
DO
NOT

DIS
TRIB

UTE

Universal Source Code Provenance Tracking
1st Anonymous Author

University of Foo
Some, Where

foo@example.com

2nd Anonymous Author
University of Bar

Some, Where
bar@example.com

33rd Anonymous Author
University of Baz

Some, Where
baz@example.com

Abstract—Tracking the provenance of software, and in par-
ticular of source code artifacts, has become a required building
block for software processes such as: code clone detection, the
production of software bills of materials (BOMs) to ensure license
compliance, and vulnerability tracking.

In this paper we attack the challenging problem of designing
a scalable software provenance solution that can track the
provenance of the entire body of publicly available software
source code. To that end we first characterize the current size
and overall growth of public software development. We do so
by analyzing the Software Heritage archive, which contains an
unprecedented source code corpus built from major development
forges and free/open source software distribution platforms.

Then we review different data models for capturing prove-
nance information at this scale at the granularity of both revisions
and individual source code files. Finally we benchmark these data
models and show that the most compact among them is a viable
solution to capture provenance at the scale of Software Heritage,
on commodity hardware, and for the foreseeable future.

Index Terms—software provenance, software evolution, open
source, clone detection, license compliance, source code tracking

I. INTRODUCTION

Over the last three decades, the world of software devel-
opment has been revolutionized under the combined effect
of the massive adoption of free and open source software
(FOSS), and the availability of a wealth of online platforms
like GitHub, Bitbucket, and SourceForge that have sensibly
reduced the cost of collaborative software development. One
important consequence of this revolution is the fact that the
source code and the development history of tens of millions
of software projects is nowadays public, making an unprece-
dented corpus available to study software evolution.

Many interesting research articles have been published,
reporting on a number of attempts to mine subsets of this
massive dataset looking for patterns of interest for software
engineering, ranging from the study of code clones [22]–
[24] to automated vulnerability detection and repair [11], [16],
[18], from code recommenders [28], [29] to software licence
analysis and license compliance studies [26], [27].

An important building block for several of these studies is
the ability to identify the occurrences of a given file in the
reference corpus, also known as provenance tracking [9]. For
example, when a vulnerability is identified in a source code
file, it is important to find other occurrences of this file, be
it in other versions of the same project, or in other projects.

Similarly, when analyzing code clones or software licenses, it
is important to find the first occurrence of a given source file.

Scaling up these studies to the whole corpus of publicly
available source code, and making them reproducible, is a
significant challenge. Up to now, we did not have a com-
mon infrastructure providing a reference archive of software
development at a global scale. Hence, many authors resorted
to using popular development platforms like GitHub as surro-
gates. But development platforms are not archives: projects on
GitHub come and go,1 making reproducibility a moving target.
And while GitHub is the most popular development platform
today, there are millions of projects developed elsewhere,
including very high profile ones like GNOME.2

A new non profit initiative, Software Heritage [6], is bound
to change radically this state of affairs: its mission is to collect,
preserve, and make accessible the source code of all available
software. The project has already amassed the largest corpus
of source code ever built, with tens millions software projects
archived from GitHub, Gitorious, Google Code, and Debian,
growing by the day.

This corpus is stored in a Merkle Direct Acyclic Graph
(DAG) [19], which offers several key advantages: it reduces
storage requirements by natively deduplicating file clones,
that are quite numerous [17], [20]; it provides a means of
checking integrity of the archive contents; and offers a uniform
representation of both source code and its development history,
independently of the development platform and version control
system from which they were collected.

The Software Heritage archive is an unprecedented observa-
tory of the software development landscape, and may become
the missing reference infrastructure on top of which future
software studies can be scaled up, expanded in scope, and
made reproducible.

In order to fulfill this potential not just now, but for the
long term, it is necessary to know better how this source code
corpus being amassed evolves over time, which is the first
research question addressed in this paper:

RQ1 how does public software development evolve over
time? what is its growth rate?

To answer this question, we performed an extensive study
of the Software Heritage corpus, continuing a long tradition of

1For example, tens of thousands of projects were migrated from GitHub to
GitLab.com in the days following the acquisition of GitHub by Microsoft in
summer 2018, see https://about.gitlab.com/2018/06/03/movingtogitlab/.

2See https://www.gnome.org/news/2018/05/gnome-moves-to-gitlab-2/

https://about.gitlab.com/2018/06/03/movingtogitlab/
https://www.gnome.org/news/2018/05/gnome-moves-to-gitlab-2/

DO
NOT

DIS
TRIB

UTE

software evolution studies [3], [4], [12], [13], that we expand
here to a novel scale. We show evidence of exponential growth
not only of the raw corpus, but also of the original (i.e., never
published before) source code artifacts that are added to it.

Considering this exponential growth trend, it becomes
important to understand whether it is possible to conceive
efficient data models that allow to track software provenance
across the whole corpus, not just today, but in the long term,
at various granularities. These are then our next research
questionsis:

RQ2 can we build an efficient and scalable representation
of software source code provenance at the granularity
of revisions?

RQ3 can we build an efficient and scalable representation
of software source code provenance at the granularity
of invididual files?

In order to answer these questions we have explored three
data models that offer different space/time trade-offs and
evaluated them on 35 years of development history extracted
from Software Heritage. We have identified one of them
(the compact model) as the best choice for a future-proof
implementation of universal source code provenance tracking.

Paper structure: we review related work in Section II
and recall the Software Heritage data model in Section III;
then we address RQ1 in Section IV; we turn to RQ2 and
RQ3 by presenting the data models for provenance tracking
in Section V and their experimental validation in Section VI;
we address threats to validity in Section VII and we conclude
discussing future work in Section VIII.

