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ABSTRACT
My presentation will be online at the address
http://cs.nyu.edu/cs/faculty/shasha/papers/sigmodtut05.ppt
in addition to at the SIGMOD site. The presentation dis-
cusses computational techniques that have helped biologists,
including combinatorial design to support a disciplined ex-
perimental design, visualization techniques to display the in-
teraction among multiple inputs, and the discovery of gene
function through the search through related species, and
others.

In this writeup, I confine myself to informal remarks de-
scribing both social and technical lessons I have learned
while working with biologists. I intersperse these comments
with references to relevant papers when appropriate.

The tutorial is meant to appeal to researchers and practi-
tioners in databases, data mining, and combinatorial algo-
rithms as well as to natural scientists, especially biologists.

Lesson 0: Biology is more interesting than you
remember it
If you disliked dissecting frogs in high school, have no fear.
Modern biology is mostly about genes and proteins and the
inference of function. There will be no anatomy or terminol-
ogy tests. Biologists need us because their data no longer
fits into lab notebooks. They have become avid users of
database, information retrieval, and algorithmic tools.

Be warned: there is a culture shock. You’ll find the data
noisy and the theories a little fuzzy, but the great thing
about biology is that the discovery of a qualitative tendency
(e.g., gene X is critical for cell repair) can have enormous
impact even when the quantitative results lack precision.
Once the qualitative phenomenon is discovered, quantita-
tive modeling can follow. That modeling is often discrete,
because the data is usually too noisy for differential models.
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Lesson 1: Start with a real biologist
Too many of my computer science colleagues think they can
imagine a problem and then take it to the biologists who
will adopt it with gratitude and joy. This working method
can work, but rarely. It is simply far more productive to
start working with a team of biologists by sitting in on their
meetings. Note that I said their meetings, because that is
when you hear their real problems rather than the problems
that they distill for you when they meet you in an interdis-
ciplinary symposium.

During those meetings, you will find out quickly how you
can make yourself useful and thereby gain credibility. For
example, one of the topics discussed in my tutorial (the use
of adaptive combinatorial design[4]) came about because my
colleagues were wondering how to explore a large experimen-
tal space without spending too much money or consuming
too much time. I proposed combinatorial design as an intel-
ligent sampling approach and the use of feedback from early
experiments to refine the sample. I implemented a rough
version of the algorithm within a few days, and, yes, they
adopted it with joy.

Once you gain credibility, then of course you can bring
to the biologists’ attention tools that have been developed
for general applications. I’ve done this for example with the
choice of clustering algorithm, as well as graph and tree dis-
covery software [7, 3, 6] (see also
http://cs.nyu.edu/cs/faculty/shasha/papers/GraphClust.html).
The biologists want to hear your advice, but only after they
are convinced you listened to their problems.

Lesson 2: Caring about data
To work well with biologists, you must appreciate that they
care about data; computer scientists by and large don’t. We
computer scientists would like to invent a tool that many
people will use – many other people that is.1 We don’t
usually care for which purpose. This sometimes results in
bizarre conversations.

For example, in one project, I had written a program to
find pairings between proteins called transcription factors
and binding sites [1] Since the program was under develop-
ment, I would normally run it and then send the result data
back. Naturally (for a computer scientist), I wouldn’t even
glance at the data first. At a meeting a few weeks into this

1If you don’t believe this, ask your colleagues from IBM,
Oracle, and Microsoft how often they actually use their
database management systems.



project, my biological colleauges were very excited. “Look at
these transcription factor-binding pairs,” they said. “They
agree with the literature and make interesting predictions.”

“That’s pretty cool,” I replied. “Where did you get that
stuff?”

“Your program of course,” they said, looking at me with
eyebrows high on their foreheads.

Lesson 3: Be interdisciplinary in every way
Biologists’ interest in data suggests a natural opportunity
for database people: collaborate by consulting on data man-
agement issues or house the databases. But don’t stop there.
To be sure there may be a need for better query languages for
biology, but the big new problems fall outside pure database
concerns.

You have to be interdisciplinary within computer science
too. There are challenges such as experimental design, infor-
mation visualization, statistical analysis, and machine learn-
ing[2]. Many of the machine learning issues, by the way, have
to do with the inference of graphs (e.g. networks of protein-
protein interactions) or analog circuits (e.g. transcription
factor causality directed acyclic graphs). So, talk to your
local biologist if you’re good at such things.

Lesson 4: Save the best problems for your grad-
uate students
A lot of the problems you will have to deal with will not
be considered to be research issues by computer scientists.
You will be called upon to help data parsing problems, data
schema design issues, decisions about server architectures,
and so on. Every once in a while, a jewel of a problem
falls out. Consider reserving the jewels for your graduate
students even if you end up doing some utility programming
yourself.

A contrary approach is to lean on the programmers hired
by the biologists to do low-level bioinformatics, but this re-
moves you too much from the real work. When you do
something directly useful, you gain your colleagues’ trust
and respect even when it is easy.

If you decide to follow this lesson, know that you have to
be responsive. I try to turn around small requests in a day
or less. If the best answer takes a month, but a very good
one takes a day, go for the good one. This leads to the next
lesson.

Lesson 5: People time is everything
Biologists are pragmatic people. When they solve problems,
they think in terms of data gathering times which are days,
weeks, or months. They do not care if an algorithm can be
improved from 20 minutes to 10 minutes. They will care
if an exponential algorithm can be made polynomial, but
only if this will save them time. They will care even more
if you can save them time and/or money perhaps by using
machine learning to suggest the wet lab experiments likely
to yield the most information. In one application, a group
of us inferred the functionality of bacterial genes by looking
at similar genes across species[5]. This led to the identifica-
tion of a gene that had a good chance of being involved in a
certain bacteria’s ability to swim. Knocking that gene out
did have the desired effect – the bacteria didn’t move much.
The biologists doing the knockout would not have wanted

to do the work without the computationally generated hy-
pothesis. On the other hand, nobody would have trusted
the computational prediction alone.

Lesson 6: Meet regularly and informally
A good interdisciplinary research relationship requires a cer-
tain level of comfort. Many biologists have a certain fear
of mathematics. You probably never liked chemistry that
much. You have much to learn from one another. In my
collaborations, we meet every week for two hours in a small
conference room with cookies from one of the local Italian
bakeries. We laugh, we argue, and we ask stupid questions.
Sometimes we come up with good ideas.
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