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Problem and Example Applications

• Network motif discovery is the problem of finding subgraphs
of a network that occur more frequently than expected,
according to some reasonable null hypothesis.

• Such a subgraph may indicate:
• a small scale interaction feature in genomic interaction

networks
• an intriguing relationship involving rock musicians and fans
• connections among airports.



Why p-value and Not Just Counts

• Data mining approach is to say ”find all subgraphs that
appear at least k times for some user-defined threshold k”.
Why isn’t that enough?

• Think back to coins: if I flip a coin 17 times and get 10
heads, do I call the secret service and say there are
counterfeiters out there? What about 16 out of 17 times? We
often want an implicit random model and some notion of
likelihood (p-value).

• Thresholds for graphs don’t really work: it may be that many
graphs have k or more edges between a red and blue node,
but few graphs have k or more cliques of size 15 with 14 blue
nodes and one red node.



The Simulation Approach to Evaluating
p-values

Given a topological pattern m on an input network G , the common
approach to determining whether m is a motif works as follows:

1 Generate a large set of random networks sharing the
characteristics of G .

2 Find the number of occurrences of m in each of those
networks.

3 Estimate the p-value by comparing the number of occurrences
in the input network with the numbers in the random
networks.



Good and Bad of Simulation Method

• Simulation-based method yields a measure of the significance
of each candidate through the computation of a p-value using
a resampling approach.

• Unfortunately, this method requires a large number of random
graphs whose analysis turns out to be computationally
expensive, much more expensive say than just finding
subgraphs that appear more than 5 times in the target graph
which is the data mining approach.

• Conclusion: Worthwhile to find analytical methods that can
be hundreds of times faster.



Take a step back: Random models

• The significance of a motif is always evaluated with respect to
a reference random model. This is analogous to evaluating
whether a coin is fair by comparing to a random model where
the probability of heads is 1/2.

• Random graphs are generated such that they preserve some
characteristics of a network, typically the degree distribution.



Examples of Random Models

• The Erdös-Renyi model (ER model):
• the probability of connecting two nodes n1 and n2 in a random

graph is the same as the probability of connecting any other
two nodes n3 and n4 and that probability is determined by the
network density of G .

• The Fixed degree distribution model (FDD model):
• random graphs are generated by swapping edges starting from

the input network G , guaranteeing that each node in each
random graph has the same degree as in G .

• The Expected degree distribution model (EDD model):
• node degree distribution of random graphs have the same

expectation as the input network G (more tractable than
FDD).



Research directions

• Over the last few decades, researchers have worked on
replacing simulation by analytical methods.

• For uncolored/unlabel motifs, approximation methods, based
on the Erdös-Renyi (ED) model, have computed the
asymptotic normality of the distribution of topology counts.

• Unfortunately, empirical evidence suggests that the
Erdos-Renyi random model offers a poor fit for many
real-world networks.



Seminal work on topological motifs

• Picard et al. proposed a model to exactly compute the mean
and variance of the count of a given pattern of
unlabeled/uncolored nodes under any exchangeable random
graph model.

• Exchangeability: The probability of occurrence of a topology
does not depend on its position in the graph (every subset of
nodes could contain it).

• The authors make use of the Pólya-Aeppli distribution to deal
with objects occuring in clusters which makes additional
assumptions (which should be justified empirically):

• the number of clusters follow a Poisson distribution
• the number of objects per cluster has a geometric distribution.

• However, topology without labels/colors is limited. Labels can
be important (male/female, transcription factor/ metabolite).
Finding colored/labeled motifs can lead to important insights.



Types of colored motifs

• To deal with colored motifs we need to generalize the
uncolored motif definition based on constraints that can be
defined on the topology, on the color label assignment, or
both.

• This leads us to three different definitions of motifs which are
hierarchically related.



Multiset colored motifs

• Schbath et al. define a motif as any connected topology of k
nodes having a given multiset of colors C .

• The authors proposed an analytical approach for assessing the
exceptionality of multiset colored motifs.

• Exact analytical model for the mean and the variance of the
count of a colored motif using the Erdös-Rényi (ER) random
graph model.



What We Bring to the Table

• There is work that finds analytical models for particular
topologies and work that looks for particular combinations of
colors regardless of topology. We want to combine the two.

• For the work concerning colors, we want to treat the case
where degree and color are related (e.g. carbon atoms have a
valence of four, whereas hydrogen only one) and where not.

• We want to treat directed/undirected graphs,
induced/non-induced motifs, various mappings of color to
nodes.

• More realistic random model than Erdös-Rényi: Expected
Degree Distribution (EDD model).



Colored Motif Models

We propose two new definitions of colored motif:

• Multiset Topological colored motifs
• A subgraph of k nodes with a given topology having nodes

belonging to a multiset of colors M, e.g. a star configuration
of one rock musician and four fans. This is close to the
Schbath definition but we include topology.

