Time-Lagged Context Likelihood of Relatedness

What it Does:


Time-Lagged Context Likelihood of Relatedness (tlCLR) \cite{Greenfield:2010vea} \cite{Madar:2010iv} is an extension of the CLR algorithm (discussed in section XXX) used for inferring networks from time-series data.  It is part of the Inferelator 2.0 pipeline that scored well in the DREAM4 competition \cite{Greenfield:2010vea}, along with its counterparts Inferelator and Median-Corrected Z-Scores.

The Data:


tlCLR uses both steady-state and time-series data to infer networks.  Networks from steady-state data are inferred in much the same way they are in CLR.  Time-series data add the ability to infer the directionality of the edges.

The Strategy:


tlCLR is a mutual information based inference algorithm that uses ordinary differential equations to model time-series data.  The algorithm works in three steps: first, the temporal changes in expression are modeled as an ordinary differential equation (ODE).  Second, the mutual information is calculated between each pair of genes.  Third, a background correction is applied to filter out least likely connections.  



Step 1: Modeling time-series data with ordinary differential equations


In order to calculate the mutual information for time-series data, we have to create a measure of the expression value that captures its change over time.  To do that, tlCLR assumes that the temporal changes in a gene’s expression can be modeled with a linear ordinary differential equation (ODE).  The ODE can be simplified using finite difference approximation, and we can represent the time series as a set of expression values and response variables:

\begin{equation}


y_i(t_{k+m}) = \tau_i \dfrac{x_i(t_{k+m}) - x_i(t_k)}{t_{k+m} - t{k}} + x_i(t_k), m=1,2

\end{equation}

where \[y_i(t_{k+m})] is the “response variable” of gene \[i] at time \[k+m], where \[k] is the current time and \[m] is the number of time points we are looking ahead.  The response variable is a measure of the expression value’s change between time \[t] and time \[t+m].  Since the steady-state expression values are not changing over time, the response variable for a steady-state experiment \[e] is just set to its expression value. [Jesse: in parentheses show what the equation for steady state would look like] \[x_i(t_{k})] is the expression value of gene \[i] at time \[k], and \[t(k)] is the \[k^{th}] time value.  \[tau_i] is the inverse of the first order degradation rate for gene \[i].  This value is related to the half-life of the mRNA and must be obtained from literature for each organism.  In \cite{Madar:2010iv}, this value is set to 10 for all genes, as that is a value within the range of many half-life times for E.Coli.

After calculating response variables for the time-series data and steady-state data, we end up with a vector of response variables \[y_i] and a vector of corresponding explanatory variables (expression profiles) \[x_j] for each gene:

\begin{equation}


y_i = (y_i(t_2),\ldots,y_i(t_k),y_i(t_3),\ldots,y_i(t_k),y_i(e_1),\ldots,y_i(e_M)),

\end{equation}

\begin{equation}


x_j = (x_j(t_1),\ldots,x_j(t_{k-1}),x_j(t_1),\ldots,x_j(t_{k-2}),x_j,(e_1),\ldots,x_j(e_M)),

\end{equation}

where the first batch of time-series values are for when \[m=1], and the second for when \[m=2].  The remaining values are the steady-state values, denoted with \[e].  Surprisingly, there is no explicit regularization to reduce the number of independent variables that could influence a response variable, except that only the top-ranked edges are retatined.
[Is there any regularization at this point to remove xj values that don’t contribute much to the response variables?  Dennis- Nope, it does not appear that there is.  The matrix at the end only ends up being somewhat sparse, it doesn’t have anything enforcing sparsity.  The top ranked edges are used.]
Step 2: Calculating static and dynamic mutual information