Reproducibility note: the sheer size of the Software
Heritage archive (≈200 TB and a ≈100 B edges graph) makes
impractical to share the entire dataset as a single bundle.
Instead, we make available the full list of identifiers of the
revisions we have analyzed at https://annex.softwareheritage.
org/public/dataset/revisions-until-2018-02-13.txt.gz (19 GB);
this allows to rebuild the dataset used in this paper using any
Software Heritage mirror.

II. RELATED WORK

The study of software evolution has been at the heart
of software engineering since the seminal “Mythical Man
Month” [2] and Lehman’s laws [15], and the tidal wave of
open source software, by making available a growing corpus
of software projects, has spawned an impressive literature
of evolution studies. Some 10 years ago a comprehensive
survey [4] showed predominance of studies focusing on the
evolution of individual projects. Since then large scale studies
have become more frequent and the question of how software
evolution laws need to be adapted to account for modern soft-
ware development has attracted renewed attention, as shown in
a recent survey [13] that advocates for more empirical studies
to corroborate findings in the literature.

While research activity focused on mining software repos-
itories is thriving, realizing massive scale empirical studies
on the growth of the software corpus remains a challenging
undertaking that requires completing very complex tasks,

ranging from collecting massive amounts of source code [20],
to building suitable platforms for analyzing them [8], [25].
Hence, up to now, most studies have resorted to selecting
relatively small subsets3 of the full corpus, using different
criteria, and introducing biases that are difficult to estimate.

For instance, an analysis of the growth of the Debian
distribution spanning two decades has been performed in [3],
observing initial superlinear growth of both the number of
packages and their size. But Debian is a collection maintained
by humans, so the number of packages in it depends on the
effort that the Debian community can consent. Over the past
years this has led to a significant slowdown in the growth
of packages, that does not reflect the number of interesting
software projects that could be packaged.

A remarkable recent empirical study [12] has calculated the
compound annual growth rate of over 4000 software projects,
including popular open source products (Apache, Eclipse,
GNOME, GNU, Linux, KDE, top GitHub repositories, . . .) as
well as closed source ones. This rate is sensibly in the range
of 1.20–1.22, corresponding to a doubling in size every 42
months. In this study, though, the size of software projects was
measured using lines of code, without discriminating between
original contents and refactored or exogenous code reused “as
is” from other projects.

An interesting recent work has shown clearly how important
exogenous code can be [17]. It analyzed over 4 million
non-fork projects from GitHub, selected by filtering on a
handful of programming languages (Java, C++, Python, and
JavaScript), showing that almost 70% of the code consists
file-level identical clones. This gives a picture of the cloning
status in a subset of GitHub at the time it was performed,
but no insights on how cloning evolves, or how it impacts the
growth of the global source code corpus.

Software provenance is an essential building block of
several research studies, in particular for studies addressing
vulnerability tracking, license analysis, and code reuse [14].
Provenance tracking has been for over a decade a key ele-
ment of industrial tools and services for license compliance
developed by companies like BlackDuck, Palamida, Antelink,
nexB, and more recently TripleCheck and FossID. Provenance
is also addressed in detail by some patents [21], but with few
exceptions [9] it has received little attention by the research
community. We believe this is due to the lack of a reference
archive on which this basic building block can be implemented
once and then reused by other researchers.

III. BACKGROUND: SOFTWARE HERITAGE

We give in this section a brief overview of the Software Her-
itage data model and archive, as they are the key ingredients
leveraged in the following to track provenance at scale.

A. Data model

Public software development duplicates information a lot. It
is so in modern software development, where entire repository

3Some studies have analyzed up to a few million projects, but this is still
a tiny fraction of the total corpus of publicly available source code.

https://annex.softwareheritage.org/public/dataset/revisions-until-2018-02-13.txt.gz
https://annex.softwareheritage.org/public/dataset/revisions-until-2018-02-13.txt.gz

DO
NOT

DIS
TRIB

UTE

Fig. 1. Software Heritage Merkle DAG with crawling information.

clones are produced to exchange even minor improvements via
pull requests [10]; but it was the case also in the past when
repositories migrated across platforms (e.g., from SourceForge
to Google Code to GitHub) and technologies (e.g., from CVS
to Subversion to Git) leaving stale copies behind. Further
duplication is induced by software distribution platforms (e.g.,
package repositories) that massively rely on large mirror
networks to distribute open source software packages. In order
to be long-term viable, archival platforms need to tame this
duplication; as we will see in the following doing so will also
be beneficial for capturing provenance of software artifacts
that exist, as identical copies, in a myriad of places.

Software Heritage [6] deals with this massive duplication
by storing all archived source code artifacts in a single, huge
Merkle direct acyclic graph (DAG) [19]. A toy yet detailed
example of that structure is given in Fig. 1. Each node in the
diagram corresponds to a source code artifact produced as part
of software development:

a) Contents: (i.e., blobs) raw file contents as byte se-
quences, no matter the context where they have been found.
Note that contents are anonymous; “file names” are given to
them by directories.

b) Directories: lists of named directory entries, where
each entry can point to content objects (“file entries”), to other
directories (“directory entries”), or even to other revisions
(“revision entries”, capturing links to external components like
those enabled by Git submodules or Subversion externals).

Each entry is associated to a name (i.e., a relative path) as
well as permission metadata and timestamps.

c) Revisions: (i.e., commits) point-in-time states in the
development history of a software project. Each revision points
to the root directory of the software source code at the time,
and includes additional metadata such as revision timestamp,
author, and a human-readable description of the change.

d) Releases: (i.e., tags) revisions marked as noteworthy
and associated to specific, usually mnemonic, names (e.g.,
version numbers or release codenames). Releases point to
revisions and might include additional descriptive metadata.

e) Snapshots: lists of pairs mapping development branch
names (e.g., “master”, “bug-1234”, “feature-foo”) to revisions
or releases. Intuitively each snapshot captures the full state of
a development repository, allowing to recursively reconstruct
it if the original repository gets lost or tampered with.