• Injective topological colored motif
• A topology and a specific color assignment to each node in the

topology. In this case a motif is a subgraph of k nodes having
colors assigned to each node of a given topology, e.g. a star
configuration of one rock musican and four fans, with a rock
musician at the center.



Motif hierarchy. Four different definitions of motifs. When
definition A points to definition B, the set of motifs responding to
a query according to A is a superset of those responding to a query
according to B. All the definitions apply to both directed and
undirected graphs.



Example of Motif occurrences within the motif hierarchy.



Colored graph

A colored graph G (V ,E ,C , c) is a graph where V is the set of
nodes, E ⊆ (V × V ) is the set of edges, C is a set of colors and
c : V −→ C is a function that assigns a color to each node in V .
G is undirected means that if ∀(u, v) ∈ E , then (v , u) ∈ E , i.e. all
neighbor relationships go both ways.



Multiset Topological Colored Motif
[formalization]

Let G (V ,E ,C , c) be a colored graph drawn from a distribution of
graphs under a given reference random exchangeable model RG .
Let m(Vm,Em,Cm) be a colored subgraph (induced or
non-induced) of G having Cm as the multiset of node colors of the
nodes Vm.
Let Nobs(m) be the number of topologically isomorphic
non-redundant occurrences of m in G having the same multiset of
colors Cm, and let α be a critical value (provided by the user). We
say that m is a motif of G if the probability

P [N(m) ≥ Nobs(m)] ≤ α

where N(m) is a random variable representing the number of
non-redundant occurrences of the motif m under the random
reference model RG .



Injective Topological Colored Motif
[formalization]

Let G (V ,E ,C , c) be a colored graph drawn from a distribution of
graphs under a given reference random exchangeable model RG .
Let m(Vm,Em,Cm, c) be a subgraph (induced or non-induced) of
G where Vm is the set of k nodes of m, Em is the set of edges and
Cm is the multiset of node colors. Let Nobs(m) be the number of
isomorphic non-redundant occurrences of m in G , where
p(Vp,Ep,Cp, c) is an occurrence of m if there is a 1-to-1 mapping
from Em to Ep such that for every (u, v) ∈ Em ∃(u′, v ′) ∈ Ep such
that c(u) = c(u′) and c(v) = c(v ′). Let α be a critical value. We
say that m is a motif of G if the probability

P [N(m) ≥ Nobs(m)] ≤ α

where N(m) is a random variable representing the number of
occurrences of the motif under the reference model RG .



Two kind of motifs: Induced and
Non-Induced (e.g. for a path)



Expected Degree Distribution (EDD)
Random Model

EDD on graphs where node colors are independent of node
degrees

Given an undirected graph G (V ,E ) with |V | = N, define a
random variable Deg based on the degree distributions of G .
P(Deg = d) is the probability that a node has degree d in G .
Generate a new graph G ′ = (V ′,E ′) with |V ′| = |V | as follows:
assign degrees to each node i in V ′ by sampling according to the
Deg distribution.



Road Map [lots of moving parts]

• Find the probability of the occurrence of a non-induced
colored motif at a given position in the graph.

• Find expected number of instances of that motif in the whole
graph. Also variance.

• Pólya-Aeppli model to calculate p-value.

• Kocay mapping in order to handle induced patterns.

• Experiments evaluating accuracy and performance.

Throughout: generalize to different motif definitions, to directed
graphs and to the case where colors influence degrees..



Probability of an edge in the Expected
Degree Distribution Model

• An edge between two nodes i and j (with i 6= j) is generated
with probability:

P(i , j) = min(1, γ × D(i)× D(j))

where γ = 1/ [(N − 1)× E[Deg ]] and D(i) is the degree of
node i within the input graph. Thus, γ is approximately 1/the
number of edges. When i = j we have P(i , j) = 0.

• We won’t use the min function later, because ultimately we
want to know how many instances of the motif there are so
even if this probability becomes greater than one, that will not
matter in the global estimate.

• We have N − 1 rather than N because there are no self-loops.



Finding Probability of an Occurrence at a
Position in a Graph: example

• Let’s say we have a graph with degrees 1, 2, ..., maxdeg

• Suppose you want to compute the probability of observing a
topology of three nodes in a graph that resembles the input
graph, for example a path X-X-X.

• We have the following list of degree assignments:
1,1,1
1,2,1
...
1,2,3
1,2,4
1,2,5
...
maxdeg, maxdeg, maxdeg



Occurrence Probability Example
Continued

• Generalizing for any degree assignments i, j, k we have terms
to sum up of the form
P(i)× P(j)× P(k)× γ × i × j × γ × j × k Note that the
middle term appears twice.

• Consider now E (deg)× E (deg2)× E (deg)[
maxdegree∑

i

P(i)× i

]
×

maxdegree∑
j

P(j)× j × j

×[maxdegree∑
k

P(k)× k

]

• The cross terms describe a sum corresponding to each degree
combination.

• Note that certain impossible cases (e.g. degrees of 1, 1, 1 for
a path of length two) are still here so this is an
approximation[Chung and Lu, 2002].



Occurrence Probability of Non-induced
subgraph at a Position: general case

Occurrence Probability for General Potential Motif

Generalizing from our example on three nodes, we obtain a
product of moments of the Deg distribution:

µ(m) = γm++/2
k∏

u=1

E[Degmu+ ]

m++ is twice the total number of edges in a candidate motif m,
mu+ is the valence of node u in m and E[Degmu+ ] is the mu+-th
moment of distribution Deg . k is the number of nodes in m.



Have to determine how to distribute the colors in the bottom two
cases.



Probability of observing motif colors:
Multiset motif model

• In the multiset motif model (e.g. we just care that there is
one rock musician and four fans) the color assignment to
nodes is independent of their degrees.

• The assignment of colors in C to the k nodes of mC follows a
multinomial distribution:

ν(C ) =
k!∏

c∈C s(c)!

∏
c∈C

f (c)s(c)

where s(c) is the multiplicity of color c in m and f (c) is the
fractional frequency (fraction) of color c in the graph.



Probability of observing motif colors:
Injective motifs

For an injective topological colored motif (e.g. where we care
about where the rock musician is), the probability of observing the
color assignment to nodes of mC is:

ν(C ) =
k∏

u=1

P(cu)

where P(cu) is the probability of observing the color cu of motif
node u in the graph.



Colored Motif Probability: Multiset and
Injective

The probability of observing the colored motif mC is the probability
of finding the topology times the probability of finding those colors
on that topology:

σ(mC ) = µ(m)× ν(C )



Concrete Example to Show Calculation
[self-study]



Explanation [self-study]

Occurrence probability for a non-induced multiset topological
colored motif under the EDD random model with color-degree
independence on an undirected graph.
(a) Input graph G (V ,E ), input motif mC . Since we have only two
different degrees within G , the Deg distribution assumes values
within the set 1, 2, P(Deg = 1) = 2

3 , P(Deg = 2) = 1
3 ,

E[Deg ] = P(Deg = 1)× 1 + P(Deg = 2)× 2 = 4
3 ,

γ = 1
(|V | − 1)×E[Deg ] = 3

8 .



Explanation part 2 [self-study]

Probability of the motif.
i) Probability of the topology computation: mu indicates the
degree of node u within the motif. In this case mu is 1 for both
nodes of the motif. m++ is twice the number of edges of the
motifs, in this case 2.
ii) Probability of the multiset of colors comes from the multinomial
distribution.
iii) The probability of the motif is obtained as the product of the
probabilities (i) and (ii).



Directed graphs – finding non-induced
colored subgraphs

On directed graphs we have the following equation:

P(i , j) = min(1, γ × Dout(i)× Din(j))

where γ = 1/ [(N − 1)× E[Degout ]] (approximately, 1/the number
of edges)

The probability of observing an uncolored topology of k nodes is:

µ(m) = γm++

k∏
u=1

E[Degmu+
out ]E[Deg

mu−
in ]

In this case, m++ is the number of edges



EDD on graphs where node colors
influence node degrees

• Given the Deg distribution of degrees, we can define a
number of EDD conditional distributions, one for each color.

• Let Deg |c be a random variable defined as the degree
distribution for nodes with color c within the input graph G .

• P(Deg = x |c) is the probability of sampling a node in G with
a degree x given the color c.



Occurrence probability a colored motif
topology (non-induced)

The motif mC with k nodes, given a color assignment C to its
nodes has the following probability:

µ(mC |C ) = γm++/2
k∏

u=1

E[Degmu+ |cu]

where Deg |cu is the degree distribution for nodes of color cu in the
input network.
In the case of directed graphs we have:

µ(mC |C ) = γm++

k∏
u=1

E[Degmu+
out |cu]E[Deg

mu−
in |cu]



Probability of Injective motifs

The probability of observing the injective colored motif mC is:

σ(mC ) = µ(mC |C )× ν(C )

where ν(C ) is the product of nodes color probabilities.



Example for Intuition [self-study]



Example When Colors Influence Degrees
[self-study]

Occurrence probability for a non-induced injective topological
colored motif under the EDD random model with color-degree
dependence on an undirected graph. (a) Input graph G (V ,E ),
input motif mC . We have two different degrees within G , the Deg
distribution assumes values within the set 1, 2,
P(Deg = 1) = 1

3 , P(Deg = 2) = 2
3 , E[Deg ] = 5

3 , γ = 3
25 . The

probability of the two colors are P(R) = 1
3 , P(B) = 2

3 . We have to
define the two color conditioned degree distributions: the Deg |R
distribution assumes values within the set 1, 2, P(Deg = 1|R) = 1

2 ,
P(Deg = 2|R) = 1

2 , E[Deg |R] = 3
2 , the Deg |B distribution

assumes values within the set 1, 2,
P(Deg = 1|B) = 1

4 , P(Deg = 2|B) = 3
4 , E[Deg |B] = 7

4 ,
E[Deg2|B] = 13

4 .



