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Abstract

Access methods to support efficient search and modification are at the

core of any data-driven system. Designing access methods has required

a continuous effort to adapt to changing workload requirements and

underlying hardware. In this article we outline the shared principles

and design dimensions of access methods that facilitate efficient access

to data residing at various levels of the storage hierarchy from durable

storage (spinning disks, solid state disks, other non-volatile memories)

to random access memory to caches (and registers). We point out how

access method designs handle the size/speed tradeoffs of these different

storage types for different kinds of workload mixes among reads, inserts,

deletes, and updates. We classify both existing and as yet uninvented

access methods based on a small set of design dimensions. Finally,

we discuss the design opportunities that are enabled because of the

systematization of the access method design space.
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Introduction

1.1 Access Methods Basics

Access Methods are the means by which executing programs store and

obtain data. As such, access methods sit at the heart of all data-

intensive computer systems. An access method consists of (1) the data,

physically stored in some layout, (2) optional metadata to facilitate

navigation over the data, and (3) algorithms to support storage and

retrieval operations [110, 221, 123]. Other terms used in the literature

for access methods include “data structures” and “data containers”.

This article uses the term access method to underscore the interplay

between the design of a data storage component with the way data is

accessed.

Data systems, operating systems, file systems, compilers, and net-

work systems employ a diverse set of access methods. Our discussion

in this monograph draws examples primarily from the area of large

volume data systems in the sense that we consider secondary memory,

but the core analysis and design dimensions apply to purely in-memory

systems as well.

Problem Definition. An access method manages a collection of key-

2



1.2. Tradeoffs in Access Method Designs 3

value pairs, with the intended relationship that a given key maps to one

value (though the same value can be associated with many keys). The

value may have semantics ranging from a pointer or a reference in the

base data collection, e.g., a row id in a relational system, a reference to

a large object such as an image or video in a key-value store, a record

in a tabular database, or an arbitrary set of values that the application

knows how to parse and use in a NoSQL system.

Access methods have enormous general utility. An access method

design can, for example, be used to describe the design of (i) metadata

indexes used in file, network, and operating systems, (ii) base data

layouts and indexes in relational systems [110], and (iii) NoSQL and

NewSQL data layout designs [181].

Each application has a sweet spot with regard to the different oper-

ations it needs to perform over its data in terms of writes to inject new

data, and reads to retrieve data. In addition, the amount of memory

and persistent storage required (and that can be afforded) are critical

parameters that shape the requirements of a given application. For ex-

ample, data management systems use access methods as the entry point

in query processing, i.e., utilizing various forms of tree-based and hash-

based indexes and various base data layouts such as column-oriented,

row-oriented, or hybrids of the two. File systems manage file metadata

and file contents using access methods optimized for frequent updates.

Compilers typically use hash maps for managing variables during their

life span, and abstract syntax trees to capture the overall shape of a

program. Similarly, network devices require specialized access methods

to efficiently store and access routing tables.

1.2 Tradeoffs in Access Method Designs

There is no perfect access method [124]. Every access method represents

a particular workload-dependent performance tradeoff. For example,

the more structure a data set has (either in the form of metadata or

within the main data), the easier it is to search it, but the harder it is

to insert or update because the structure needs to be maintained (by

re-organizing data or by updating metadata).
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Hence, new designs arise that offer a new balance between read per-

formance, update performance, and the memory and storage footprint.

This happens either by optimizing an existing balance, that is, using

engineering and sometimes algorithmic effort to improve performance,

or by tilting it, that is, improving one aspect at the expense of another.

As applications and hardware evolve, they require the invention

of new data structures. For example, secondary storage considerations

inspirted the generalization of 2-3 trees to B-trees [34] and then the B+-

Trees [66, 93, 110] with its many variants. During the four decades of re-

lational data system [18, 65] evolution, access methods have been devel-

oped to keep pace with new applications. The same is true for NoSQL

systems which heavily rely on specialized classes of data structures such

as LSM-trees for data systems that support write-heavy applications

[166, 189], B-trees for systems that target more read-optimized applica-

tions [186, 243], and hashing based systems that are the core of systems

that support write-heavy applications with point lookups only [56].

