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Abstract

This works shows both theoretically and em-
pirically how to reduce the error rate of state-
of-the-art machine learning algorithms by re-
fusing to make predictions in certain cases
even when the underlying algorithms do. In-
tuitively, our new Conjugate Prediction ap-
proach estimates the likelihood that a pre-
diction will be in error and when that likeli-
hood is high, the approach refuses to make a
prediction. Unlike other approaches, we can
probabilistically guarantee an error rate on
predictions we do make (called decisive pre-
dictions). Empirically on seven diverse data
sets (chosen for their size), our method can
probabilistically guarantee to reduce the er-
ror rate to 1/4 of what it is in the state-of-
the-art machine learning algorithm at a cost
of under 20% refusals. In practice, the error
rate is even lower than the guarantee.

1 INTRODUCTION

Motivation Applications Organization & Contribu-
tions

2 PROBLEM DESCRIPTION &
BACKGROUND

In the following subsection, we present the basic data
assumptions and the problem of classification with
refuse option. We also briefly discuss some uses of the
refuse option from the literature. Next, in Subsection
2.2., we focus on conformal prediction framework. We
provide a description of the algorithm with some theo-
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retical guarantees that we will prove their counterparts
in Section 3.

2.1 Classification with Refuse Option

In this paper, we assume the classical i.i.d. (indepen-
dent and identically distributed) data model: i.e., we
are given m+ 1 independent data points from an un-
known but fixed distribution D, where each point Zi
consists of an object-label pair Zi = (Xi, Yi) and where
the labels come from a finite set Y.

We provide the first m points Z1, . . . , Zm and the
m+ 1st object Xm+1 to a classifier and request a pre-
diction for the label Ym+1. The classifier either makes
a prediction Ŷm+1 or refuses to make one. A refusal to
predict corresponds in our notation to Ŷm+1 = ∅ and
we say a prediction is decisive if it is not refused. A
decisive prediction is made but is incorrect, then that
corresponds to Ŷm+1 /∈ {Ym+1,∅}.

Why are we introducing refuse option! Give some
papers and contexts then refer to the next subsec-
tion for the motivation of controlling the error rate

2.2 Controlling the Probability of Error

combine with the previous section

Our goal is to control the error probability when a
classifier makes a prediction. Given a data sequence,
we train a classifier to predict the labels of unseen
data coming from the same distribution. While doing
that, we try to gain an accurate estimate of the error
probability. Given those estimates, we can bound the
error probability on predicted data points to any pre-
specified value we desire.1 Our results and algorithms

1The emphasis in the literature is on bounding the error
probability in terms of the number of errors the classifier
makes on the training set -via generalization bounds- or
on a hold-out set. An accessible and instructive literature
survey of such research is (Langford, 2005).
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are based on the “conformal prediction framework”,
explained in more detail in the following subsection.

For the sake of brevity, in the rest of the paper we
drop the indices of Zm+1 = (Xm+1, Ym+1) and Ŷm+1.
Also, we denote the training sequence Z1, . . . , Zm with
Zm1 , while the collection of these training points are
denoted by Σm. Note the latter is a multiset, i.e.,
several components of the collection may be identical.

2.3 Conformal Prediction

Conformal predictors were introduced by Vovk and
Gammerman in ... Conformal predictors take a pre-
specified error rate ε as input and generate a subset of
potential labels, such that the true label falls into this
set with probability more than 1− ε.

In this subsection, we describe the mechanics of the
inductive conformal predictors and present the error
guarantees provided in the literature. For a detailed
derivation, various extensions and practical applica-
tions of conformal predictors we refer the reader to
(Vovk et. al, 2005), (...), and (....).

Intuitively, each conformal predictor is characterized
by a non-conformity score, a function that assesses the
distance between a given point (Z) and a set of points
(Σ). In the rest of the paper we denote this scoring
functions with A (Z,Σ) ∈ R which increases as Z dif-
fers more from Σ. Typically, non-conformity scores are
built upon prediction algorithms such as:

• KNN: The distance between Z and the closest
point in Σ with label Y .