Example When Colors Influence Degrees –
part 2 [self-study]

(b) Probability of the motif. Generate the set I3 containing all
degree triples with colors R, B and B. The probability of the motif
is given as the sum of all probabilities of each occurrence times the
probability of observing such node degrees given the color times
the probabilities of the color.



Probability Multiset colored motifs

• The color assignments to the nodes within the motif influence
the computation of the conditional moments.

• Let Ĉ = {C1,C2, · · · ,Cl} be the set of all possible color
assignments to nodes of mC obtained by sampling without
replacement from C .

• The probability of observing the multiset motif:

σ(mC ) =
∑
Ci∈Ĉ

µ(mC |Ci )× ν(Ci )

where ν(C ) is the product of the nodes color probabilities.



Expectation and Variance of Non-Induced
Motifs in Whole Graph

• We first describe a procedure to compute exact mean and
variance of the number of non-induced occurrences of a
colored motif under any random graph model.

• According to the exchangeability assumption, the occurrence
probability of a given motif does not depend on the
occurrence position and disjoint occurrences are independent
of one another.



Road Map

• Find the probability of the occurrence of a non-induced
colored motif at a given position in the graph.

• Find expected number of instances of that motif in the
whole graph. Also variance.

• Pólya-Aeppli model to calculate p-value.

• Kocay mapping in order to handle induced patterns.

• Experiments evaluating accuracy and performance.

Throughout: generalize to different motif definitions, to directed
graphs and to the case where colors influence degrees..



Expectation and Variance of Non-Induced
Motifs in Whole graph

• A motif mC of k nodes can occur in different positions within
a graph G . The number of such positions (combination of
nodes) is

(N
k

)
. We represent each such position as a tuple of

node identifiers in increasing order by node identity:
α = (i1, i2, ..., ik) where i1 < i2 < · · · < ik .

• We introduce a random variable Yα(mC ) which equals one if
the topology mC occurs at position α and 0 otherwise.



Expectation and Variance of Non-Induced
Motifs

• A motif mC in a position α can occur in different
configurations. (Two configurations on the same nodes are
distinct if they are not isomorphic.)

• Some permutations of the indexes yield the same motif, we
need to consider only the set of its Non-Redundant
Permutations (NRP) denoted with R(mC ).

• ρ(mC ) = |R(mC )| is the number of Non-Redundant
Permutations of mC .

• Computation of R(mC ):
• Generate all possible k! simultaneous permutations of the rows

and columns of the adjacency matrix of m.
• For each permutation, build the corresponding adjacency

matrix and check the latter for redundancy.



Expectation and Variance of Non-Induced
Motifs

• We have the following random variable representing the
number of instances of the motif:

N(mC ) =
∑
α

∑
m
′
C∈R(mC )

Y (m
′
C )

• This is the sum over all positions α of the number of
non-redundant motifs at that position.



Expectation of N(mC )

• The expectation of the count of a colored motif mC with
structure m and multiset of colors C in a graph G with N
nodes is (number of combinations times multiplicity for each
combination times occurrence probability of a single
assignment of topology and colors)

E[N(mC )] =

(
N

k

)
× ρ(mC )× σ(mC )



Variance of N(mC )

• The variance of the random variable is

V[N(mC )] = E[N2(mC )]− E[N(mC )]2

• The expectation of N2(mC ) is computed considering that
N2(mC ) can be expressed as:

N2(mC ) =
(∑

α

∑
m
′
C∈R(mC )

Yα(m
′
C )
)2

=
∑
α

∑
m
′
C∈R(mC )

∑
α′

∑
m
′′
C∈R(mC )

Yα(m
′
C ) · Yα′(m

′′
C )

• Therefore, E[N2(mC )] is the sum over all positions of the
probabilities of having Yα(m

′
C ) · Yα′(m

′′
C ) = 1.

• To compute these probabilities, we have to take into account
the possibility that occurrences overlap.



Recall Overlaps in Sequences

If I have a sequence of heads and tails (actually generated at
random):
T H H T T T T H T H H T T T H H T T H H H H T H T H H T
H T T T T H H T T T H T
and I ask about the sequences TTH vs. TTT, which one should
come up more often if one allows overlaps?
Why?



Super motifs

• A super-motif, which is a motif composed of two NRPs of
overlapping occurrences of a given motif.

• Given two NRPs m
′

and m
′′

of a motif m and an integer s, we
define the overlapping operation with s common nodes as
m
′
Ωsm

′′
. The result of the operation is a new motif with

2k − s edges.