Deduplication happens at the node level for all artifact
types: each file content will be stored exactly once and
referred to via cryptographic checksum key from multiple
directories; each commit will be stored once, no matter how
many branches include it; up to each snapshot, which will
be stored once no matter how many identical copies of it in
exactly the same state (e.g., pristine forks on GitHub) exist.

Note how this arrangement allows to store in a uniform data
model both specific versions of archived software (pointed by
release nodes), their full development histories (following the
chain of revision nodes), and development states at specific

DO
NOT

DIS
TRIB

UTE

TABLE I
GRAPH CHARACTERISTICS OF THE REFERENCE DATASET: A SOFTWARE

HERITAGE ARCHIVE COPY AS OF FEBRUARY 13TH, 2018.

(a) archive coverage

46.4 M software origins

(b) nodes
node type quantity
content 3.98 B
revision 943 M
release 6.98 M
directory 3.63 B
snapshot 49.9 M
total 8.61 B

(c) edges
edge type quantity

revision → directory 943 M
release → revision 6.98 M
snapshot → release 200 M
snapshot → revision 635 M
snapshot → directory 4.54 K
directory → directory 37.3 B
directory → revision 259 M
directory → file 64.1 B
total 103 B

points in time (pointed by snapshot nodes).
In addition to the content of the Merkle DAG, Software

Heritage stores crawling information, as depicted on the top
left of Fig. 1. Each time a source code origin is visited, its
full state is captured by a snapshot node (possibly reusing a
previous snapshot node, if the same state has been observed
in the past) and a 3-way mapping between the origin (as an
URL), the time of the visit, and the snapshot object, which is
added to an append-only journal of crawling activities.

B. Archive coverage

At the time we used it for the work presented in this
paper, the Software Heritage archive was already the largest
available corpus of software development artifacts [5], [6],
encompassing:

• a full mirror of GitHub, constantly updated
• a full mirror of Debian packages, constantly updated
• a full import of the Git and Subversion repositories hosted

on Google Code at shutdown time
• a full import of Gitorious at shutdown time
• a one-shot import of all GNU packages (circa 2016)

For this paper we used a copy (called reference dataset
in the following) of the Software Heritage archive taken on
February 13th, 2018. In terms of raw storage size, the dataset
amounts to about 200 TB, dominated by the size of content
objects. As a graph, the DAG consists of ≈9 B nodes and
≈100 B edges, distributed as shown in Table I.

Note that in the Software Heritage archive one can find
all the essential building blocks of provenance information:
the journal of crawling activities precisely records when and
where a particular snapshot has been found. The challenge is
to design a data model that can be used to efficiently answer
provenance queries at this scale. For example, consider the
problem of finding the first occurrence (by revision date) in
which a given content (e.g., a specific .java file) appears,
as well as reporting where it has been observed (the software
origin URL) and when (the visit timestamp). Answering this
query using only the Merkle DAG would require exploring

Fig. 2. Global production of original software artifacts over time, in terms
of never-seen-before revisions.

all the paths leading to the specific content in a graph of a
hundred billion edges.

We will show that it is possible to solve this problem using
commodity hardware and in a way that will stand the test
of time. Before that, though, we will analyze the Software
Heritage corpus to estimate how the graph of software devel-
opment grows over time, which will give us precious insights
on the complexity of the problem.

IV. PUBLIC SOFTWARE DEVELOPMENT GROWTH

In order to track provenance at this scale in the long term,
we study here the factors that contribute to the sheer size
of a provenance index. i.e., roughly speaking, the number
of different contexts in which the source code artifacts we
want to track occur and how this quantity evolves over time.
We develop this understanding in this section studying the
production of original, never-seen-before source code artifacts
and how they spread across publicly developed software.

The fact that current development practices rely heavily
on duplicating and/or reusing code [10], [17] makes simple
metrics—such as counting the number of source code files,
revisions (also known as commits), or even entire projects—
ineffective at estimating how much original software is being
produced.

Using Software Heritage as a representative sample of
publicly developed software, we focus here on how original
software artifacts grow and the relationship between the key
components needed for provenance tracking: revisions, con-
tents and origins.

A. Evolution of original revisions

We start by characterizing the evolution of original re-
visions. We have analyzed the entire reference dataset (see
Table I), processing revisions in increasing timestamps order.
A revision is original if the combination of its properties
(or, equivalently, its identifier in the Merkle DAG) has never
been encountered before. Results are shown in Fig. 2, which
shows an exponential growth over time that can be accurately

DO
NOT

DIS
TRIB

UTE

approximated by the fit line 60e0.27(t−1970). At that rate, the
number of original revisions world-wide doubles every ≈30
months.

This information is precious to estimate the resources
needed for archiving publicly developed software: taking into
account the long term evolution of storage costs4 this growth
looks managable, provided deduplication is used, as described
in Section III. The sustainability of provenance tracking is
more challenging, because artifact occurrences cannot be
deduplicated as, by definition, they occur in different contexts.
Viable provenance data models need to handle this growth; we
will discuss them in Section V.

The growth rate of original revisions hints at the fact that
both the production of novel source code artifacts and their
provenance are interesting evolving complex networks [1],
[7]. Provenance networks that link together occurrences of
the same file constitute such networks, in which reuse of
source code artifacts in novel contexts can be associated
to preferential attachment. For scale-free networks it has
been shown that growth and preferential attachment play an
important role in inducing power law patterns. Determining if
these networks are scale-free or not, and studying the growth
dynamics between edges and nodes, potentially leading to
accelerating growth [1], is outside the scope of this paper,
but the revision growth trend hints at that and will play an
important role in determining it.