• SVM: The negative distance between Z and the
decision boundary trained on Σ.

• Kernel estimators, Logistic regression, ... (proba-
bility estimators): One minus the probability es-
timate for Z based on Σ.

• Random Forest: Fraction of the trees that mis-
classifies Z in a forest trained on Σ.

For further examples of non-conformity scores we refer
the reader to Chapters 3 and 4 of (Vovk et. al, 2005).

An inductive predictor first splits the training set Σm
into two partitions i) a core training set Σtrn and ii)
a calibration set Σcal. Then, it computes the non-
conformity scores relative to the core training set for
each point in the calibration set:

A = {α : α = A (z,Σtrn) , ∀z ∈ Σcal}.

Finally, for each potential label y ∈ Y, it calculates the
score αy = A ((X, y) ,Σtrn) and includes this label into

the prediction set if this score is less than a fraction ε
of the values in A. We can see this step as setting a
threshold α∗ such that

|{α : α ∈ A, α ≤ α∗}|
|A|+ 1

≥ 1− ε,

and adding y to the prediction set if and only if
αy ≤ α∗. Intuitively, if multiple labels enter into the
prediction set then we interpret that as a refusal. In
the case none of the labels are included to the pre-
diction set, we instead declare an error. This type of
errors implies that the error rate is chosen too high
or indicate an outlier. In Section 3.1., we introduce
conjugate scores as a mean to generate predictions on
such cases as well.

Below, we present the conditional and unconditional
coverage guarantees for the inductive conformal pre-
dictors. As discussed in the previous subsection, only
the conditional coverage operationally meaningful in
the off-line scenario and in the next section we will de-
velop algorithms to control error probabilities instead
of coverage probabilities.

Theorem 2.1. (Vovk, 2012) For any target error rate
0 < ε < 1 and any inductive conformal predictor de-
scribed above, by denoting the prediction set as Γ ⊆ Y:

1. The probability that the true label is not covered
is bounded by ε,

P (Y /∈ Γ) ≤ ε.

2. For any confidence parameter 0 < δ < 1, the fol-
lowing inequality holds with probability more than
1− δ:

P (Y /∈ Γ | Zm1 ) ≤ ε+

√
− log δ

2 |Σcal|
.

Comparison, inductivist objection

Remark Note that, in (Vovk, 2012) a tigther bound
for the second part of the theorem is also presented,
but (as also noted there) this looser bound implies a
simple modification to the original algorithm. To guar-
antee a coverage probability smaller than ε with confi-
dence 1− δ, all we need to do is decreasing the target

error rate to ε−
√
− log δ
2|Σcal| .

3 INDUCTIVE CONJUGATE
PREDICTION

In this section, we introduce a variation of confor-
mal predictors to control the error probability for the
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non-refused predictions (hereafter called decisive pre-
dictions: Anil: please decide on one of these and
write just that. It’s ok to depend on the training set.

P
(
Ŷ 6= Y | Ŷ 6= ∅

)
or P

(
Ŷ 6= Y | Ŷ 6= ∅, Zm1

)
in-

stead of P
(
Ŷ 6= Y

)
or P

(
Ŷ 6= Y | Zm1

)
.

Discuss why these are more relevant!

We first introduce conjugate scores to make sure our
algorithm doesn’t make empty predictions, next in
Subsection 3.2, we introduce the naive inductive con-
jugate predictors as a tool to control the unconditional
error probability. Finally, in Section 3.3, we introduce
our algorithm that controls the training conditional
error probability.

3.1 Conjugate Scores

In the classical conformal predictor framework, once
the predictor is trained and calibrated on Zm1 , it first
calculates a non-conformity score for a new object X
by assuming the missing label is y: αy = A ((X, y) ,Σ).
Next, it compares αy with a threshold α∗ (computed
from the calibration set such that only a fraction ε of
the calibration points gives errors) to decide if the label
y should be included into the prediction set or not.
After this process is repeated for each potential label
in Y, the final prediction set is returned. However, this
approach sometimes leads to empty prediction sets,
especially when the target error rate is too high.