Overall, there are two drivers for the creation of access methods:

(i) new workloads and access patterns dictate specialized designs,

and (ii) advances in hardware (multi-cores, processors, caches, main

memory, storage devices) impose new performance and cost tradeoffs.

We give some examples below.

Workload-Driven Designs. As an example from data systems, the

rise of analytical applications as of the early 2000s in which relational

tables tended to be wide (i.e., have many columns) but for which only

a few columns would be accessed favored a columnar layout [67] (as

had been present in vector languages like APL [78] for some time). In

the research community, this led to the development of a new column-

oriented data system architecture, also called column-stores [1, 47, 80,

81, 86, 87, 117, 132, 144, 231, 261]. The column-store design works

better for long analytical queries on few columns, while the row-store

design works well for short selective queries that require most fields of

each row. Thus, using a columnar instead of a row-oriented layout in

data management systems is an access method decision [31, 32, 141,

146, 147, 148, 149, 202, 203, 204]. Further, various hybrid approaches

offer benefits from the worlds of row-stores and column-stores: (i) by
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nesting columnar data organization within data pages [5, 6], and (ii) by

grouping multiple columns and offering specialized code for accessing

groups of columns [10, 76, 80, 81, 101, 132].

Other examples of workload driven designs come from the rich

ecosystem of new non-relational data management systems, typically

categorized as NoSQL or newSQL [181]. Such systems often employ a

log-structured merge tree (LSM-Tree) [166, 189] design that amortizes

the update cost by storing incoming data in immutable sorted files.

For example, a different memory allocation strategy allows for a better

read vs. update performance tradeoff [70, 71]. Lazy and eager merging

of sorted runs can optimize for write-intensive or read-intensive work-

loads respectively [140, 166]. Another approach, called lazy leveling,

performs lazy merging throughout the tree, except at the last level and

uses additional memory to balance the read costs when needed [72]

as well as creating levels of variable size ratios to “delay” writes [73].

Using hashing instead of sorting can efficiently support workloads with

point accesses and no range queries [13, 30, 56, 74, 75, 224]. These are

only a few examples of access method designs that are strongly tied to

either expected or temporary workload patterns.

In addition, access methods have been invented that autonomously

adapt to the workload. For example, Database Cracking [118, 119, 120]

utilizes the access patterns in incoming queries to continuously and

incrementally physically reorganize the core access methods such as

both the base data and the index metadata can perform well for the

exact workload observed. Database Cracking has been developed in

the context of analytical column-store systems but the idea have been

extended to traditional B-tree design as well [97, 98, 122] Similarly,

E-Tree [167] adapts between read-optimized B-tree nodes and write-

optimized B-tree nodes based on the read/write pattern.

Memory-Driven And Storage-Driven Designs. As a complement

to workload-based considerations, hardware advances create new chal-

lenges, needs, and opportunities in access method design. In the last

decade, the memory and storage hierarchy has been enriched with de-

vices such as solid-state disks, non-volatile memories, and deep cache

hierarchies. In a storage hierarchy, the lower levels offer a lot of storage
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at low price but at high access latency, and as we move higher, that

is, closer to the processor, the storage is faster but smaller and more

expensive per byte. In the storage/memory hierarchy there is always a

level that is the bottleneck for a given application, which depends on

the size of the application data relative to the sizes of the storage at

the different levels of the hierarchy.

For example, in data management systems early access methods like

B+-Trees were optimized for disk accesses [93]. As the memory sizes

grew, however, the bottleneck quickly moved higher to the main mem-

ory and non-volatile memory. This changed the tradeoffs dramatically.

In particular, a key hardware trend has been the growing disparity be-

tween processor speed and the speed of off-chip memory, termed “the

memory wall” [250]. Since the early 2000s, operating systems [178] and

data management systems [128] have been carefully re-designed to ac-

count for the memory wall by optimizing for the increasing number of

cache memories [5, 7, 46, 47, 62, 143, 171, 172, 173, 210, 257].