Outliers in Fig. 2 deserve further explanation. Data points at
the Unix epoch (1/1/1970) are over-represented, likely due to
forged revision timestamps introduced when converting across
version control systems—these revisions amount to 0.75% of
the dataset. Other timestamps (0.1% of the dataset) are also
clearly forged as they are in the future w.r.t. the timestamp at
which the reference dataset has been taken.

B. Content popularity

Now we turn to another important factor in our analysis:
the popularity of file contents among revisions, i.e., we study
in how many unique revisions each unique content appears.

We took a random sample of about 1 M unique contents
(all contents whose identifiers (hashes) start with aaa) and
counted their occurrences in all revisions of the reference
dataset. Simple and cumulative popularity are shown in the
upper part of Fig. 3.

Content popularity in revisions is well approximated
by a power law with exponential cutoff f(x) = a(x +

b)−αe−(x+bc)γ with parameters a = 1.13392·106, b = 1.80697,
c = 161128, α = 0.489471 and γ = 0.449744, obtained
using an implementation of the nonlinear least-squares (NLLS)
Marquardt-Levenberg algorithm. This means that the average
popularity is very high and is limited only by the existence of a
slow exponential tail for popularity greater than several tens of
thousands revisions. The detailed study of content popularity
as a function of time and revisions—which we have already
observed to grow exponentially itself—is outside the scope of

4see, e.g., https://hblok.net/blog/storage/

Fig. 3. Popularity of unique file contents as the number of unique revisions
they appear in. Results for a random sample of the reference dataset are shown
above; results for selected size-based samples below.

Fig. 4. Distribution of content sizes for a subset of the reference dataset
(1/16th, or ≈250 M contents).

this article and left as future work. But clearly such growth
plays a major role in making the fully general version of
provenance tracking challenging to deal with.

Can we narrow down provenance tracking to selected sub-
sets of file contents, in order to reduce its magnitude? To
explore this we sliced contents by size, a technique often

https://hblok.net/blog/storage/

DO
NOT

DIS
TRIB

UTE
Fig. 5. Distribution of normalized SLOC lengths in a sample of 2.5 M
contents that appear at least once with .c extension.

used by current industry solutions which, e.g., ignore files
smaller than 100 bytes. To determine slices we looked at the
distribution of content sizes, shown in Fig. 4 for 1/16th of the
reference dataset (≈250 M contents). To limit the amplitude of
fluctuations and avoid empty bins, bin sizes vary exponentially
for large value, i.e., (n+1)-th bin size = 1.05 · n-th bin size,
and bin amplitudes are normalized by bin size.

The log-log scale clearly shows a decrease in power law
for size > 104 and up to 108, with an exponent that can be
manually estimated at ≈1.8.5 Hence we looked into two size-
based subsets: up to 100 bytes (middle of the plateau before
104) and between 105 and 106 (middle of the descent before
108). We took 1 M contents randomly selected within each
interval and studied their popularity as before. Normalized
cumulative popularity results are shown in the bottom part
of Fig. 3, together with the results for the full sample for
comparison.

Small contents are much more popular than both average-
sized and large contents. The comparison shows, for small
contents, a slower decrease in popularity followed by an
exponential cut-off; while for large contents, the decline in
popularity is faster with an earlier cut-off.

It is indeed the case that by ignoring small contents the
amplitude of provenance tracking can be significantly reduced.
But doing so would be justifiable only for specific use cases
(e.g., small contents might be considered not “original enough”
from an intellectual property standpoint and hence not worth
tracking for specific use cases) while our goal is to support all
use cases, so we keep our focus on provenance tracking for
the entire corpus.

C. Lines of code length and popularity

For some use cases it might be interesting to implement
provenance tracking at finer granularities, so we also per-
formed a few analysis at the level of single lines of code

5The cut-off at 108 is an artifact likely due to the size limitations imposed
by GitHub. See: https://help.github.com/articles/what-is-my-disk-quota/

Fig. 6. Popularity of normalized SLOCs as the number of unique contents
they appear in. Dataset: same of Fig. 5.

(SLOC). Since lines of code are hardly comparable across
languages, we focused on the C language, which is well-
represented in our corpus. To that end we took a random
sample of ≈11.4 M unique contents occurring in revisions
between 1980 and 2001, and selected from it contents that
appear at least once with .c extension and with size between
102 and 106 bytes, obtaining ≈2.5 M contents. We then split
contents by line and, to remove equivalent formulations of the
same SLOC, normalized lines by removing blanks and trailing
";" (semicolon). We obtained ≈64 M normalized SLOCs.

The distribution of normalized SLOC lengths between 4 and
1000 characters is shown in Fig. 5. Lines with length 15 to 60
normalized characters are the most represented, with fairly
stable presence within that range. Afterwards the amounts of
lines of code with a given length drop steeply, reaching very
long line outliers, probably due to phenomena like inlining
and obfuscation. For SLOC provenance tracking there does not
seem to exist any obvious length-based threshold that would
reduce the problem magnitude.

We also looked into the popularity of SLOCs across unique
contents, as we did for content popularity in revisions; results
are shown in Fig. 6. As for contents, popularity shows a
decrease in power law over several decades, followed by an
exponential cutoff close to the finite size of the dataset.

D. Origin size and popularity

Another factor that impacts provenance tracking is the
amount of repository forks, because each fork induces extra
data points to capture the additional location of all source
code artifacts contained in the fork. To assess this impact we
looked at the distribution of origin sizes using two metrics:
the number of revisions hosted at a software origin and the
number of origin-deduplicated revisions. The latter metric
makes revisions that appear in multiple origins count for only
one of them and, specifically, for the biggest one among
them in terms of non-deduplicated revisions. This measure
is very robust in the sense that it will naturally follow the

https://help.github.com/articles/what-is-my-disk-quota/

DO
NOT

DIS
TRIB

UTE
Fig. 7. Distribution of origin size as the number of revisions they host.
Deduplicated size is obtained by counting revisions found at multiple origins
only for the largest (non-deduplicated) among them.

