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Main Topics

• Concurrency control — ensuring that each

user appears to execute in isolation.

• Recovery — tolerating failures and guar-

anteeing atomicity.

• Database Tuning — how to make your

database run faster.
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Concurrency Control

Here is the BALANCES table:

Employee Number Balance

101 70

106 60

121 80

132 10
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Concurrency Control — contin-
ued

Suppose the execution of several transactions

overlaps in time. Assume that we are running

a transaction, T1, that should compute and

print the total of employee balances.

Suppose employee 121 wants to move 40 from

account 121 to 101 using transaction T2.

Concurrency control must guarantee that the

outcome is as if T1 happened before T2 or

T2 happened before T1.

AVOID: debit from account 121, T1, then

credit to 101.
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Recovery

The database must remain “consistent” de-

spite the fact that hardware fails.

Suppose the above balances are to be credited

with their monthly interest. A single transac-

tion might perform the updates.

Every account should be updated exactly once.

The recovery subsystem guarantees that this

change is all-or-nothing.

Once the transaction “commits,” the update

is secure.
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Database Tuning

What is it?

The activity of attaining high performance for

data-intensive applications.

• Performance = throughput, usually.

• Performance = response time for real-time

applications.
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Tuning in Context

Designing an Information System requires:

• An accurate model of the real world —

user requirements analysis and specifica-

tion.

Knowledge acquisition + Intuition + CASE

tools.

• High performance.

The concern of tuning.
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Tuning Issues — just about ev-
erything

• Conceptual to logical schema mappings

— normalization, vertical partitioning,

aggregate maintenance.

• Logical to physical schema mappings —

indexes, distribution, disk layout.

• Transaction design — query formulation,

isolation degree desired, and transaction

length.

• Operating system and hardware choices

— buffer size, thread priorities, number of

disks, processors, and amount of memory.
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Target for this Material

• Database administrators and sophisticated

application users who already have a database

management system.

Question: How can I improve performance?

• Potential purchasers of a database

management system.

Question: What criteria should I use to

choose a system?

• Designers of a database management sys-

tem.

Question: What facilities are important?

Also for students....
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Tuning Complements Internals

• Internals: teach how to build B-trees.

Tuning: show relationship between key

size, fanout, and depth.

This in turns motivates discussion of

compression.

• Internals: teach clustering indexes, then

later concurrency control.

Tuning: show how clustering indexes can

reduce concurrent contention for

insert-intensive applications.

This in turn motivates discussion of

the implementation of record-locking.
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Why a Principled Approach?

• Portability — you can use techniques on

different systems or on different releases

of one system.

• Generalizability — principles will lead you

to good choices about features that we

don’t discuss.

• Comprehensibility — you can keep it all in

your head.
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Overview of Tuning Part

Unit 1: basic principles of tuning.

Unit 2: concurrency control, logging, operat-

ing system, hardware.

theory applied to tuning: transaction chop-

ping

Unit 3: index selection and maintenance.

Unit 4: tuning relational systems.

Unit 5: application-database interactions

Unit 6: data warehouses.

Unit 7+: case studies from consulting.
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Advanced Topics

During the semester, we will discuss advanced

topics of my current research interest as ap-

propriate. Here are some possibilities:

1. Data structures for decision support.

2. Data mining (why large databases make

statistics easy).

3. Buffering algorithms for databases and op-

erating systems that beat LRU (theorists hide

a lot in those factors of 2).

4. Farout but very fast approaches to data

management.
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Principles of Concurrency Con-
trol

Goal: Allow many users (perhaps many com-

puters)

to use database at same time (concurrently).

Also “correctly.”

Rationale: While one transaction waits for a

read

or a write, allow another to do some work.

Same as operating system rationale.
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Basic Unit of Work: a transac-
tion

Transaction is a program including accesses

to the database.

Example: to process a sale, credit (reduce)

inventory and debit (increase) cash.

Assumption: If a database starts in a consis-

tent state and transactions are executed seri-

ally, then the database remains consistent.

Correctness: Make concurrent execution have

same effect as a serial one. Give user illusion

of executing alone.

+ c©2023 Dennis Shasha 2



+ +

Model for Concurrency Control

Database is a set of data items. (Independent

of any data model).

Operations: read(data item); write(data item,

value).

begin transaction

sequence of operations

end transaction
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What’s the big deal?

Bank has two automatic teller machines and

Bob shares an account with Alice.

Bob wants to transfer 10000 dollars from check-

ing to savings. Alice wants to check total in

both (which she believes to be about $30000.)

ATM1: Bob withdraws 10000 from checking.

ATM2: Alice returns checking+savings

ATM1: Bob deposits 10000 into savings.

Alice sees only about $20,000, accuses Bob

of gambling, and gets a divorce.

Reason: Execution was not “serializable.”
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Serializability

A concurrent execution of a set of transac-

tions is serializable if it produces the same

return values from each read and the same

result state as a serial execution of the same

transactions.

Banking example was not serializable. Can

you see why by looking at pattern of reads

and writes?

R1(checking) W1(checking) R2(checking)

R2(savings) R1(savings) W1(savings)
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Criterion for serializability

Two operations conflict if they both access

the same data item and at least one is a write.

Schedule – sequence of interleaved operations

from different transactions. Actually, opera-

tions on different arguments need not be or-

dered in time, provided conflicting ones are.

Schedule is serializable if following graph

(serialization graph) is acyclic:

Nodes are transactions.

Edge from Ti to Tj if an operation from Ti

precedes and conflicts with an operation from

Tj.

For example, T1 −→ T2 because of checking

and T2 −→ T1 because of savings. Hence

schedule is not serializable.
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Schedule Equivalence

We say Ri(x) reads-from Wj(x) if Wj(x) pre-

cedes Ri(x) and there is no intervening Wk(x).

We say Wi(x) is a final-write if no Wk(x) fol-

lows it.

Two schedules are equivalent if

1) each read reads-from the same writes in

both schedules; and

Condition 1 ensures that each transaction reads

the same values from the database in each

schedule. So it must issue the same writes

(assuming writes depend only on values read

and not on something else, such as time).

2) they have the same final writes. Same final

state.
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Serialization Graph Theorem

Theorem: If the serialization graph of a

computation is acyclic, then every transaction

reads the same values and writes the same

values as it would in a serial execution consis-

tent with the graph.

Proof: Take any topological sort of the graph.

The topological sort represents a serial sched-

ule with each transaction’s operations execut-

ing all alone. We want to prove first that the

serial schedule has the same reads-from as the

schedule that produced the graph. We will do

that by looking at each item x and showing

that each transaction reads the same value of

x.
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Serialization Graph Theorem Con-
tinued

Suppose the actual execution and the serial

order have different reads-from. Suppose Rm(x)

of Tm reads x from Wp(x) of Tp in the serial

order, but Rm(x) of Tm reads x from Wq(x) of

Tq in actual execution (implying that both Tq

→ Tm and Tp → Tm). Since both Tp and Tq

contain writes to x, they must be connected in

the serialization graph, so these three trans-

actions must be ordered in the graph. Two

cases:

1) Tp → Tq. Then Tq must fall between Tp and

Tm in serial schedule. So Tm reads-from Tq in

serial schedule. Contradiction.

2) Tq → Tp. Then Tm must read x from Tp in

actual execution. Contradiction.

Final write: Your homework.

+ c©2023 Dennis Shasha 9



+ +

Guaranteeing Serializability

Predeclaration Locking: Transaction obtains

exclusive locks to data it needs, accesses the

data, then releases the locks at the end.

Exclusive lock: While T1 holds an exclusive

lock on x, no other transaction may hold a

lock on x.

Implies: concurrent transactions must access

disjoint parts of the database.

Example: L1(x) R1(x) L2(y,z) W2(z) W1(x)

UL1(x) W2(y) UL2(y,z)

Non-Example: L1(x,z) R1(x) ?L2(z,y) W2(z)

W1(z) UL1(x,z) W2(y)

Even though this is serializable. Transaction

2 cannot get a lock on z.
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Two Phase Locking

Problem: Can’t always predict needed data

items; even if could, predeclaration locking is

often too conservative.

Solution: Get locks as you need them, but

don’t release them until the end.

Two phases: acquire locks as you go, release

locks at end. Implies acquire all locks before

releasing any.

Theorem: If all transactions in an execution

are two-phase locked, then the execution is

serializable.
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Two Phase locking Proof Sketch

Call the lockpoint of a transaction, the earliest

moment when that transaction holds all its

locks.

Suppose there is a cycle in the serialization

graph: T1 → T2 → ... → Tn → T1. Then T1 ac-

cesses an item x1 before T2 accesses x1 and

the accesses conflict (at least one writes x1).

So T1 must release its lock after lockpoint(T1)

and before T2 acquires its lock on x1, which is

before lockpoint(T2). Therefore lockpoint(T1)

precedes lockpoint(T2). Similarly, there is an

x2 such that T2 accesses x2 before T3 and the

accesses conflict. So, lockpoint(T2) precedes

lockpoint(T3). By transitivity, lockpoint(T1)

precedes lockpoint(T1). Obviously absurd.
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Read locks

Two phase locking based on exclusive locks is

too conservative. Consider the schedule:

R1(x) R2(x) R2(y) R1(y).

Since none of these write, every order is equiv-

alent. So, exclusive (write) locks are too strong.

Introduce notion of shared (read) locks.
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Read Lock Rules

• While T holds a read lock on x, no other

transaction may acquire an exclusive lock

on x.

While T holds an exclusive lock on x, no

other transaction may acquire any lock on

x.

• T acquires a read lock on item x if it only

wants to read x.

T acquires an exclusive lock on x if it may

want to write x.

+ c©2023 Dennis Shasha 14



+ +

Deadlock Detection

Construct a blocking (waits-for) graph. T −→

T’ if T needs a lock on item x, T’ has a

conflicting lock on x or T’ is ahead of T on

the wait queue for x and T’ seeks a conflicting

lock on x.

If system discovers a cycle, it aborts some

transaction in cycle (perhaps lowest priority

one or most recently started one).

Example: T1 −→ T2, T2 −→ T4, T4 −→ T5,

T4 −→ T3, T3 −→ T1

Abort one of T1, T2, T3, T4.

Cycle detection need not happen frequently.

Deadlock doesn’t go away.
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Database Concurrency Control
and Operating System Concur-
rency Control

Similarities: notion of mutual exclusion. Con-

cern with deadlock.

Difference: Database concurrency control

concerned with accesses to multiple data items.

Operating Systems generally only concerned

about synchronized access to single resources.

When multiple accesses are required, operat-

ing system will get a coarse lock that covers

both.

That would be like locking the whole database

or a whole relation — unacceptable in database

setting.
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Multi-granularity Locks

What if your system has some short trans-

actions (update a seat) and some long ones

(write a report)?

It would be nice to use fine (record) level gran-

ularity for the first and coarse (file) level gran-

ularity for the second.

Solution: use intention locks.
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What are Intention Locks?

In basic scheme, there are intention read and

intention write locks. No intention lock con-

flicts with any other.

However, intention read locks conflict with

write locks. Intention write locks conflict with

read and write locks.
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Using Intention Locks

Intention lock down to the level of granularity

above what you need, e.g. intention write the

database and file, then write lock the record.

The report writer would intention read the

database, then read lock the file.

Thus, it would conflict with writes of the file,

but not with writes to another file.
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Deadlock Avoidance Protocols

Give each transaction a unique timestamp.

Require that numbers given to transactions

always increase.

Use two phase locking.

Rosenkrantz, Stearns, Lewis, ACM Transac-

tions on Database Systems 1978 (nice shelf

life)

Desired Effect: Older transactions eventually

make it, because no one aborts them. Pro-

viso: no transaction is allowed to stop trying

to make progress.

+ c©2023 Dennis Shasha 20



+ +

Wait-Die and Kill-Wait

• Wait-die: If T tries to access a lock held

by an older transaction (one with a lesser

timestamp), then T aborts and restarts.

Otherwise T waits for the other transac-

tion to complete.

• Kill-wait: If T tries to access a lock held

by an older transaction (one with a lesser

timestamp), then T waits.

Otherwise T aborts the other transaction.
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Deadlock

Summary of deadlock considerations

Goals: 1. Every transaction will eventually

terminate.

2. Want to keep deadlocks as short a time as

possible.
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Issue: Victim selection

current blocker – The one you find right away.

random blocker – any one at all.

min locks – one that holds fewest locks.

youngest – one with the most recent initial

startup time.

min work – pick the transaction that has con-

sumed the least amount of physical resources.

min locks has best performance, though it

doesn’t guarantee termination.
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Performance Conclusion

Use a locking strategy such as two phase lock-

ing.

Get highest throughput by using continuous

detection and min locks strategy. Picking the

youngest is within 10% of best throughout.

This assumes that deadlock detection itself

requires no work.

Kill-wait strategy comes in second, but is bet-

ter if deadlock detection itself is expensive.

Also, in interactive environments where think

times are long, deadlock detection can cause

excessive blocking (even in absence of dead-

lock, a person may be very slow).

May try to optimize kill-wait as follows: wait

for some time before killing.
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Optimistic Protocols (certifying)

Kung and Robinson, ”On optimistic methods

for concurrency control,” proc. 1979 interna-

tional conference on very large databases.

Do not delay any operation, but don’t change

the permanent database either.

At commit time, decide whether to commit

or abort the transaction.
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Optimistic Protocols at Com-
mit

Ti’s readset, RS(i) = {x st Ti has read x}

WS(i) = { x st Ti has written x to a workspace}

When receiving endi, certifier does the follow-

ing:

RS(active) = ∪ RS(j) for Tj active but j 6= i

WS(active) = ∪ WS(j) for Tj active but j 6= i

if RS(i) ∩ WS(active) = φ

and WS(i) ∩ (RS(active) ∪ WS(active)) = φ

then certify (commit)

else abort
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Verifying Optimisitic Protocols

Theorem: Certifier produces serializable sched-

ules.

Proof: Only care about certified transactions.

If Ti → Tj, then Ti must have been certified

before Tj accessed the item on which they

conflict. (Two cases: Ti writes x before Tj

accesses x and Ti reads x before Tj writes x.)

This relation must be acyclic.

+ c©2023 Dennis Shasha 27



+ +

Multiversion Read Consistency

A much used protocol in practice.

A read-only transaction obtains no locks. In-

stead, it appears to read all data items that

have committed at the time the read trans-

action begins.

Implementation: As concurrent updates take

place, save old copies.

Why does this work? See homework.
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Benefits of Multiversion Proto-
col

Suppose initial values are x0 and y0.

R1(x) W2(x) W2(y) R1(y)

is clearly not serializable on a single copy. But

what if T1 read the values of x and y present

when T1 began (i.e. read x0 and y0). Then

it appears as if T1 went completely before T2

without any read locks.

Multiversion read consistency applies only to

read-only transactions. Read-write transac-

tions must obtain read locks and read the lat-

est version of each data item.

+ c©2023 Dennis Shasha 29



+ +

Why Can’t We Apply Multiver-
sion Read Consistency to Read-
Write Transactions?

Any reads on data item x by transaction T

(even when T includes writes) reads the lat-

est version of x that was committed when T

began

Writes acquire (exclusive) locks in a normal

two phased manner.

T1: x := y

T2: y := x

x0 = 3

y0 = 17

R1(y) R2(x) W1(x, 17) W2(y, 3)

But what would happen in any serial execu-

tion?

Very similar to Snapshot Isolation.
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Available Copies Algorithm

Replicated data can enhance fault tolerance

by allowing a copy of an item to be read even

when another copy is down.

Basic scheme:

Read from one copy;

Write to all copies

On read, if a client transaction cannot read a

copy of x from a server (e.g. if client times

out ), then read x from another server.

On write, if a client cannot write a copy of x

(e.g. again, timeout), then write to all other

copies, provided there is at least one.
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Available Copies Continued

• At Commit time: For a two phase locked

transaction T, T tests whether all servers

that T accessed (read or write) have been

up since the first time T accessed them. If

not, T aborts. (Note: Read-only transac-

tions using multiversion read consistency

need not abort in this case.)

• When a new site is introduced or a site

recovers: The unreplicated data is avail-

able immediately for reading. Copies of

replicated data items should not respond

to a read on x until a committed copy of

x has been written to them.
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Site recovery

0. Commit transactions that should be com-

mitted and abort the others.

1. All non-replicated items are available to

read and write.

2. Replicated parts:

Option 1: Quiesce the system (allow all trans-

actions to end, but don’t start new ones) and

have this site read copies of its items from

any other up site. When done, this service

has recovered.

Option 2: The site is up immediately. Allow

writes to copies. Reject reads to x until a

write to x has occurred.

In practice, a mixture of the two.
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Reason for Abort on Failure

Suppose we don’t abort when sites that we

have read from fail. Assume that lock man-

agers are local to sites.

Suppose we have sites A, B, C, and D. A and

B have copies of x (xA and xB) and C and D

have copies of y (yC and yD).

T1: R(x) W(y) // e.g., y:= x

T2: R(y) W(x) // e.g., x:= y

Suppose we have R1(xA) R2(yD) site A fails;

site D fails; W1(yC) W2(xB)

Here we have a computation that uses two

phase locking and executes till the end, yet

transaction 2 reads y before transaction 1 writes

it and transaction 1 reads x before transaction

2 writes it.
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Available Copies Problems

Suppose T1 believes site A is down but T2

reads from it. This could easily give us a non-

serializable execution, since T2 might not see

T1’s write to a variable that A holds.

So, when T1 believes a site is down, all sites

must agree. This implies no network parti-

tions.

If network partitions are possible, then use a

quorum. In simplest form: all reads and all

writes must go to a majority of all sites.
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Weikum’s technique

• Research group at ETH Zurich led by Ger-

hard Weikum looked for automatic load

control techniques to maximize through-

put.

They observe that higher multiprogram-

ming levels may make better use of re-

sources but may also increase increase data

contention.

• Key parameter: Fraction of locks that are

held by blocked transactions. If that frac-

tion is 0, then there is no waiting. If it

is .23 or higher, then there is likely to be

excessive data contention.
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Escrow Method

• Work by Pat O’Neil. Consider an aggre-

gate data item, e.g. account balance.

• Observe that the operations are commu-

tative, e.g. additions and subtractions.

Want to avoid holding locks until the end

of the transaction, but a subtraction can’t

go through if there are insufficient funds.

• Basic idea: perform the operation on the

balance, release the lock, but keep the up-

date in an escrow account. If the trans-

action commits, then update on balance

becomes permanent. Otherwise undone

is performed based on Escrow account.
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SAGAS

• Ken Salem and Hector Garcia-Molina: long

lived activities consisting of multiple steps

that are independent transactions. Exam-

ple: making a multi-city airline reservation

for a large number of individuals.

• Each step is an independent transaction

and has a compensating counter-transaction.

Counter-transactions attempt to undo the

affect of the transaction, e.g. cancel a

reservation that a reservation transaction

made.

• A compensating transaction commits only

if the corresponding component transac-

tion commits but the saga aborts.
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Workflow Systems

• I have an organization with many closed

database systems, e.g. a telephone com-

pany or a sales and manufacturing orga-

nization.

• An activity might be a sale. This touches

many databases. The results of one database

may affect the steps taken by the next

ones.
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Taxonomy of Workflow Appli-
cations

• Route work among people in a good way,

but have a way to back out of sagas.

• The general category is business process

management. Here is an example of a

process (multi-step and possibly multiple

databases):

https://www.stakeholdermap.com/bpm/business-

process-model-payment-process.html
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Simple, Rational Guidance

for Chopping Up Transactions

or

How to Get Serializability
Without Paying For It

Dennis Shasha

Eric Simon

Patrick Valduriez
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Motivation

• Many proposals for concurrency control

methods.

Aimed at designers.

• Practitioners are stuck with two phase lock-

ing. Their only tuning knobs are

– chop transactions into smaller pieces

– choose degrees 1 or degree 2 isolation.
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Critical Assumption

Environment in which we know the transac-

tion mix (e.g., real-time or on-line transaction

processing).

That is, no unpredictable, ad hoc queries.
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Purchase Transaction — 1

Purchase:

add value of item to inventory;

subtract money from cash.

Constraint: cash should never be negative.
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Purchase Transaction — 2

Application programmers chop as follows:

1. First transaction checks to see whether

there is enough cash.

If so, add value of item to inventory.

Otherwise, abort the purchase.

2. The second transaction subtracts the value

of the item from cash.

Cash sometimes becomes negative. Why?
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Purchase Application — 3

By contrast, if each numbered statement is a

transaction, then following bad execution can

occur. Cash is $100 initially.

1. P1 checks that cash > 50. It is.

2. P2 checks that cash > 75. It is.

3. P1 completes. Cash = 50.

4. P2 completes. Cash = −25
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Purchase Transaction — 3

No surprise to you, because you know which

choppings are correct and which aren’t. You

say something like:

You fool! You should never have chopped this

transaction up in that way!

How did you never learn about chopping cor-

rectly?
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Purchase Transaction — 4

Surprise: Simple variant guarantees that cash

will never become negative.

1. First transaction checks to see whether

there is enough cash.

If so, subtract cash.

Otherwise, abort the purchase.

2. The second transaction adds value of item

to inventory.

Goal of research: Find out why this works!
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Special Recovery Hacks

Must keep track of which transaction piece

has completed in case of a failure.

Suppose each user X has a table UserX.

• As part of first piece, perform

insert into UserX (i, p, ’piece 1’), where i

is the inventory item and p is the price.

• As part of second piece, perform

insert into UserX(i, p, ’piece 2’).

Recovery includes reexecuting the second pieces

of inventory transactions whose first pieces

have finished.
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Assumptions

• Possible to characterize all transactions

during some interval.

• Want serializability for original transactions.

• On failure, possible to determine which

transactions completed and which did not.
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Chopping

For simplicity, assume sequential transactions.

A chopping is a partition of the transaction

into pieces such that the first piece has all

rollback statements.

Each piece will execute using two phase lock-

ing (if it aborts, execute again).
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Graphical Characterization

Chopping graph — Undirected graph whose

nodes are pieces. Two kinds of labeled edges.

1. Conflicts: C edge between p and p’ if the

two pieces come from different transac-

tions and issue conflicting instructions.

2. Siblings: S edge between p and p’ if they

come from the same original transaction.

Note: no edge can have both an S and a C

label.
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Correctness

A chopping of a set of transactions is correct

if any execution of the chopping is equivalent

to some serial execution of the original trans-

actions.

Equivalent = every read returns same value in

two executions and writes write same value.
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Sufficient Conditions for Correct-
ness

SC-cycle — a simple cycle that includes at

least one S edge and at least one C edge.

Theorem 1: A chopping is correct if its

chopping graph contains no SC-cycle.
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Proof of theorem 1

Suppose there were a cycle in the serialization

graph of original transactions.

T1 → T2 → ... → Tn → T1.

Ti → Tj means Ti issues op that conflicts

with and precedes an op in Tj.

Identify pieces associated with each transac-

tion that are involved in this cycle:

p → p’ → ... → p”

Both p and p” belong to transaction T1. The

edges correspond to either S or C edges.

If every arrow corresponded to a C edge, then

p 6= p” since each piece uses two phase lock-

ing so serialization graph on pieces is acyclic.

Otherwise p = p” is possible, but then every

other edge would be either a C edge or an S

edge and there must be at least one S edge.

So, cycle among original transactions implies

SC-cycle. Contradiction.
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Purchase Example

Original transactions:

P(i,p):

1. if cash > p then invent(i) += p;

2. cash -= p;

If we chop P(i,p) into two transactions, we’ll

get an SC-cycle.
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Purchase Variant

Original transactions:

P(i,p):

1. if cash > p then cash -= p;

2. invent(i) += p;

Chopping P(i,p) does not introduce an SC-

cycle, because while there are conflict edges

between the 1 pieces, there are none between

the 2 pieces (increments are commutative).
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Optimization

Question: Does a finest chopping exist?

Answer: yes.

Key Observation: If T is chopped and is in an

SC-cycle with respect to T’, then chopping

T’ further or gluing the pieces of T’ together

will not eliminate that cycle.

Moral: if chopping T causes a cycle, then

nothing you do to other transactions can help.
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Reasons

Suppose we break p of T’ into p1 and p2.

If p is in a cycle, then p1 will have an S edge

to p2, so at most the cycle will be lengthened.

Suppose we combine two pieces p1 and p2 of

T’ into piece p.

If p1 alone had been in a cycle, then so will

p. If cycle went through S edge between p1

and p2, then cycle will just be shorter.
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Systematic Method to Obtain
Finest Chopping

Original set of transactions: T1, T2, ..., Tn.

• For each transaction Ti, Fi = chop Ti as

finely as possible with respect to the other

(unchopped) transactions.

• Finest chopping is F1, F2, ..., Fn.

Algorithm is connected components algorithm

in C graph for each Ti. Complexity is O(n ×

(e + m)), where e is the number of C edges in

the transaction graph and m is max number

of database accesses.

+ c©2023 Dennis Shasha 21



+ +

Why Connected Components?

Consider Ti. When chopping Ti with respect

all other transactions, we might have some-

thing like:

Ri(x) Wi(y) Ri(z) Wi(x) Wi(q) Wi(z)

Now, say that other transactions conflict on y

and x. If the connected component algorithm

connects Wi(y) and Wi(x), then they must be

in the same piece. Otherwise, there would be

an SC cycle (S between Wi(y) and Wi(x) and

C edges along the rest of the connected com-

ponents algorithm with the unchopped other

transactions).
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Example Application

Suppose a single query of form:

SELECT ...

FROM account

is concurrent with updates of the form:

Update ...

FROM account

WHERE acctnum = :x

If acctnum is a key, then conflict on only one

record.

Can run at degree 2 isolation. (Or could chop

if all updates in first query were modifies.)
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accntnum = :x

accntnum = :x

Reason: no SC-cycle because Replace is on a key.

Degree 2 isolation has the effect of chopping the scan

In this case, degree 2 isolation is as good as degree 3.
so each record access is a single transaction.

Fig. C.4
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Future Work

Have:

simple, efficient algorithm to partition trans-

actions into the smallest pieces possible when

transaction mix is known.

Open:

• How to extend to sagas (undo transac-

tions), tree-locking, multi-level concurrency

control?

• Suppose a given set of transactions do

not chop well. Can one partition the set

into several subsets, execute each subset

in its own subinterval, and thereby achieve

a good chopping?
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Principles of Logging and Re-
covery

Motivation: Hardware and software sometimes

fail. Normal programs just restart. But data

may be corrupted.

Example: Money transaction fails after adding

money to cash, but before subtracting value

of item from inventory. Accounts unbalanced.

Recovery avoids incorrect states by ensuring

that the system can produce a database that

reflects only successfully completed transac-

tions.
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Assumptions

What is a failure?

Innocent question, huge effect on algorithms.

Traitorous failure – failed components con-

tinue to run, but perform incorrect (perhaps

malicious) actions.

Clean failure – when a site fails, it stops run-

ning. (Mimics hardware error on fail-stop pro-

cessors.)

Soft clean failure – contents of main mem-

ory are lost, but secondary memory (disks and

tapes) remain. Secondary memory called sta-

ble storage.
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Our Assumptions

• Soft clean failure.

Protect secondary memory using disk mir-

roring or redundant arrays of disks.

Paranoia must be no deeper than your

pocket!

• Atomic write – Can write a single page to

disk in an all or nothing manner.

Use checksums to see whether a write suc-

ceeded.
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Database Model

Database — set of data items in stable stor-

age. Each data item is a page.

Audit trail — set of data items in stable stor-

age. Each data item is a page. (Scratch

space)

Operations:

Read — read a page from database.

Write — write a page to stable storage.

Commit — indicate that transaction has ter-

minated and all updated pages should be per-

manently reflected in the database.

Abort — indicate that no updates done by

transaction should be reflected in the database.
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States of a Transaction

Active — issued neither abort nor commit.

Aborted — issued abort.

Committed — issued commit.

Note: a transaction may not be both com-

mitted and aborted.

Objective of recovery: Ensure that after a

failure, can reconstruct the database so it has

updates from committed transactions only.
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Strategy: Keep around redun-
dant information

The before-image of x with respect to a trans-

action T is the value of x just before the first

write of T on x occurs.

The after-image of x with respect to a trans-

action T is the value of x just after the last

write of T on x occurs.

Want to keep around before-images until com-

mit and want after-images in stable storage by

commit.
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Logging Rules

1. Log-ahead rule: Ensure that before-images

of all pages updated by T are in stable

storage at least until T commits.

Allows system to recreate state before T

began.

2. Commit rule: When T commits, have

after-images of all pages updated by T

somewhere in stable storage.

Allows system to create a database state

reflecting T’s updates.

Rules + atomicity of commit = recoverability

+ c©2023 Dennis Shasha 7



+ +

Algorithmic Taxonomy

Undo strategy — Some of T’s writes may

go to the database before T commits. If T

aborts, the system restores the database state

to one excluding the updates caused by T.

Redo strategy — Some of T’s writes may not

go to the database before T commits. Some-

time after T commits, the system transfers

T’s updates from the audit trail or the buffer

to the database.

Possibilities:

1. No Undo, No Redo

2. No Undo, Redo

3. Undo, No Redo

4. Undo, Redo

All four have been implemented.
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No Undo, Redo

Description: Each after-image for T is writ-

ten to audit trail (i.e. log) sometime before

commit time. Satisfies commit rule.

Before-images not touched in database. Sat-

isfies log-ahead rule.

Commit step consists of writing “commit T”

in the audit trail atomically (i.e., on a single

page).

Recovery from System failure — transfer pages

from audit trail to database of committed

transactions.

Abort a transaction — erase its audit trail

record.
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No Undo, Redo — Issues

Question: When exactly to write committed

pages to database? (At commit or later.)

Issues: size of physical memory; disk head

movement.
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Undo, No Redo

Description: Transaction first transfers

before-image of each page to audit trail, then

puts the after-image in the database.

Commit — write a commit page to audit trail.

Abort a transaction — write all before-images

of pages updated by the transaction into database.

Recovery from System failure — abort all

uncommitted transactions.

Issue: Requires forcing pages to database disks

while transaction executes. Bad for perfor-

mance.
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Redo and Undo (Writeahead log)

Description: T doesn’t touch the database

disks for short transactions, but may write

after-images to the database for long update

transactions. In such a case, it writes the

before-image to the audit trail first.

Commit — write commit record to audit trail.

Abort — Transfer necessary before-images back

to the database.

Recovery from System failure — abort all

uncommitted transactions.

Evaluation: requires more I/O than the above

schemes, but that I/O is all to the audit trail.

Most freedom for buffer manager.
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No Redo, No Undo

Assume we have a directory on one page that

points to every data item. (Otherwise, create

a data structure with one page at the root.)

Description: Duplicate the directory. Call one

real and the other shadow. Record transac-

tion T’s updates on the shadow directory, but

don’t change the items pointed to by the real

directory.

Commit consists of making the shadow direc-

tory the real one and making the real one the

shadow directory.

Abort and recovery require no work.

Evaluation: disrupts secondary memory lay-

out. Very fast recovery.
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Recovery and Concurrency Con-
trol

The two are conceptually independent.

Reason: When scheduling algorithm allows a

transaction to commit, it is saying that T’s

updates may become permanent. Recovery

merely ensures that the updates become per-

manent in a safe way.

Example: Two Phase Locking + Redo, No

undo.
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2PL + Redo, No Undo

Transaction acquires locks as it needs them

and doesn’t release them until commit (in

primitive versions, until writes are written to

the database disks). All writes during trans-

action are to audit trail.

If transaction aborts, system releases locks

and frees pages of audit trail.

Try Optimistic + Undo, No Redo?
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Distributed Commit Protocols

Scenario: Transaction manager (representing

user) communicates with several database servers.

Main problem is to make the commit atomic.

Naive approach: Transaction manager asks

first server whether it can commit. It says

yes. Transaction manager tells it to com-

mit. Transaction manager asks next server

whether it can commit. It says no. Transac-

tion manager tells it to abort.

Result: partially committed transaction. Should

have aborted.
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Solution

Two phase commit:

1) Transaction manager asks all servers whether

they can commit.

1b) Upon receipt, each able server saves all

updates to stable storage and responds yes.

If server cannot say yes (e.g. because of a

concurrency control problem), then it says no.

In that case, it can immediately forget the

data.

2) If all say yes then transaction manager tells

them all to commit. Otherwise, (some say

no or don’t respond after a time) transaction

manager tells them all to abort.

2b) Upon receipt, the server writes the com-

mit record.
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Failure Scenarios

If a database server fails during first step, all

abort.

If a database server fails during second step, it

can see when it recovers that it must commit

the transaction.

If transaction manager fails during second step,

then the servers who haven’t received commit

either must wait or must ask other servers

what they should do.
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Performance Enhancements

1. Read-only transaction optimization. Sup-

pose a given server has only done reads (no

updates) for a transaction. Instead of re-

sponding to the transaction manager that it

can commit, it responds READ-only.

The transaction manager can thereby avoid

sending that server a commit message.

2. Eager server optimization. If the pro-

tocol dictates that each server will receive

at most one message from each transaction,

then the server can precommit after complet-

ing its work and inform the transaction man-

ager that it is prepared to commit. The trans-

action manager then does the second phase.
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On Recovery

A site can play the role of a transaction man-

ager and a server.

Transaction manager role: Site checks its com-

mit log (this is a stable log of all the ”commit

T” commands that it has written). It then

checks all the server logs and resends commits

for any transaction that has been committed

at the site but has not been committed at the

server.

Server role: Site checks its logs for transac-

tions that have been precommitted only. It

then asks the manager of that transaction

what to do. It can also ask the other servers

what to do, if the other servers don’t forget

their transaction information.
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Throw Away Concurrency Con-
trol and Two Phase Commit

Arthur Whitney

KX Systems, arthur@kx.com

Dennis Shasha

New York University, shasha@cs.nyu.edu

Steve Apter
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Our Biases

• Lots of experience helping people speed

up applications.

Arthur: design a better programming lan-

guage.

Dennis: tune the databases and fix bugs.

• Modern database systems seem to require

many escapes, e.g. for Wall Street analyt-

ics, graphical user interfaces. We prefer a

monolingual environment that embodies a

programming language.

• Our customers are impatient and very ner-

vous.
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What’s Wrong With Concurrency
Control and 2PC

• Concurrency Control:

Nasty bugs: if aborts aren’t handled prop-

erly by the application, effects of aborted

transactions leave effects on program vari-

ables. These bugs are not discovered until

production.

Performance: bottlenecks on shared re-

sources are frequent. They require radical

schema changes, e.g. hash the processid

into a special field, version fields.

• Two Phase Commit:

Customers don’t like the message over-

head of two phase commit, particularly

in WAN environments, so they settle for

replication servers which give warm, not

hot, backups.
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An Example Alternative

• Main memory database, logically single threaded,

operation logging, full replication. Net re-

sult: a replicated state machine whose

commits are uncoordinated.

• Operations are logged and acked in batches,

so much less than one overhead message

per transaction. Each site dumps its state

in a round robin fashion.
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Large Databases: what is needed

• Since the algorithm executes transactions

sequentially, big databases (i.e., too big

for RAM) can’t take advantage of disk

bandwidth.

Like life before operating systems.

• Executing in order of arrival is too slow,

but want to appear to do so.

• NB: Serializability at each replicated site

is not enough. Do you see why?
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Algorithm OBEYORDER

1. Construct a predicate called CONFLICT

that takes two transaction instances and

determines whether they would conflict.

2. If t CONFLICTS with t’ and t has an ear-

lier arrival number than t’, then form a di-

rected edge (t, t’). This produces a graph

G = (T, E) where T is the set of all the

transactions in the batch (or batches) and

E is the set of directed edges formed as

described.

3. Execute T in parallel, respecting the order

implied by E.
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Issues with OBEYORDER

• Need a CONFLICT predicate. (Can be

difficult to write.)

• If there are many conflicts, must do more.

Observe: can always prefetch data pro-

vided it is globally visible.

• The old standby: if data can be parti-

tioned, buy another processor.
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Summary

• In-memory databases can use a different

approach from on-disk databases. No con-

currency control, operation recovery, and

hot backups.

• If data spills over to disk, then you need to

invent a new concurrency control scheme.

• You can get transactional guarantees plus

hot backup, all with low overhead.
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Lessons from Wall Street:
case studies in configuration,
tuning, and distribution

Dennis Shasha

Courant Institute of Mathematical Sciences

Department of Computer Science

New York University

shasha@cs.nyu.edu

http://cs.nyu.edu/cs/faculty/shasha/index.html

occasional database tuning consultant on Wall Street
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Wall Street Social Environment

• Very secretive, but everyone knows every-

thing anyway (because people move and

brag).

• Computers are cheap compared to peo-

ple. e.g., terrabytes of RAM is a common

configuration for a server and will grow.

• Two currencies: money and fury.
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Wall Street Technical Environ-
ment

• Analytical groups use APL (or q or kdb) or

Matlab or Excel with extensions to value

financial instruments: bonds,

derivatives, and so on. These are the

“rocket scientists” because they use con-

tinuous mathematics and probability (e.g.

Wiener processes).

• Mid-office (trading blotter) systems use

relational systems. These maintain posi-

tions and prices. Must be fast to satisfy

highly charged traders and to avoid ar-

bitrage (delays can result in inconsisten-

cies).

• Backoffice databases handle final clearance.
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Overview

• Configuration — disaster-proof systems,

interoperability among different languages

and different databases.

• Global Systems — semantic replication,

rotating ownership, chopping batches.

• Tuning — clustering, concurrency, and

hashing; forcing plans.
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Preparing for Disaster

• Far from the simple model of stable stor-

age that we sometimes teach, though the

principles still apply.

• Memory fails, disks fail (in batches), fires

happen (Credit Lyonnais, our little terror-

ist incident), and power grids fail. If your

system is still alive, you have a big advan-

tage.

• You can even let your competitors use

your facilities ... for a price.
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Case: Bond Futures

• Server for trading bond futures having to

do with home mortgages.

• Application used only a few days per month,

but the load is heavy. During a weekend

batch run, 11 out of 12 disks from a single

vendor-batch failed.
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High Availability Servers

• A pair of shared memory multiprocessors

attached to RAID disks.

• If the primary multiprocessor fails, the backup

does a warm start from the disks.

• If a disk fails, RAID masks it.

• Does not survive disasters or correlated

failures.

+ c©2023 Dennis Shasha 7



+ +

Client ..... Client   ..... Client

Interface file

Primary SecondaryHigh 

Availability

Disk Subsystem

Writes go to the primary and into the high availability

disk subsystem. This subsystem is normally a RAID device,

so can survive one or more disk failures.

If the primary fails, the secondary works off the same

disk image (warm start recovery).

Vulnerability: High availability disk subsystem fails

entirely.
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Dump and Load

• Full dump at night. Incremental dumps

every three minutes.

• Can lose committed transactions, but there

is usually a paper trail.

• Backup can be far away.
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Replication Server

• Full dump nightly. All operations at the

primary are sent to the secondary after

commit on the primary.

• May lose a few seconds of committed

transactions.
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Primary Secondary

Client ..... Client   ..... Client

Log sniffer

Basic architecture of a replication server.

The backup reads operations after they are committed

on the primary. Upon failure, the secondary becomes the

primary by changing the interface file configuration variables.

Vulnerability: if there is a failure of the primary after commit

at the primary but before the data reaches the secondary, we

have trouble.

Interface file
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Remote Mirroring

• Writes to local disks are mirrored to disks

on a remote site. The commit at the local

machine is delayed until the remote disks

respond.

• Backup problems may cause primary to

halt.

• Reliable buffering can be used (e.g. Qualix),

but the net result is rep server without the

ability to query the backup.

+ c©2023 Dennis Shasha 12



+ +

Two Phase Commit

• Commits are coordinated between the pri-

mary and backup.

• Blocking can occur if the transaction mon-

itor fails. Delays occur if backup is slow.

• Wall Street is scared of this though less

and less.
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Primary Secondary

Client ..... Client   ..... Client

Trans

Manager

Two phase commit: transaction manager ensures

that updates on the primary and secondary are

commit-consistent.  This ensures that the two

sides are in synchrony.

Vulnerability: blocking or long delays may occur

at the primary either due to delays at the secondary

(in voting) or failure of the transaction manager.
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Quorum Approach

• Servers are co-equal and are interconnected

via a highly redundant wide area cable.

• Clients can be connected to any server.

Servers coordinate via a distributed lock

manager.

• Disks are connected with the servers at

several points and to one another by a

second wide area link.
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Heartbeats

• Heartbeats monitor the connectivity among

the various disks and processors.

• If a break is detected, one partition hold-

ing a majority of votes continues to exe-

cute.

• Any single failure of a processor, disk, site,

or network is invisible to the end users (ex-

cept for a loss in performance).
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Disk Wide Area Network

Primary Backup

Processor Wide Area Network

Clients... Clients...

Quorum Approach as Used in most Stock and

Currency Exchanges.

Survives Processor, Disk, and Site failures.

Distributed lock manager

Quorum approach used in most exchanges.
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The Need for Globalization

• Stocks, bonds, and currencies are traded

nearly 24 hours per day (there is a small

window between the time New York closes

and Tokyo opens).

• Solution 1: centralized database that traders

can access from anywhere in the world via

a high-speed interconnect.

• Works well across the Atlantic, but is very

expensive across the Pacific. Need local

writes everywhere in case of network par-

tition.
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Distributed Solution

• Two phase commit worries users because

of blocking and delays. Replication can

result in race condition/anomalies. (e.g.

Gray et al. Sigmod 96).

• Sometimes, application semantics helps.
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Case: Options traders

• A trading group has traders in 8 locations

accessing 6 Sybase servers. Access is 90%

local.

• Exchange rate data, however, is stored

centrally in London. Rate data is read

frequently but updated seldom (about 100

updates per day).

• For traders outside of London, getting

exchange rates is slow.

Can we replicate the rates?
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Consistency Requirements

• If a trader in city X changes a rate and

then runs a calculation, the calculation

should reflect the new rate (So, can’t up-

date London and wait for replication.)

• All sites must agree on a new exchange

rate after a short time (must converge).

(So, can’t use vanilla replication server.)

+ c©2023 Dennis Shasha 21



+ +

Clock-based Replication

• Synchronize the clocks at the different sites.

(Use a common time server.)

• Attach a timestamp to each update of an

exchange rate.

• Put a database of exchange rates at each

site. An update will be accepted at a

database if and only if the timestamp of

the update is greater than the timestamp

of the exchange rate in that database.
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London

New
York

Tokyo

...

...

...

Clients Clients

Clients

Clients send rates to local machines where they take
immediate effect.
Rates and timestamps flow from one server to the other.
Latest timestamp does the update.
Ensures: convergence and primacy of latest knowledge.

Timestamped Replication
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Case: Security Baskets

• Trade data is mostly local, but periodically

traders collect baskets of securities from

multiple sites.

• The quantity available of each security must

be known with precision.

• The current implementation consists of an

index that maps each security to its home

database. Each site retrieves necessary

data from the home site.
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Rotating Ownership

• Maintain a full copy of all data at all sites.

• Not all of this data will be up-to-date (“valid”)

at all times however. Can be used for ap-

proximate baskets.

• When a market closes, all its trades for the

day will be sent to all other sites. When

receiving these updates, a site will apply

them to its local database and declare the

securities concerned to be “valid.”
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Rotation Issues

• Receiving ownership must be trigger-driven

rather than time-driven.

• Suppose New York assumes it inherits

ownership from London at 11 AM New

York time. If the connection is down when

London loses its ownership, then some up-

dates that London did might be lost.
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TokyoLondonNew
York

Ownership travels from east to west as exchanges close.

it is sure that the previous exchange has processed all
trades.

A given exchange should assert  ownership only after

Rotating Ownership

+ c©2023 Dennis Shasha 27



+ +

Case: Batch and Global Trad-
ing

• When the trading day is over, there are

many operations that must be done to

move trades to the backoffice, to clear out

positions that have fallen to zero and so

on. Call it “rollover.”

• Straightforward provided no trades are hit-

ting the database at the same time.

• In a global trading situation, however, rollover

in New York may interfere with trading in

Tokyo.
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Chop the batch

• “Chop” the rollover transaction into smaller

ones.

• The conditions for chopping are that the

ongoing trades should not create cycles

with the rollover pieces.

• New trades don’t conflict with rollover.

Lock conflicts are due to the fact that

rollover uses scans.
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Good Candidates for Chopping

• Batch operations that don’t logically con-

flict with ongoing operations. (Index con-

flicts are not a problem).

• Chopping means take each batch opera-

tion and break it into independent pieces,

e.g., delete zero-valued positions, update

profit and loss.

• If batch operations are not idempotent, it

is necessary to use a “breadcrumb” table

that keeps track of which batch opera-

tions a process has completed.
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Tuning Case: Interest Rate Clus-
tering

• Bond is clustered on interestRate and has

a non-clustered index on dealid. Deal has

a clustered index on dealid and a non-

clustered index on date.

• Many optimizers will use a clustering index

for a selection rather than a non-clustering

index for a join. Often good. The trouble

is that if a system doesn’t have bit vec-

tors, it can use only one index per table.
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Query to be Tuned

select bond.id

from bond, deal

where bond.interestRate = 2.6

and bond.dealid = deal.dealid

and deal.date = ’7/7/2011’
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What Optimizer Might Do

• Pick the clustered index on interestRate.

• May not be selective because most bonds

have the same interest rate.

• This prevents the optimizer from using

the index on bond.dealid. That in turn

forces the optimizer to use the clustered

index on deal.dealid.
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Alternative

• Make deal use the non-clustering index on

date (it might be more useful to cluster on

date in fact) and the non-clustering index

on bond.dealid.

• Logical IOs decrease by a factor of 40

(170,000 to 4,000).
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Case: Temporal Table Partition-
ing

• Position and trade were growing without

bound. Management made the decision

to split each table by time (recent for the

current year and historical for older stuff).

Most queries concern the current year so

should be run faster.

• What happened: a query involving an equal-

ity selection on date goes from 1 second

with the old data setup to 35 seconds in

the new one. Examining the query plan

showed that it was no longer using the

non-clustered index on date. Why?
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Use of Histogram

• Optimizer uses a histogram to determine

usefulness of a non-clustering index.

• Histogram holds 500 cells, each of which

stores a range of date values.

• Each cell is associated with the same num-

ber of rows (those in the cell’s date range).
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After reducing the size of the table, each cell was associated
with less than a day’s worth of rows.  So, a single day query
spills on several cells.

Non-clustering index is not used if more than
one cell contains the searched-for data.

Single day

Many days

Initially, each cell was associated with several days’ worth of rows.
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Heuristic Brittleness

• The optimizer’s rule is that a non-clustering

index may be used only if the value searched

fits entirely in one cell.

• When the tables became small, an equal-

ity query on date spread across multiple

cells. The query optimizer decided to scan.

• A warning might help.
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