As a simple remedy for this problem, for a given non-
conformity score αy = A ((X, y) ,Σ), we introduce a
corresponding conjugate score as:

βy = max
y′ 6=y

A ((X, y′) ,Σ)

and add y to the prediction set only if the correspond-
ing αy is less than both the threshold α∗ and βy.

This ”conjugate” modification of conformal prediction
ensures that the most conforming label is always in-
cluded in the prediction set while decreasing the num-
ber of refused points because now we can choose a
smaller α∗ and still get no more errors in the calibra-
tion set(see Figure 1). A detailed study of conjugate
scores is given in (Kocak et. al, 2016).

3.2 Controlling Unconditional Error
Probability

In this section, we present the inductive conjugate pre-
diction (from now on abbreviated as ICP) algorithm
and give an bound on the probability of error on the
decisive predictions. The high-level pseudocode of the
ICP is given in Algorithm 1 below, and the details are
presented in Algorithms 2 and 3.

This figure intentionally left non-blank

Figure 1: comparison of conformal and conjugate pre-
dictors, make sure this figure clarifies the function of
α∗!

As the first step, ICP splits the training data into two
non-overlapping sets as in the case of conformal predic-
tors: the core training set Σtrn and the calibration set
Σcal. Next, the algorithm uses a conjugate predictor
trained on the core training set with a fixed threshold
α∗ (see Algorithm 2 and Figure 1). In particular, in
step 2, we choose the minimum α∗ that leads to an
empirical error rate less than ε on the calibration set –
explained in detail below –, and in step 3, we employ
this threshold to make the actual prediction Ŷ .

Calibration: In the calibration step, we start by set-
ting the threshold to minimum possible value (either
−∞ or 0 depeding on the non-conformity score), and
compute the fraction of errors among the decisive pre-
dictions on the calibration set, as an hold-out estimate
of the error probability on the new data. Next, we
gradually increase the threshold α∗ till the computed
estimate fall below the target error rate, see Eq. (1).

Dennis: The reason for the conservative estimate in
Eq. 1 will become apparent in the proof of Thm. 3.1,
but I am not sure if we should mention it here?

Algorithm 1 Inductive Conjugate Prediction
Input : training data Σm, target rate ε, test object X
Output : predicted label Ŷ (∅ stands for refusal)

1: Split the training data into two:
Core training data: Σtrn ← {Z1, . . . , Zl}
Calibration data: Σcal ← {Zl+1, . . . , Zm}

2: Calibrate: Choose minimum α∗ such that
(E,C) = ICPScore (Σtrn,Σcal, α

∗) satisfies

E + 1

C + 1
≤ ε (1)

3: Predict: Ŷ ← ICPPredict (Σtrn, α
∗, X)

Next, we prove that the probability of error for an ICP
on decisive predictions is upper-bounded by the targer
error rate ε. Note that this probability is calculated
over the training set as well. Tentative: the next
subsection, we will prove the conditional counterpart
of this bound and modify ICP algorithm to bound the
training set conditional probability in a natural way.
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Algorithm 2 Ŷ = ICPPredict (Σtrn, α
∗, X)

Input: training set Σtrn, threshold α∗, test object X
Output: predicted label Ŷ (∅ represents refusal)

1: Γ← ∅
2: for y ∈ Y do
3: αy ← A (Σtrn, (X, y))
4: βy ← miny′ 6=Yi

A (Σtrn, (Xi, y
′))

5: if αy ≤ max (βy, α∗) then
6: Γ← Γ

⋃
{y}.