tlCLR computes two different sets of mutual information.  The first is called “static mutual information”, denoted by \[M^{stat}].  This is the traditional mutual information value, calculated between the expression profiles of each pair of genes \[I(x_i,x_j)], the same way the mutual information is calculated in ARACNE and CLR.  In this case, time-series data are treated as if they were a collection of independent steady-state expression, and the entire vector \[x_j] is used as the expression profile.  Note that because \[I(x_i,x_j) = I(x_j,x_i)], the matrix \[M^{stat}] is symmetric. The second set of mutual information, and tlCLR’s main innovation, is “dynamic mutual information,” denoted as \[M^{dyn}]. This is the mutual information between the response vector \[y_i] and expression profile \[x_j] for each pair of genes, \[I(y_i,x_j)].   Since \[I(x_j,y_i) \ne I(x_i,y_j)], \[M^{dyn}] is an asymmetric matrix, allowing us to infer directionality.  The goal of this value is to obtain a value of the shared information between the expression values of gene \[j] and the response values of gene \[i].  What we’re looking at is whether gene \[j]’s expression value \[x_j(t)] gives us information about gene \[i]’s response value \[y_i(t+1)].  As in CLR, a high mutual information value implies a likely edge whose target is the response value. 

Step 3: Ranking the edges


Similar to CLR, a background correction is applied by calculating z-scores for each pair of genes.  
This allows us to capture information about how the regulator \[j] is changing as  the expression value of gene \[i] changes.

Two z-scores are calculated for each pair of genes \[i]and \[j], testing whether gene \[j] regulates gene \[i]. The first z-score uses only the dynamic mutual information values, and second uses both dynamic and static mutual information values.  The first z-score between dynamic mutual information values with respect to the \[i^{th}] row of \[M^{dyn}], and is defined as:

\begin{equation}


z_{1}(x_i,x_j) = max \left(0,\dfrac{M^{dyn}_{i,j} - \frac{\sum_{j’} M^{dyn}_{i,j’}}{N}}{\sigma^{dyn}_i}\right)

\end{equation}

where \[\sigma_i] is the standard deviation of the \[i^{th}] row of \[M^{dyn}].  The z-score measures how many standard deviations the dynamic mutual information value between genes \[i] and \[j] is away from the mean of gene \[i]’s dynamic mutual information values.  The more positive the z-score, the more likely it is that there is some interaction between the two genes.  Only positive z-scores are considered, negative z-scores are set to 0.  Similarly, the second z-score is calculated using both the dynamic and static mutual information values with respect to the \[j^{th}] column of \[M^{stat}]:

\begin{equation}


z_{2}(x_i,x_j) = max \left(0,\dfrac{M^{dyn}_{i,j} - \frac{\sum_{i’} M^{stat}_{i’,j}}{N}}{\sigma^{stat}_j}\right),

\end{equation}

where \[\sigma^{stat}_j] is the standard deviation of the \[j^{th}] row of \[M^{stat}].  This z-score represents  the number of standard deviations the dynamic mutual information value is from [the mean of?] gene \[x_j]’s static mutual information values.

The basic idea is that we want to calculate two z-scores for each gene pair: one with respect to the potential regulator gene \[j]’s dynamic mutual information values, and one with respect to the gene \[i]’s static mutual information values.  The first z-score represents how far away the dynamic mutual information value between genes \[i] and \[j] is from the background distribution of dynamic mutual information values for gene \[j].  This gives us an idea of how likely it is that there is a true regulation from gene \[j] to gene \[i] by comparing it to the other potential regulators for \[i].

The second z-score represents how far away the dynamic mutual information between genes \[i] and \[j] is from the background distribution of the static mutual information for gene \[i].  The static mutual information distribution for gene \[i] gives us an idea of how likely the regulation between gene \[i] and \[j] is spurious by comparing it to the other genes that \[j] could be regulating.



These two values for each pair of genes are then combined into a CLR-pseudo z-score:

\begin{equation}


z^{tlCLR}_{i,j} = \sqrt{z_1^2 + z_2^2},

\end{equation}

which is a score of how likely it is that gene \[j] regulates gene \[i].  This ranking is then used to generate a list of the most likely edges, allowing us to build our network from the top ranked edges.

Examples:
