(li)}≥ht−2p (l′p)+d>ht−2p (l′p), (20)

since d > 0 holds. As a result, we have

minlk{htp(lk)}+ d =

min{ht−2p (l′p),minli 6=l′p
{htp(li)}}+d=ht−2p (l′p)+d,

(21)

since htp(l′p) = ht−2p (l′p) holds if mt
sp(l′p) = mt−2

sp (l′p) for all
node s such that s ∈ N(p)\q from Equation (7). Therefore,
if we have htp(li) ≥ ht−2p (l′p) + d,

mt+1
pq (li) = min{htp(li),minlk{htp(lk)}+ d}

= min{htp(li), h
t−2
p (l′p)+d}=ht−2p (l′p)+d,

(22)

from Equation (6). As a result, from Equation (19) and (22),
mt+1

pq (l′p) = ht−2p (l′p) + d = mt−1
pq (l′p) holds. 2

Lemma 3
Proof If the condition of Lemma 3 holds, for all s such that
s ∈ N(p)\q, we have

htp(li) = Dp(li) +
∑

s∈N(p)\qm
t
sp(li)

= Dp(li) +
∑

s∈N(p)\qm
t−2
sp (li) = ht−2p (li),

(23)

where (1) li = l′p or (2) li 6= l′p and ht−2p (li)<h
t−2
p (l′p)+d

from Equation (7). Therefore, from Equation (6),

mt+1
pq (li)=min{htp(li),minlk{htp(lk)}+d}

=min{ht−2p (li), h
t−2
p (l′p)+d}=ht−2p (li),

(24)

since ht−2p (li)<h
t−2
p (l′p)+d. In addition, from Equation (6),

mt−1
pq (li)=min{ht−2p (li),minlk{ht−2p (lk)}+d}=ht−2p (li), (25)

if ht−2p (li)<h
t−2
p (l′p)+d. Consequently, from Equation (24)

and (25), we have mt+1
pq (li) = ht−2p (li) = mt−1

pq (li). 2
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