7: if Γ is a singleton then
8: Ŷ ∈ Γ
9: else

10: Ŷ = ∅

Algorithm 3 (E,C) = ICPScore (Σtrn,Σcal, α
∗)

Input: training set Σtrn, calibration set Σcal, threshold
α∗

Output: error count E, decisive prediction count C

1: E,C ← 0, |Σcal|
2: for each Z ∈ Σcal do
3: Ŷ ← ICPPredict (Σtrn, α

∗, X)
4: if Ŷ = ∅ then
5: C ← C − 1
6: else if Y 6= Ŷ then
7: E ← E + 1

Theorem 3.1. If an inductive conjugate predictor
given in Algorithm 1 is fed with (Σm, ε,X) and gen-
erates the output Ŷ , then the probability of error of a
decisive prediction is less than the target error rate ε:

P
(
Ŷ 6= Y |Ŷ 6= ∅

)
≤ ε. (2)

Proof. We first define the following:

• Σ = Σcal∪{Z} : The union of calibration set and
the test point.

• αz: The threshold value we would get at the cal-
ibration step, if the calibration set were Σ− {z}.

Next, we can re-write the left-hand-side of Eq. (2) by
using the total probability law, and the definition of

conditional probability as follows:

= EΣ

 P
(
Y /∈ {Ŷ ,∅}| Z ∈ Σ

)
P
(
Ŷ 6= ∅| α∗ = αZ , Z ∈ Σ

)


= EΣ

Eα|Σ
P

(
Y /∈ {Ŷ ,∅}| α∗ = α,Z ∈ Σ

)
P
(
Ŷ 6= ∅| α∗ = α,Z ∈ Σ

)


≤ EΣ

max
z∈Σ

P
(
Y /∈ {Ŷ ,∅}| α∗ = αz, Z ∈ Σ

)
P
(
Ŷ 6= ∅| α∗ = αz, Z ∈ Σ

)
 .

The second line follows from the tower law, and the
third line follows by replacing the expectation with the
maximum. In the following we denote this maximizing
z value as z∗. Note that, the quantity in the expecta-
tion does not depend on the calibration set anymore
since the threshold value α∗ is only a function of Σ,
instead of Σcal. Thus we can compute this term by
exploiting the fact the points in Σ are equiprobable:

. . . = EΣ

[
E′

C ′

]
(3)

where (E′, C ′) = ICPScore (Σtrn,Σ, αz∗).

Finally, we compare (E′, C ′) with

(E′′, C ′′) = ICPScore (Σtrn,Σ− {z∗}, αz∗) .

Since the former has only one more data point in its
calibration set, the error and decisive prediction counts
can differ at most 1. Hence, we have

E′

C ′
=

{
E′′

C ′′
,
E′′ + 1

C ′′ + 1
,

E′′

C ′′ + 1

}
.

Consequently, continuing from Eq (3)

. . . ≤ EΣ

[
E′′ + 1

C ′′ + 1

]
≤ EΣ [ε] = ε. (4)

The last step follows from the definition of calibration
step, and concludes the proof.

maybe short remark

3.3 Controlling Training Conditional Error
Probability

As noted in the discussion following Theorem 2.1., the
bound given in Theorem 3.1. gives information about
the error probability for the decisive predictions av-
eraged over the training set. .... In this subsection
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instead we will focus on the training conditional error
probability over the decisive predictions, i.e.,

P
(
Ŷ 6= Y | Ŷ 6= ∅, Zm1

)
.

Before presenting our main result, Theorem 3.2., we
start with some notation and observations.

More Notation & Observations:

i.

α (ε) = inf
{
α : P

(
Ŷ 6= Y |Ŷ 6= ∅, α∗ = α

)
≤ ε
}

ii.
e (ε) = P

(
Ŷ /∈ {Y,∅} | α∗ = α (ε)

)
c (ε) = P

(
Ŷ 6= ∅ | α∗ = α (ε)

)
Theorem 3.2. For any δ1, δ2 ∈ (0, 1), the following
inequality holds with probability more than 1− δ1 − δ2

P
(
Ŷ 6= Y | Ŷ 6= ∅, Zm1

)
≤ e (ε+ ∆1)

c (ε−∆2)
. (5)

where ∆1 = O

(√
logn
n

)
and ∆2 = O

(√
logn
n

)
.