Additionally, secondary storage is already at a crossover point. Tra-

ditional hard disks have hit their physical limits [19], and storage tech-

nologies like shingled disks and flash are now addressing this perfor-

mance stagnation [113]. Shingled disks increase the density of storage

on the magnetic medium, changing the nature of disks because the

granularity of reads and writes is now different [113]. Flash-based drives

offer significantly faster read performance than traditional disks, but

may suffer from relatively poor write performance. Further, flash-based

drives are equipped with a complex firmware called the Flash Trans-

lation Layer (FTL) which, when updated, can lead to drastic changes

in performance. Thus, flash hardware performance changes both when

hardware changes and when the firmware is updated. Such changes

may create a need for new access methods to optimize for the new

hardware/firmware [20, 22, 23, 74, 126, 131, 137, 155, 157, 183, 184,

209, 234]. For example, because writing certain kinds of flash devices

requires writing full blocks at a time, access methods append incoming

data without sorting until a flash erase block is full, at which point

data is re-organized in memory and then re-written as one block. This

minimizes write overhead, sacrificing read performance (contents of a
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block are frequently not sorted) for write efficiency [4, 21, 25, 26, 64].

1.3 Contributions: Design Space and Classification

While each access method design depends on hardware and workloads

as described above, at the same time, application workloads and hard-

ware evolve continuously. In addition, the various tradeoffs that appear

in access method design and the way they are affected by the different

design choices create a notoriously complex problem space [123]. Un-

derstanding this space requires a systematic classification of concepts

and techniques used to design access methods. This classification, in

turn, will enable us to answer frequent questions that come up when

building complex data-driven systems. Which access method efficiently

supports a given workload? What is the effect of adding a new design

component to an access method and workload? Is it beneficial to get

more or faster memory for a system? These are only a small sample of

the vast set of design, research, and practical questions that researchers

and practitioners face on a daily basis.

To help answer such questions we provide a classification in this

survey by studying how the low level fundamental design choices in

access methods lead the final designs to occupy a particular balance in

the overall tradeoff space.

Design Dimensions. After studying numerous access method designs

that cover a substantial part of the state of the art, we have distilled

them to a small number of independent design dimensions that identify

a design.

• Data Organization

• Metadata for searching

• Content representation

• Update policy

• Buffering policy

• Adaptivity

Design Space. We show how this set of design dimensions can be

used to describe any access method and to explain its behavior and

properties. First, we use the design dimensions to propose an access
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method design space. Each access method is a “point” in this space and

designs that correspond to families of access methods cover a sub-space

of this design space.

We (i) describe the motivation behind each design dimension and

its available options, (ii) characterize existing access methods as points

in this space, and (iii) study the impact of combining various design

elements to create new access methods. iv) provide a practical access

method design guide.

This survey builds on our research efforts in classifying access meth-

ods [27, 123] and building new detailed abstractions [28, 116, 124]. The

design space of data structures can be seen at many granularities de-

pending on how fine grained the design choices are. Different granulaties

of design help with different problems and classification/understanding.

The Data Calculator work creates as fine-grained a design space as pos-

sible by identifying the first principles of design [123] which helps with

in-memory data structure design where even the smallest design choices

affect performance. In this survey, we utilize the prior design principles

to summarize classes of design choices and characterize their impact in

terms of disk performance for big data systems, leading to a practical

guide for designers.

The remainder of this paper is organized as follows. Chapter 2 intro-

duces the performance tradeoffs with respect to access patterns which

we use to rank designs. Then, Chapter 3 presents the design dimensions

in detail and incrementally builds a universal I/O model that helps

characterize the impact of arbitrary design choices. Then, in Chapter

4 we give examples of how state of the art access method designs uti-

lize the design principles and how they affect the performance tradeoffs

(Table 4.1). In Chapter 5 we discuss open research questions with re-

spect to both the design space and the individual designs themselves.

Finally, Chapter 6 discusses related work and Chapter 7 concludes.



2

Performance Tradeoffs & Access Patterns

We now review the memory/storage hierarchy and its importance for

access method design. We also define in detail the core performance

tradeoffs we use to characterize design principles throughout the paper.