Fig. 8. Popularity of revisions across origins for the same dataset of Fig. 7.

main development line (or most fit fork) of a project, assigning
deduplicated revisions to it, while stale forks decay. Also, the
metric will follow forks that resurrect projects abandoned at
their original development places. Note that this approach does
not rely on platform metadata for recognizing forks; as such it
will recognize exogenous forks across unrelated development
platforms (e.g., GitHub-hosted forks of the Linux kernel that
is not natively developed on GitHub).

Results are shown in Fig. 7 for ≈12% of the origins, which
contain ≈29% of the revisions (or about 5.4 M origins and
272.5 M revisions) in the reference dataset. Again, bin sizes
vary exponentially for large values and their amplitude is
normalized by bin size.

Note how, starting from relatively small repositories (≈100
revisions) deduplication reduces significantly provenance am-
plitude, with a gap growing up to a full order of magnitude
in difference for repositories hosting 10 K revisions.

As the last element of provenance characterization, we
would like to know how popular revisions are across origins,

assessing the impact of their duplication on provenance ampli-
tude. To that end we replicated the previous study of content
popularity onto revisions. Results are shown in Fig. 8.

Revision popularity shows an erratic behavior near the end
of the range, but decreases steadily before, and way more
steeply than it was the case for content popularity across
revisions (see Fig. 3 for comparison).

An important fact that emerges from these analyses is that
the content→revision mapping is the most challenging to deal
with, because contents are duplicated across revisions much
more than revisions are duplicated across origins. Hence in
the following we will focus on efficiently implementing the
content→revision mapping, as the revision→origin mapping
will be a straightforward and modular addition.

V. COMPACT PROVENANCE MODELING

A. Requirements

We can now attack the problem of how to practically
capture and query provenance information. Specifically, we
set forward to define a data model that satisfies the following
requirements:

a) Supported queries: The first occurrence query shall
return the most ancient occurrence of a given source code
artifacts in any context, according to the revision timestamp.
The all occurrences query generalizes first occurrence to return
all occurrences instead. The two queries answer different use
cases: first occurrence is useful for prior art assessment and
similar “intellectual property” needs; all occurrences is useful
for impact/popularity analysis and might be used to verify first
occurrence results in case of dubious timestamps.

b) Granularity: Support tracking the provenance of
source code artifacts at different granularities including at least
file contents and revisions.

c) Scalability: Support tracking provenance at the scale
of Software Heritage and keep up with the growth rate of
public software development (see Section IV). Given that the
initial process of populating provenance mappings might be
very onerous, and that some use cases require fresh data
(e.g., impact/popularity), we consider incrementality as part
of scalability: the data model must support efficient updates
of the provenance mappings as soon as source code artifacts
(old or new) are observed in new contexts.

d) Compactness: Enable storing and querying prove-
nance mappings on state-of-the-art consumer hardware, with-
out requiring dedicated hardware or expensive cloud resources.

e) Streaming: For the all occurrences query a non-
compressible performance bottleneck is the transfer time re-
quired to return a sheer amount of results. Viable provenance
data models should perform no worse than that, immediately
returning some of the results, piping up the rest for later.

B. Provenance models

We study three different data models for provenance track-
ing, that we call respectively flat, recursive, and compact. Their
Entity-Relationship (E-R) diagrams are shown in Fig. 9.

DO
NOT

DIS
TRIB

UTE
(a) flat model

(b) recursive model

(c) compact model

Fig. 9. Provenance tracking models, entity-relationship (E-R) views

a) Flat model: this is our baseline for tracking prove-
nance, shown in Fig. 9(a). In this model provenance map-
pings are “flattened” using a single C(ontent) occur in

R(evision) relation, that also keeps track of content paths
relatively to the root directory of the associated revision. The
cardinality of C occur in R is n-m (rather than 1-n), because
the same content might appear multiple times in a given
revision at different paths. Each revision carries as attribute the
revision timestamp, in order to answer the question of when
the occurrence happened. Each content carries as attribute
the timestamp of its earliest occurrence, i.e., the minimum
timestamps among all associated revisions.

Given suitable indexing on content identifiers (e.g., using
a B-tree), the flat model adds no read overhead for the
all occurrences query. Same goes for first occurrence, given
suitable indexing on timestamp attributes, which is required to
retrieve path and revision.

Updating provenance mappings when a new revision comes
in requires traversing the associated directory in full, no
matter how many sub-directories or contents in it have been
encountered before, and adding a relationship entry for each
of its nodes.

b) Recursive model: while the flat model shines in access
time at the expenses of update time and compactness, the
recursive model shown in Fig. 9(b) does the opposite. It
is intuitively a “reverse” Merkle DAG representation, which
maps contents to directories and directories to revisions.

Each entity has a timestamp attribute equal to the timestamp
of the earliest revision in which the entity has been observed
thus far. When processing an incoming revision rt2 (with

timestamp t2) it is no longer necessary to fully traverse the
associated directory: if a node is encountered whose timestamp
t1 in the model is s.t. t1 < t2, recursion can stop as the subtree
rooted there has already been added in the past; we just need
to add a single occurrence for the node with timestamp t2.

Thanks to the sharing offered by the directory level, the
recursive model is as compact as the original Merkle structure,
with no flattening involved. The all occurrences query is slow
in this model as for each content we need to walk up directory
paths before finding the corresponding revisions. Response
time will hence depend on the average directory depth at which
queried contents will be found. First occurrence is faster, but
still incurs some read overhead: given a content we have to
walk up all directories (and then revisions) whose timestamps
equate the timestamp of the content being queried.

c) Compact model: Fig. 9(c) shows a compromise ver-
sion between the flat and recursive models, which is both
storage-compact and capable of quickly answering the target
queries. A timestamp attribute denoting the earliest known
occurrence is associated to content, directory, and revision
entities, as before. To understand how the compact model is
used we introduce the following notion:

Definition 1 (Isochrone subgraph): given a partial prove-
nance mapping P associating a timestamp of first occurrence
to each node in a Merkle structure, the isochrone subgraph
of a revision node R (with timestamp tR) in the Software
Heritage graph is a subgraph rooted at R’s directory, which
only contains directory nodes whose timestamps in P are
equal to tR.