Proof. The proof simply follows combining the Propo-
sitions 3.2 and 3.3. with union bound and defining
∆1 = ε′ − ε, ∆2 = ε− ε′′, i.e.,

P (α (ε−∆2) > α∗ > α (ε+ ∆1))

with probability more than 1−δ1−δ2. Finally by not-
ing that both e and c are monotone increasing func-
tions, we conclude the proof by the following inequal-
ities:

P
(
Ŷ /∈ {Y,∅} | Zm1

)
≤ e (ε+ ∆1),

P
(
Ŷ 6= ∅ | Zm1

)
≥ c (ε−∆2) .

Remark ....

Proposition 3.3. For any 0 < δ1 < 1 and ε′ satisfy-
ing

ε′ ≥ ε+O

(√
log n

n

)
,

following bound holds:

P (α∗ ≤ α (ε′)) ≤ δ1.

Proposition 3.4. For any 0 < δ2 < 1 and ε′′ satisfy-
ing

ε′′ ≤ ε−O

(√
log n

n

)
,

following bound holds:

P (α∗ ≥ α (ε′′)) ≤ δ2.

4 NUMERICAL EXPERIMENTS

Table 1: Sample Table Title

Dataset Number of Number of Number of
Name Instances Features Classes

MNIST a a 10
Cover a a 7
Sensit 1 a a
Connect-4 1 a a
Letter 1 a 26
Cod-RNA 1 a a
Sat-Image 1 a a

5 DISCUSSIONS
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This figure intentionally left non-blank

Figure 2: comparison of conformal and conjugate predictors, make sure this figure clarifies the function of α∗!

Table 2: δ = 0.01, Entries in the table are in the form of percentages!

Base Predictor
Error Rate (ε)

ε ε/2 ε/4
Error Refuse Error Refuse Error Refuse

MNIST 04.42± 0.15 04.45± 0.21 01.84± 0.39 02.24± 0.15 10.85± 0.48 01.12± 0.17 17.70± 0.67
Cover 08.54± 0.08 08.48± 0.11 04.63± 0.36 04.23± 0.11 20.94± 0.37 02.12± 0.06 35.55± 0.61
Sensit 16.65± 0.24 16.61± 0.34 01.14± 0.70 08.22± 0.33 31.85± 0.78 04.15± 0.34 57.13± 0.60
Connect-4 16.36± 0.22 15.34± 0.24 03.38± 0.93 08.06± 0.22 31.81± 0.84 04.06± 0.19 49.25± 0.78
Letter 004.48± 0.24 04.57± 0.37 08.12± 2.05 02.37± 0.24 21.22± 1.52 01.26± 0.09 29.13± 1.37
Cod-RNA 03.16± 0.06 03.17± 0.08 00.45± 0.09 01.58± 0.06 05.69± 0.15 00.80± 0.04 11.65± 0.20
Sat-Image 07.57± 0.48 07.70± 0.55 03.55± 1.07 03.86± 0.41 15.18± 1.07 01.96± 0.40 23.91± 2.17
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6 FIRST LEVEL HEADINGS

6.1 Second Level Heading

6.1.1 Citations in Text

Citations within the text should include the author’s
last name and year, e.g., (Cheesman, 1985). Refer-
ences should follow any style that you are used to us-
ing, as long as their style is consistent throughout the
paper. Be sure that the sentence reads correctly if
the citation is deleted: e.g., instead of “As described
by (Cheesman, 1985), we first frobulate the widgets,”
write “As described by Cheesman (1985), we first frob-
ulate the widgets.” Be sure to avoid accidentally dis-
closing author identities through citations.

One line space before the table title, one line space
after the table title, and one line space after the table.
The table title must be initial caps and each table
numbered consecutively.
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