Memory Hierarchy. Access methods live across the memory hierar-

chy. That is, a sequence of memory devices that complement each other

in terms of how fast we can read and write data from each one. At least

one level of the memory hierarchy is typically persistent so the data is

not lost when power is lost. Also one level of the memory hierarchy is

large enough to hold all the data needed on a particular machine. Data

is transferred back and forth across levels as requests for data arrive or

new data is inserted and old data is deleted or updated.

Because different types of memory (e.g. cache, RAM, solid state

disks, etc.) work at vastly different speeds, when data is moved from

a very slow memory level such as a hard disk, then the overall cost of

using a particular access method is dominated by this cost. The cost of

all other data movement at higher (i.e., faster) levels of the memory hi-

erarchy is negligible. Similarly, due to the ever increasing performance

gap between processing units and data movement, for data-intensive

applications, typically, the processor will use fewer cycles than its ca-

9
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pacity because it is waiting for data from disk or even random access

memory.

The modeling and design discussions in this paper take these per-

formance properties into account and always assume two abstract levels

of memory hierarchy as in the input-output (I/O) model [3]: one that

is slow but can be treated as having essentially infinite capacity and

one that is much faster but with limited capacity. This approach cap-

tures the memory and disk pair, but it can also capture any two levels

of memory that have significant difference in access latency and cost

(e.g., 1-3 orders of magnitude). In this way, in our cost models through-

out this paper we measure and define performance with respect to the

number of data blocks moved by an access method operation.

Overall, this performance metric holds true for the majority of op-

erations in the key-value-model and typical analytics. For example,

this is true for file systems, network routers, NoSQL systems and SQL

database systems. When designing access methods purely for an in-

memory environment or for an application with very high computa-

tional costs, computational costs have to be taken into account. This

is an emerging field of study that requires learned models combined

with traditional cost models [124]. In addition, as we move to non-

volatile memories with wider buses and lack of mechanical constraints

in secondary storage, the cell probe model [252] might be necessary.

2.1 From Read/Update to RUM: Memory & Space Costs

Read vs. Update Captures Workload. In order to compare access

methods and decide which one to use under particular conditions, we

first need to define the appropriate metrics. The most common metrics

quantify the tradeoff of each access method design between read per-

formance and update performance [49, 253, 254]. The first one defines

how fast we can retrieve data while the latter describes how fast we

can insert new data or change existing data. In this way, these met-

rics collectively describe the performance that an access method design

provides for a given workload. Such metrics can be measured in terms

of actual (expected) response time or more typically in terms of the
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amount of data we need to move to complete an operation.

Read vs. Update vs. Memory Captures Storage. The common

denominator of the lines of work that consider read and update per-

formance as metrics is that they assume that disk capacity is cheap

or even free in the ideal setting. This assumption comes from the time

that disk was used as secondary storage and was so much cheaper

than memory that the storage cost was considered insignificant and

the main consideration was storage performance [100]. Since then, the

storage hierarchy has been augmented with various devices including

solid-state disks (SSDs), shingled magnetic recording disks (SMR), non-

volatiles memories (NVMs) and other devices. The new storage media

can be either expensive per byte and fast, or cheap but slow [19]. Some-

times the higher performance comes at significant energy cost [225].

In addition, the data generation trends typically outpace the rate at

which storage devices are delivered leading to a data-capacity storage

gap [43, 112, 229].

Overall, the increasing use of storage with more expensive capac-

ity and efficient random access has made the memory vs. performance

(read/update cost) analysis an important factor in the design and op-

timization of access methods [28, 77, 255]. The wildly different cost of

secondary storage among the different storage technologies makes space

utilization and storage cost critical factors of access method design.

Storage capacity cannot be considered abundant, and efficient access

to storage is not cheap, hence the storage space and cost should also

be included when judging the efficiency of an access method.

2.2 RUM Performance Tradeoffs

Now we outline the interplay between read performance, update per-

formance, and space utilization, and how we can use them as a guide

to design access methods and compare alternative designs. We define

the following three quantities.

1. The Read overhead, that is, the read amplification of every

lookup operation (the ratio between the size of the total data
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