Intuitively, when processing revisions chronologically to
update provenance mappings, the isochrone subgraph of a
revision starts with its root directory and extends through
all directory nodes containing never-seen-before source code
artifacts. Due to Merkle properties each directory containing
at least one novel element is itself novel. Everything outside
the isochrone subgraph has been observed before, in at least
one previously processed revision.

Given this notion, the upper part of the compact model (C
occur early in R) is filled with one entry for each content
attached to any directory in the isochrone subgraph. As a
consequence of this, the first occurrence of any given content
will always be found in C occur early in R although
other occurrences—depending on the order in which revisions
are processed to update the provenance mappings—will also
be found there.

The relation D occur in R is filled with one entry, point-
ing to the revision being processed, for each directory outside
the isochrone subgraph that is referenced by directories inside
it, i.e., D occur in R contains one entry for each directory-
to-directory edge crossing the isochrone frontier. Finally, the
relation C occur in D is filled with one entry for each
content (recursively) referenced by any directory added to the
D occur in R relation.

Filling the compact model is faster than the flat model
because we stop traversing the directory hierarchy when we
reach the frontier of the isochrone subgraph; it is slower than

DO
NOT

DIS
TRIB

UTE

the recursive model case, though, as we still need to traverse
the isochrone subgraph of each revision. Read overhead for
first occurrence is similar to the flat model: provided suitable
indexing on timestamps we can quickly find first occurrences
in C occur early in R. Read overhead for all occurrences
is lower than the recursive model because all content occur-
rences will be found via C occur in D without needing to
recursively walk up directory trees, and from there directly
linked to revisions via D occur in R.

C. Discussion

Intuitively, the reason why the compact model is a good
compromise is that we have many revisions and a very high
number of file contents that occur over and over again in
them, as we have seen in Fig. 3. Consider then two extreme
cases: (1) a set of revisions all pointing to the same root
directory but with metadata differences (e.g., timestamp or
author) that make all revisions unique; (2) a set of revisions all
pointing to different root directories that have no file contents
or (sub)directories in common.

In case (1) the flat model would explode in size due
to maximal duplication. The recursive model will need just
one entry in D occur in R for each revision. The compact
model remains small as the earliest revision will be flattened
(via C occur early in R) as in the flat model, while each
additional revision will add only one entry to D occur in R

(as in the recursive model).
In case (2) the flat model will be optimal in size for

provenance tracking purposes, as there is no sharing. The
recursive model will have to store all deconstructed paths in
D occur in D. The compact model will be as small as the
flat model, because all revisions are entirely isochrones.

Reality will sit in between these two extreme cases, but
as the compact model behaves well in both, we expect it to
perform on the real corpus too. In the next section we will
experimentally validate this intuition.

VI. EVALUATION

To compare the provenance data models described in the
previous section we have measured the evolution of the sizes
of the three models while processing incoming revisions to
maintain provenance mappings up to date.

Specifically, we have processed in chronological order re-
visions from the reference dataset with timestamps strictly
greater than the UNIX epoch (to avoid the initial peak of
forged revisions discussed in Section IV) and up to January
1st, 2005, for a total of ≈38.2 M revisions. For each revision
we have measured the number of entities and relationship
entries according to the model definitions, that is:

a) Flat model: one entity for each content and revision;
plus one C occur in R entry for each content occurrence

b) Recursive model: as it is isomorphic to the
Merkle DAG, we have counted: one entity for each con-
tent, directory, and revision; plus one relationship en-
try for each revision→directory, directory→directory, and
directory→content edge

TABLE II
SIZE COMPARISON FOR PROVENANCE DATA MODELS, IN TERMS OF

ENTITIES AND RELATIONSHIP ENTRIES. SAME DATASET OF FIG. 10.

Flat Recursive Compact
entities 80 118 995 148 967 553 97 190 442

rev: 38.2 M rev: 38.2 M rev: 38.2 M
cont: 41.9 M cont: 31.9 M cont: 31.9 M

dir: 68.8 M dir: 17.1 M
rel. entries 654 390 826 907 2 607 846 338 19 259 600 495

cont–dir: 1.29 B cont–dir: 13.8 B
dir–rev: 38.2 M dir–rev: 2.35 B
dir–dir: 1.28 B cont–rev: 3.12 B

rel. ratios flat
compact

= 34.0 flat
rec.

= 251 compact
rec.

= 7.39

c) Compact model: we have first determined the
isochrone subgraph of each revision, then counted: one en-
tity for each content and revision, plus one entity for each
directory outside the isochrone graph referenced from within;
as well as one relationship entry for each content attached to
directories in the isochrone graph (C occur early in R),
one D occur in R entry for each directory-to-directory edge
crossing the isochrone frontier, and one C occur in D entry
for each content present in directories appearing in D occur

in R.
Processing has been done running a Python implementation

of the above measurements on a commodity workstation (Intel
Xeon 2.10GHz, 16 cores, 32 GB RAM), parallelizing the load
on all available cores. Merkle DAG information have been read
from a local copy of the reference dataset, which had been
previously mirrored from Software Heritage. In total, revision
processing took about 4 months, largely dominated by the time
needed to identify isochrone subgraphs.