Example

Super-motif of a path of 3 nodes with overlap s = 2. (a) A
super-motif of 4 nodes obtained from the overlapping of two
non-redundant motifs of 3 nodes sharing two nodes. (b) Two
non-redundant permutations of a path with 3 nodes with the
corresponding adjacency matrices (notice that in this example we
have two other possible paths 1, 3, 4 and 1, 2, 3). The overlapping
regions are represented (highlighted in green) by the bottom right
sub-matrix of m′ and upper left sub-matrix of m′′. (c) The
adjacency matrix of the super-motif. The overlapping is applied by
using an OR operator on the overlapping entries of the m′ and m′′

sub-matrices.



Probability of super-motif

The probability of observing the multiset of colors C1ΠsC2 in the
motif is:

ν(C1ΠsC2) =
∑

C∗⊂C :|C |=s

ν(C ∗) [ν(C \ C ∗)]2

s(C ∗)

where s(C ∗) is the multiplicity of subset C ∗ in C , the colon means
”such that” and the backslash is set minus.
The probability of observing a colored super-motif generated from
colored motifs is the following (µ is the occurrence probability of
the topology at a given position).

σ(m
′
C ,m

′′
C , s) = µ(m

′
CΩsm

′′
C )× ν(C1ΠsC2)



Expectation of N2(mC )

The expectation of the squared count has two components: the
occurrences that don’t overlap (with their possible multiplicities)
and the occurrences that do overlap.

E[N2(mC )] =

(
N

N − 2k, k , k

)
ρ2(mC )σ2(mC )+

k∑
s=1

(
N

k − s, s, k − s,N − 2k + s

) ∑
m′,m′′∈R(mC )

σ(m′C ,m
′′
C , s)



Injective Topological Colored Motif

To apply to this case...

• Change the computation of the motif occurence probability
(already done).

• Extend the original definition of non-redundant permutations
of a topology.

• Introduce the concept of non-redundant colored permutations
of an injective colored motif.



Expectation and Variance of N(mC ) of
Injective motifs

• The expected count of motifs within the target network is
computed according to the following equation:
E[N(mC )] =

(N
k

)
π(mC )σ(mC ), where π(mC ) is the number of

non-redundant colored permutations of mC and σ(mC ) is the
occurrence probability of mC according to an exchangeable
random model.

• To compute the variance we can use the equation for the
multiset topological colored motifs providing the proper
probability of the motif.

• The variance uses the concept of supermotif which has to be
defined carefully, taking into account the node colors.



Example

Colored Super-motif of a path of 3 nodes with overlap s = 2. (a)
A super-motif of 4 nodes obtained from the overlapping of two
non-redundant colored motifs of 3 nodes sharing two nodes. (b)
Two non-redundant permutations of a path with 3 nodes along
with the corresponding adjacency matrices. In this case, overlaps
require that the colors of the nodes be compatible. The
overlapping involves two nodes, the colors of the last two nodes in
the m′ motif have to be the same (in an inverted order) of the first
two nodes in the motif m′′. The overlapping regions are
represented (highlighted in red) by the bottom right sub-matrix of
m′ and upper left sub-matrix of m′′. (c) The adjacency matrix of
the super-motif. The overlapping is applied by using an OR
operator on the overlapping entries of the m′ and m′′ sub-matrices.



Multiset Topological Colored Motifs with
Color-Degree Dependence in Input

Network

We need to define a new random variable N∗(mC ) representing the
number of occurrences of motif mC . This variable will be a linear
combination of random variables N(mC ) coming from the injective
case. The number of random variables in the linear combination is
determined by the number of possible non-redundant color
assignments to the motif nodes according to the multiset of colors
Cm. We have the following random variable:

N∗(mC ) =
∑

Ci∈Cm

N(mCi
).



Multiset Topological Colored Motifs with
Color-Degree Dependence in Input

Network
To compute the expectation of N∗(mC ) we can observe that it is a
linear operator. Therefore, we have:

E[N∗(mC )] =
∑

Ci∈Cm

E[N(mCi
)] =

∑
Ci∈Cm

(
N

k

)
π(mCi

)σ(mCi
) =

=

(
N

k

) ∑
Ci∈Cm

π(mCi
)σ(mCi

)

As regards the computation of the variance, we experimentally
observed that the N(mCi

) random variables are empirically
uncorrelated, consequently for the variance we used the following
equation:

V[N∗(mC )] =
∑

Ci∈Cm

V[N(mCi
)].

where V[N(mCi
)] is the variance of the injective colored motif mCi

.



Road Map

• Find the probability of the occurrence of a non-induced
colored motif at a given position in the graph.

• Find expected number of instances of that motif in the whole
graph. Also variance.

• Pólya-Aeppli model to calculate p-value.

• Kocay mapping in order to handle induced patterns.

• Experiments evaluating accuracy and performance.

Throughout: generalize to different motif definitions, to directed
graphs and to the case where colors influence degrees..



Assessing the motif significance

To establish whether a motif mC is over-represented in a given
graph, one needs to calculate the probability

P[N(mC ) ≥ Nobs(mC )]

where Nobs(mC ) is the observed number of non-redundant
occurrences of mC and N(mC ) is a random variable representing
the number of occurrences of the motif in a graph generated
according to the chosen reference model.