Final sizes measured in terms of entities and relationship
entries are shown in Table II. They show, first, that the amount
of relationship entries dominate that of entities in all models,
from a factor 18 (recursive model) up to a factor 8000 (flat).
Dealing with mappings between source code artefacts remains
the main volumetric challenge in tracking provenance. As
further evidence of this, and as a measure of the overall
amplitude of universal provenance tracking, we have also
computed the number of relationship entries for the flat data
model on the full reference dataset, obtaining a whooping
8.5 · 1012 entries in C occur in R.

Second, sizes tell us that the Merkle DAG representation,
isomorphic to the compact model, is indeed the most compact
representation of provenance information, although not the
most efficient to query. The compact model is the next
best, 7.39 times larger than the recursive model in terms of
relationship entries; the flat model comes last, respectively 251
and 34 times larger than recursive and compact.

Fig. 10 shows the evolution of model sizes over time, as
a function of the number of unique contents processed thus
far. After an initial transition period trends and ratios stabilize,
making the outlook of long-term viability of storage resources
for the compact model look good.

In order to relate these figures to actual storage require-
ments, we have also filled a MongoDB-based implementation

DO
NOT

DIS
TRIB

UTE

Fig. 10. Evolution over time of the sizes of different provenance data models,
in terms of entities and relationship entries. Data for Software Heritage
revisions up to 2005-01-01, excluding UNIX epoch.

of the compact model—including all attributes of Fig. 9(c)
and needed indexes—while processing revisions to perform
the above measurements. Extrapolating the final MongoDB
size (including indexes) to the full reference dataset we obtain
an on-disk size of 13 TB. While large, such a database can be
hosted on a consumer workstation equipped with ≈2000$ of
SSD disks, hence without having to resort to dedicated data
centers or substantial investments in cloud resources. Universal
source code provenance can lay at the fingertips of every
researcher and industrial user!

VII. THREATS TO VALIDITY

a) Internal validity: The main concern for internal va-
lidity is that we did not have the resources available to
perform all estimates and experiments on the full Software
Heritage archive. Our main growth results is measured on
the full reference dataset, while other results are projections
extrapolated from smaller subsets of it. This may lead to bias,
which we believe to have countered using random sampling.

Along the same line, when comparing provenance data
models we have quantitatively estimated sizes, but only qual-
itatively estimated read overhead—rather than benchmarking
it in production—in order to remain technology-neutral.

Finally, we trusted commit timestamps to determine first
occurrences, knowing well that commit timestamps might be
forged. On the one hand, this is consistent with previous
software evolution studies that generally seem to consider
timestamp forging a marginal phenomenon. On the other hand,
what matters for our purposes is just the ability to separate a
“first” occurrence from the others, which we support no matter
what discrimination criterion is used.

b) External validity: In terms of generality, while Soft-
ware Heritage does not cover all existing free/open source
software, it is the largest source code archive in the world
and spans the most popular code hosting and development
platforms. We think this is the best that can be done today.

Finally, we acknowledge the habit of using software devel-
opment platforms for tasks other than software development
(e.g., collaborative writing), particularly on GitHub. We did
not make an effort to filter out non-software projects, but we
expect software development to be still the largely dominant
use of the platforms represented in our corpus.

VIII. CONCLUSION

The emergence of Software Heritage as a universal source
code archive, with its compact Merkle-based representation
of development artifacts, enables analysis of the evolution of
software development at an unprecedented scale.

It is now well known that the amount of code clones across
GitHub projects is huge [17]. The first main contribution of
this paper is to show that, even factoring out exact code
clones, the production of unique original revisions at the scale
of Software Heritage, spanning tens of millions of software
projects over several decades, doubles every 30 months.

This means that the perceived overall growth of the public
software ecosystem is quite real, so that to enable sustainable
large scale studies on this new commons we need to find
scalable, efficient ways for tracking the provenance of source
code artifacts.

To this end, we have studied three data models that allow
to answer the essential questions “what are the first/all oc-
currence(s) of this file/commit?” in a given source code cor-
pus. The models represent different trade-offs between space
requirements and access overhead, which we have estimated
and verified experimentally. We have shown that the compact
data model has the best space/time trade-off and allows to
track universal software provenance at the scale of Software
Heritage on consumer hardware, paving the way to a variety
of interesting big code studies.

In future work we intend to, on the one hand, further charac-
terize the software evolution trends presented here, exploring
how other types of original source code artifacts evolve over
time, as well as studying the characteristics of provenance
graphs as evolving complex networks. On the other hand
we want to increase the granularity at which provenance is
tracked, most notably breaking file boundaries and reaching
down to individual lines of code, supporting queries such as
what are the first/all occurrences of a given line of code across
the entire Software Heritage corpus.

DO
NOT

DIS
TRIB

UTE

REFERENCES

[1] Réka Albert and Albert-László Barabási. Statistical mechanics of
complex networks. Reviews of modern physics, 74(1):47, 2002.

[2] Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edition, 1978.

[3] Matthieu Caneill, Daniel M. Germán, and Stefano Zacchiroli. The
Debsources dataset: two decades of free and open source software.
Empirical Software Engineering, 22(3):1405–1437, 2017.

[4] Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins.
Free/libre open-source software development: What we know and what
we do not know. ACM Comput. Surv., 44(2):7:1–7:35, March 2008.

[5] Roberto Di Cosmo, Morane Gruenpeter, and Stefano Zacchiroli. Iden-
tifiers for digital objects: the case of software source code preservation.
In iPRES 2018: 15th International Conference on Digital Preservation,
2018. To appear.

[6] Roberto Di Cosmo and Stefano Zacchiroli. Software heritage: Why
and how to preserve software source code. In Proceedings of the 14th
International Conference on Digital Preservation, iPRES 2017, Kyoto,
Japan, September 2017. Available from https://hal.archives-ouvertes.fr/
hal-01590958.

[7] Sergey N Dorogovtsev and Jose FF Mendes. Evolution of networks.
Advances in physics, 51(4):1079–1187, 2002.

[8] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen.
Boa: A language and infrastructure for analyzing ultra-large-scale soft-
ware repositories. In Proceedings of the 2013 International Conference
on Software Engineering, pages 422–431. IEEE Press, 2013.

[9] Michael W. Godfrey, Daniel M. German, Julius Davies, and Abram Hin-
dle. Determining the provenance of software artifacts. In Proceedings
of the 5th International Workshop on Software Clones, IWSC ’11, pages
65–66, New York, NY, USA, 2011. ACM.

[10] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An ex-
ploratory study of the pull-based software development model. In Pro-
ceedings of the 36th International Conference on Software Engineering,
pages 345–355. ACM, 2014.

[11] Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay Rawat,
Josselin Feist, and Laurent Mounier. Toward large-scale vulnerability
discovery using machine learning. In Proceedings of the Sixth ACM
Conference on Data and Application Security and Privacy, CODASPY
’16, pages 85–96, New York, NY, USA, 2016. ACM.

[12] Les Hatton, Diomidis Spinellis, and Michiel van Genuchten. The
long-term growth rate of evolving software: Empirical results and
implications. Journal of Software: Evolution and Process, 29(5), 2017.

[13] Israel Herraiz, Daniel Rodrı́guez, Gregorio Robles, and Jesús M.
González-Barahona. The evolution of the laws of software evolution: A
discussion based on a systematic literature review. ACM Comput. Surv.,
46(2):28:1–28:28, 2013.

[14] T. Ishio, R. G. Kula, T. Kanda, D. M. German, and K. Inoue. Software
Ingredients: Detection of Third-Party Component Reuse in Java Soft-
ware Release. In 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR), pages 339–350, May 2016.

[15] Meir M. Lehman. On understanding laws, evolution, and conservation
in the large-program life cycle. Journal of Systems and Software, 1:213–
221, 1980.

[16] Frank Li and Vern Paxson. A large-scale empirical study of security
patches. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, pages 2201–2215,
New York, NY, USA, 2017. ACM.

[17] Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang,
Jakub Zitny, Hitesh Sajnani, and Jan Vitek. Déjàvu: a map of code
duplicates on github. PACMPL, 1(OOPSLA):84:1–84:28, 2017.

[18] Matias Martinez and Martin Monperrus. Mining software repair models
for reasoning on the search space of automated program fixing. Empir-
ical Software Engineering, 20(1):176–205, 2015.

[19] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Carl Pomerance, editor, Advances in Cryptology - CRYPTO
’87, A Conference on the Theory and Applications of Cryptographic
Techniques, volume 293 of Lecture Notes in Computer Science, pages
369–378. Springer, 1987.

[20] Audris Mockus. Amassing and indexing a large sample of version
control systems: Towards the census of public source code history. In
Michael W. Godfrey and Jim Whitehead, editors, Proceedings of the
6th International Working Conference on Mining Software Repositories,

MSR 2009 (Co-located with ICSE), Vancouver, BC, Canada, May 16-17,
2009, Proceedings, pages 11–20. IEEE Computer Society, 2009.

[21] Guillaume Rousseau and Maxime Biais. Computer Tool for Managing
Digital Documents, February 2010. CIB: G06F17/30; G06F21/10;
G06F21/64.

[22] Yuichi Semura, Norihiro Yoshida, Eunjong Choi, and Katsuro Inoue.
Ccfindersw: Clone detection tool with flexible multilingual tokenization.
In Jian Lv, He Jason Zhang, Mike Hinchey, and Xiao Liu, editors, 24th
Asia-Pacific Software Engineering Conference, APSEC 2017, Nanjing,
China, December 4-8, 2017, pages 654–659. IEEE Computer Society,
2017.

[23] Jeffrey Svajlenko and Chanchal Kumar Roy. Fast and flexible large-
scale clone detection with cloneworks. In Sebastián Uchitel, Alessandro
Orso, and Martin P. Robillard, editors, Proceedings of the 39th Interna-
tional Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017 - Companion Volume, pages 27–30. IEEE
Computer Society, 2017.

[24] Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimil-
iano Di Penta. An empirical study on the maintenance of source code
clones. Empirical Software Engineering, 15(1):1–34, 2010.

[25] Nitin M. Tiwari, Ganesha Upadhyaya, and Hridesh Rajan. Candoia:
a platform and ecosystem for mining software repositories tools. In
Laura K. Dillon, Willem Visser, and Laurie Williams, editors, Proceed-
ings of the 38th International Conference on Software Engineering, ICSE
2016, pages 759–764. ACM, 2016.

[26] C. Vendome. A large scale study of license usage on github. In
2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 2, pages 772–774, May 2015.

[27] Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M. Germán, and
Katsuro Inoue. Analysis of license inconsistency in large collections
of open source projects. Empirical Software Engineering, 22(3):1194–
1222, 2017.

[28] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects
for eclipse. In Predictor Models in Software Engineering, 2007.
PROMISE’07: ICSE Workshops 2007. International Workshop on, pages
9–9, May 2007.

[29] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas
Zeller. Mining version histories to guide software changes. In Anthony
Finkelstein, Jacky Estublier, and David S. Rosenblum, editors, 26th
International Conference on Software Engineering (ICSE 2004), 23-28
May 2004, Edinburgh, United Kingdom, pages 563–572. IEEE Computer
Society, 2004.

https://hal.archives-ouvertes.fr/hal-01590958
https://hal.archives-ouvertes.fr/hal-01590958

	Introduction
	Related Work
	Background: Software Heritage
	Data model
	Archive coverage

	Public Software Development Growth
	Evolution of original revisions
	Content popularity
	Lines of code length and popularity
	Origin size and popularity

	Compact Provenance Modeling
	Requirements
	Provenance models
	Discussion

	Evaluation
	Threats to Validity
	Conclusion
	References