The Pólya-Aeppli distribution

We model N(mC ) using the Pólya-Aeppli distribution, because that
reflects the memorylessness of the exchangeability assumption.
In this case we have that X ∼ PA(λ, α) is a random variable
representing the number of observed events (i.e. motif occurences
in our case):

P (X = x) =

{
e−λαx

∑
c=1···x

1
c!

(
x−1
c−1

) [λ(1−α)
α

]c
if x > 0

e−λ if x = 0



Pólya-Aeppli distribution parameters

The mean and the variance of PA(λ, α) are defined as:

E[X ] =
λ

1− α

V[X ] =
λ(1 + α)

(1− α)2

By making use of the mean and variance obtained using the
exchangeable random graph model we can deduce the parameters
of the distribution as:

α =
V[N(mC )]− E[N(mC )]

V[N(mC )] + E[N(mC )]

λ = (1− α)× E[N(mC )]



Road Map

• Find the probability of the occurrence of a non-induced
colored motif at a given position in the graph.

• Find expected number of instances of that motif in the whole
graph. Also variance.

• Pólya-Aeppli model to calculate p-value.

• Kocay mapping in order to handle induced patterns.

• Experiments evaluating accuracy and performance.

Throughout: generalize to different motif definitions, to directed
graphs and to the case where colors influence degrees..



The Kocay lemma

• Suppose we want to count the number of non-induced
occurrences Nobs of a certain subgraph with k nodes.

• The Kocay lemma shows how to express this as a linear
combination of the number of induced occurrences of all the
possible topologies with k nodes.

• Therefore to construct such a relation we have to find the
coefficients of the linear combination.

• Later, we will invert this process to find the mean of the
induced motifs from non-induced motifs.



Example

The Kocay coefficients shows how to express the number of
non-induced occurences, denoted by N, as a linear combination of
induced occurrences, denoted by N ′. We show an example using a
star topology of four nodes. The coefficients of the linear
combination can be determined by counting the occurrences of the
star topology within each topology of (in this case) four nodes.



The Kocay matrix for a topology of 4
nodes

The Kocay coefficients in matrix form. The N ′ terms correspond
to the number of induced subgraphs of a particular form of some
parent graph. The N terms correspond to the number of
non-induced subgraphs of some form.



• We denote with Kk the Kocay matrix for topologies of size k,
where each row refers to a specific topology t. We denote
with Kk(t) the corresponding row.

• By computing the inverse of a Kocay matrix we can express
the number of induced occurrences of a motif as a linear
combination of the number of non-induced occurrences of all
topologies with k nodes.

• We represent the random variable N ′(mC ) of the induced
counts of colored motif mC with k nodes as a linear
combination of random variables of counts of all non-induced
motifs of size k . Let Mk be the set of all possible topologies
with k nodes. We have:

N ′(mC ) =
∑
t∈Mk

K−1
k (m, t)N(tC )

where tC is a colored motif with topology t and multiset of
colors C .



Mean and Variance of N ′(mC ) Induced
Multiset motifs occurences

E[N ′(mC )] = E[
∑
t∈Mk

K−1
k (m, t)N(tC )] =

∑
t∈Mk

K−1
k (m, t)E[N(tC )]

.
The variance of N ′(mC ) requires the computation of the
covariance.

V[N ′(mC )] =
∑
t∈Mk

[
K−1
k (m, t)

]2 V[N(tC )]+

∑
t′ ,t′′∈Mk | t′ 6=t′′

K−1
k (m, t

′
)K−1

k (m, t
′′

)Cov
(
N(t

′
C ),N(t

′′
C )
)



Covariance Calculation

We have that
Cov

(
N(t

′
C ),N(t

′′
C )
)

= E[N(t
′
C )N(t

′′
C )]−E[N(t

′
C )]E[N(t

′′
C )] where:

E[N(t
′
C )N(t

′′
C )] =

(
N

N − 2k , k , k

) ∑
m′∈R(t′ ),m′′∈R(t′′ )

σ(m′C )σ(m′′C )+

k∑
s=1

(
N

k − s, s, k − s,N − 2k + s

) ∑
m′∈R(t′ ),m′′∈R(t′′ )

σ(m′C ,m
′′
C , s)



Injective Topological Colored Motif

• As for multiset motifs, we use Kocay matrices to compute the
number of non-induced colored motifs as a linear combination
of the number of induced colored motifs and vice versa.

• The main difference is that now we have multiple Kocay
matrices for motifs of size k .

• In fact, if we change the colors of a motif with k nodes, we
can obtain different Kocay matrices, and a Kocay matrix
becomes function of k and the array C of node colors and will
be denoted as Kk,C .



Example

Induced graphs on top and non-induced to the right.



Road Map

• Find the probability of the occurrence of a non-induced
colored motif at a given position in the graph.

• Find expected number of instances of that motif in the whole
graph. Also variance.

• Pólya-Aeppli model to calculate p-value.

• Kocay mapping in order to handle induced patterns.

• Experiments evaluating accuracy and performance.

Throughout: generalize to different motif definitions, to directed
graphs and to the case where colors influence degrees..



Experimental Analysis

• We analyzed the accuracy of the analytical model in the
identification of statistically significant graph motifs under the
random EDD model.

• We make use of directed and undirected graphs of different
sizes. To evaluate the quality of results, we compare the
analytical p-values with those obtained through the
permutation-test (i.e. the simulation-based approach).

• In several cases, the Pólya-Aeppli (PA) distribution provides a
better fit of the empirical distribution of motif counts in a
sample of EDD graphs than the Gaussian distribution.

• The analytical model usually vastly outperforms the
simulation-based method in terms of running time. The
speed-up is greatest for non-induced motifs.



Dataset

The dataset of colored graphs used for testing the analytical
method consists of eight real graphs and two artificial graphs.

Graph Orientation Nodes Edges Node colors
roget Undirected 1,010 3,648 6

hamsterster Undirected 2,426 16,631 16
openflights Undirected 2,939 15,677 5
ppihuman Undirected 9,506 37,054 11

neuralworm Directed 279 2,990 3
polblogs Directed 1,224 19,022 2

dblp Directed 12,591 49,744 8
foldoc Directed 13,356 120,238 14

artnetundir Undirected 2,000 6,000 8
artnetdir Directed 2,000 8,000 7



Accuracy of the model
Non-induced occurences
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(a) multiset motifs -
color-degree independence
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(b) injective motifs -
color-degree independence
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(c) multiset motifs -
color-degree dependence
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(d) injective motifs -
color-degree dependence



Accuracy of the model
Induced occurences
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(e) multiset motifs -
color-degree independence
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(f) injective motifs -
color-degree independence
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(g) multiset motifs -
color-degree dependence
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(h) injective motifs -
color-degree dependence



Comparison between Pólya-Aeppli and
Gaussian distribution

Non-induced occurrences
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Comparison between Pólya-Aeppli and
Gaussian distribution

Induced occurrences
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(k) multiset motif,
neuralWorm graph with
color-degree independence
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Running times
Non-induced occurrences

Running times (secs) of analytical model-based algorithm vs
simulation-based algorithm for the computation of non-induced
colored motifs (D=color-degree dependence, I=color-degree
independence).

Graph k Simulation-based algorithm Analytical model-based algorithm
I-Multiset I-Injective D-Multiset D-Injective I-Multiset I-Injective D-Multiset D-Injective

roget
3 27.92 26.91 27.22 26.78 0.03 0.03 0.03 0.03
4 175.52 206.40 206.73 195.36 0.28 0.64 0.76 0.64

hamsterster
3 283.18 256.22 257.05 255.94 0.35 0.31 0.43 0.35
4 11550.39 10081.02 9824.35 9647.71 19.08 20.83 30.97 20.87

openflights
3 380.10 342.15 339.97 339.95 0.48 0.37 0.51 0.37
4 16345.06 13084.28 12922.77 12736.22 27.24 26.43 43.00 26.36

ppihuman
3 3413.27 3362.08 3360.45 3364.48 2.16 2.55 2.75 2.23
4 25736.71 21034.03 20846.42 20590.24 34.66 33.38 46.69 33.55

neuralworm
3 23.19 26.25 25.48 25.10 0.05 0.05 0.08 0.06
4 782.68 3032.65 2365.53 2353.22 4.83 9.83 12.18 9.87

polblogs
3 374.59 325.48 325.71 327.74 0.74 0.70 1.12 0.71
4 34755.42 30363.26 30465.09 30263.51 131.38 130.06 234.78 131.38

dblp
3 7639.44 7565.49 7559.17 7558.59 4.29 4.37 4.41 4.09
4 60142.39 52601.67 53544.69 53486.89 111.39 101.11 140.00 101.31

foldoc
3 9352.80 9239.93 9269.15 9243.77 5.76 6.50 7.38 6.36
4 95923.70 130550.67 132947.10 129241.64 300.57 820.60 902.32 824.58

artnetundir
3 - - 109.67 93.57 - - 0.14 0.11
4 - - 191.78 186.16 - - 0.57 0.47

artnetdir
3 - - 155.13 154.29 - - 0.13 0.09
4 - - 1085.88 1078.60 - - 3.95 3.83

Average performance ratio of analytical vs simulation 724x 673x 588x 725x



Running times
Induced occurrences

Graph k Simulation-based algorithm Analytical model-based algorithm
I-Multiset I-Injective D-Multiset D-Injective I-Multiset I-Injective D-Multiset D-Injective

roget
3 27.90 26.29 26.52 26.11 0.02 0.03 0.03 0.03
4 175.62 145.61 155.15 144.87 0.19 3.83 3.91 3.86

hamsterster
3 283.50 250.70 252.23 251.30 0.30 0.30 0.41 0.34
4 11427.55 8787.20 8842.34 8735.41 14.21 51.17 56.63 51.31

openflights
3 379.11 341.44 340.70 339.43 0.36 0.34 0.45 0.33
4 16381.74 13011.54 12899.35 12751.47 18.41 17.79 24.62 17.87

ppihuman
3 3422.87 3366.29 3362.88 3363.07 2.58 2.55 2.78 2.55
4 25662.37 20029.44 20225.28 20459.98 31.66 65.08 75.88 65.24

neuralworm
3 23.04 20.01 20.41 20.15 0.03 0.07 0.08 0.07
4 779.08 648.55 682.28 649.20 14.69 506.15 509.97 512.08

polblogs
3 375.09 324.76 323.70 326.32 0.50 0.48 0.64 0.47
4 34911.58 29315.97 29126.04 29130.96 56.39 167.71 183.10 169.42

dblp
3 7639.00 7555.49 7560.25 7562.57 4.00 4.30 4.60 4.27
4 59834.26 51616.89 53181.85 52238.83 118.61 4172.64 4243.94 4212.15

foldoc
3 9340.76 9166.24 9174.23 9183.45 5.21 9.84 9.96 9.27
4 96164.98 82440.02 87260.57 83560.30 144.02 154798.84 155903.10 155974.89

artnetundir
3 - - 92.26 91.86 - - 0.08 0.08
4 - - 172.69 167.53 - - 3.52 3.50

artnetdir
3 - - 150.89 150.17 - - 0.52 0.50
4 - - 395.96 386.33 - - 7019.75 7017.91

Average performance ratio of analytical vs simulation 1034x 525x 472x 531x



The gLabTrie – only if time

• The analytical model enables the evaluation of the
significance of a motif based on the number of its occurrences
in the input graph.

• Because of the combinatorial explosion of the number of
colored subgraphs, employing time- and memory-efficient
algorithms is compulsory for this task.

• The algorithm we describe is based on an extension of G-Trie
that handles colored graphs.

• Our structure, called gLabTrie, handles directed and
undirected vertex-colored graphs and multiset and injective
induced and non-induced topological colored motifs.



The glabtrie algorithm, data structures

We use a two-level data structure called gLabTrie for organizing
colored subgraphs.

• The first level organizes uncolored subgraphs in a gTrie, a tree
where every node represents a subgraph and the children of a
node represent supergraphs of the parent’s subgraph.

• Every leaf node of the gTrie is associated to a second-level
structure, a hash table that stores all color assignments and
associates them with counters.



Example of a gLabTrie. The data structure stores the counters of
all colored subgraphs with 4 vertices.



The counting procedure
The Census Algorithm

The algorithm takes as input a graph and an empty gLabTrie and
returns a filled gLabTrie.

• It starts by reordering the network nodes according to a
predefined color order. This step is necessary for correctly
grouping automorphic colored subgraphs.

• The remainder of the algorithm enumerates all subgraphs one
by one and increases the counter values of the corresponding
entries in the gLabTrie.

• Enumeration is based on the recursive procedure Match that
matches paths of the gTrie with all possible subgraphs of the
input graph.



What the gLabTrie achieves

• The gLabTrie counting algorithm applies to undirected graphs
and injective topological colored induced motifs. Directed
graphs are managed similarly.

• For multiset topological colored motifs, all subgraphs that
share the same topology and the same ordered multiset of
colors are grouped together and their counts are summed up.

• Non-induced subgraphs are handled by post-processing the
results: counters of non-induced motifs are computed by
applying the Kocay matrix to the vector of counters of
induced motifs.



Summary: Efficient Way to Find the
p-value of Motifs

Applies to....

• Directed and undirected graphs.

• Induced and non-induced subgraphs.

• Degree may or may not depend on color (for almost everything
of interest, e.g. chemical, degree depends on color).

• Two kinds of associations of color to nodes – e.g. 5 nodes in
star configuration with 4 fans and one rock star vs. 5 nodes in
star configuration with 4 fans and one rock star in center.



Summary: Analytical Techniques

• Occurrence probability of a motif at a particular position
approximated as a product of moments.

• Number of occurrences based on counting auto-morphisms
and overlaps.

• Pólya-Aeppli model to calculate p-value.

• Kocay mapping from induced to non-induced forms in order to
evaluate p-value of induced subgraphs.

• gLabTrie to find motifs in a given graph efficiently.



Summary: Experimental Results

• Accuracy is uniformly high compared to simulation.

• Performance is hundred of times better than simulation in all
cases but for induced graphs in the injective case. Reason:
the variance calculation is expensive



Summary: Take-Away Message

• Finding occurrences of a colored subgraph is fast for small
sizes.

• Finding p-value is slow if done naively.

• Our system and software can help you do this analytically and
fast.



Some Future Work

• Extend this work to large subgraphs.

• Extend to labeled edges.

• Recursively find motifs.
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