
SING: Subgraph search In Non-homogeneous Graphs

Raffaele Di Natale 1, Alfredo Ferro 1, Rosalba Giugno 1,Misael Mongiovì
1,Alfredo Pulvirenti 1,and Dennis Shasha 2

1Dipartimento di Matematica ed Informatica
Università di Catania
95125 Catania, Italy

{dinatale,ferro,giugno,mongiovi,pulvirenti}@dmi.unict.it

2Courant Institute of Mathematical Sciences
New York University

New York 10012, USA
shasha@cs.nyu.edu

ABSTRACT
Finding the subgraphs of a graph database that are iso-
morphic to a given query graph has practical applications in
several fields, from cheminformatics to image understanding.
Since subgraph isomorphism is a computationally hard prob-
lem, indexing techniques have been intensively exploited to
speed up the process. Such systems filter out those graphs
which cannot contain the query, and apply a subgraph iso-
morphism algorithm to each residual candidate graph. Tra-
ditionally, however, the applicability of such process is lim-
ited to databases of small graphs, because their filtering
power degrades on large graphs. In this paper, SING (Sub-
graph search In Non-homogeneous Graphs), a novel index-
ing system able to cope with large graphs, is presented. The
method uses the notion of feature, which can be a small
subgraph, subtree or path. Each graph in the database is
annotated with the set of all its features. The key point
is to make use of feature locality information. This idea is
used to both improve the filtering performance and speed up
the subgraph isomorphism task. Extensive tests on chem-
ical compounds, biological networks and synthetic graphs
show that the proposed system outperforms the most pop-
ular systems in query time over databases of medium and
large graphs. Other specific tests show that the proposed
system is effective for single large graphs.

General Terms
graph search, indexing, subgraph isomorphism, large graphs

1. INTRODUCTION
Graphs naturally model a multitude of complex objects in
the real world. A chemical compound can be represented by

a graph where atoms are vertices and bonds are edges. Bi-
ological networks model the complex of interactions among
components in cells, (e.g. proteins, genes, metabolites). So-
cial networks, the web, the water system and the power
grid are all represented by graphs. A basic operation is
the search of a query graph in a target graph or, more
generally, in a database of graphs. Searching a molecular
structure in a database of molecular compounds is useful
to detect molecules that preserve chemical properties asso-
ciated with a well known molecular structure. This can be
used in screening and drug design. Searching subnetworks
in biological networks helps to identify conserved complexes,
pathways and motifs among species, and assist in the func-
tional annotation of proteins and other cell components.

The problem of searching for a query graph in a target graph
is called subgraph isomorphism and is known to be NP-
complete. Since the subgraph isomorphism test is expensive,
screening all graphs of a large database can be unfeasible.
Recently, indexing techniques for databases of graphs have
been developed with the purpose of reducing the number of
subgraph isomorphism tests involved in the query process.
In a preprocessing phase the database of graphs is analyzed
and an index is built. A query is processed in two phases.
In the filtering step the index is used to discard the graphs
of the database which cannot contain the query, producing
a small set of candidate graphs. The set of candidates is
then verified (verification step) by a subgraph isomorphism
algorithm and all the resulting matches are reported.

Most graph indexing tools are based on the concept of fea-
ture. Depending on the particular system, a feature can be
either a small graph [7, 1, 6], a tree [4] or a path [3, 2].
The filtering property is based on checking whether the fea-
tures of the query are contained in each target graph. In the
preprocessing phase the database of graphs is scanned, the
features are extracted from each graph and stored in the in-
dex data structure. During the filtering phase, the features
are extracted from the query and the index is probed in or-
der to discard all graphs which do not contain some feature
of the query.



Existing indexing techniques are effective on databases of
small graphs but they become unfeasible when applied to
huge graphs. The reason is that features that may be rare
in small graphs are likely to be found in enormous graphs
just by chance. This implies that filtering systems based
only on the presence or number of features are not effective
for large graphs. Moreover the subgraph isomorphism test
over a large graph is extremely expensive. Unfortunately,
alternative indexing systems which do not make use of fea-
tures [4, 10] show similar problems on large graphs.

To make the verification phase faster, GraphGrep [3] stores
all the feature occurrences of each graph, and discards the
part of the graph which does not contain features of the
query thus restricting the search to small portions of the
target graph. However, this produces a larger index which
is more difficult to manage and can lead to a reduction in fil-
tering performance. Furthermore, the features of the query
often occur in many parts of the graphs, reducing the filter-
ing power.

In this paper, a novel approach to cope with large graphs is
proposed. The present approach makes use of paths as fea-
tures. In contrast to systems that use more complex features
such as subgraphs or subtrees, our index includes all paths of
bounded length. The position of a feature within the graph
is considered. This additional information is used to both
improve the filtering power and guide the verification phase
allowing an effective pruning of the search tree. In contrast
to GraphGrep, only the starting point of a feature is stored
and bit arrays are used to reduce the index size. Further-
more this information is used to optimize the verification
phase. Notice that this approach cannot be used for graph
features since graphs have no starting points. Although a
similar approach could be used for tree features (using the
roots as starting points), the resulting preprocessing time
would be higher since enumerating subtrees is much more
expensive than enumerating paths. Despite using path fea-
tures, our system is effective in capturing the topology of
graphs and it is shown to perform better than existing sys-
tems in terms of query processing time, while keeping the
size of the index comparable. An exhaustive experimental
analysis on real and synthetic data shows that the proposed
system is efficient and effective on both databases of small
graphs and single large graphs.

The paper is organized as follows. In Section 2 the ba-
sic concepts are introduced. In Section 3 both feature-based
and non-feature-based graph indexing systems are reviewed.
Feature based graph indexing systems are considered in A
unified framework and the differences among them are dis-
cussed. Section 4 presents the novel graph indexing sys-
tem. In Section 5 the results of the experimental analysis
are reported. Comparisons with the most popular systems
over databases of chemical compounds show that our sys-
tem is faster in processing queries of size greater than 4 on
a database including large molecules. Additional results on
gene regulatory networks and synthetic data are reported.
For these data the proposed system outperforms all the other
tools in terms of query time. Section 6 concludes the paper
and addresses future directions.

2. PRELIMINARIES

This paper considers undirected node-labeled graphs. How-
ever, the concepts introduced in what follows can be easily
extended to edge-labeled and directed graphs. An undi-
rected labeled graph (in what follows simply a graph) is
a 4-tuple g = (V, E, Σ, l) where V is the set of vertices,
E ⊆ V × V is the set of edges (a symmetric binary relation
on V ), Σ is the alphabet of labels and l : V → Σ is a func-
tion which maps each vertex onto a label. If e = (v1, v2)
is an edge, then v1 and v2 are called its endpoints. We set
size(g) = |E| and indicate with G the set of all possible
graphs. A graph g1 = (V1, E1, Σ, l1) is said to be a sub-
graph of another graph g2 = (V2, E2, Σ, l2) iff V1 ⊆ V2 and
E1 ⊆ E2.

Given two graphs g1 = (V1, E1, Σ, l1), g2 = (V2, E2, Σ, l2) an
isomorphism between g1 and g2 is a bijection φ : V1 → V2

so that:

• (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2

• l1(u) = l2(f(u))∀u ∈ V1

A subgraph isomorphism between g1 and g2 is an isomor-
phism between g1 and a subgraph of g2. A graph g1 is said
to be isomorphic to another graph g2 if there exist an iso-
morphism between g1 and g2. For the sake of simplicity we
say also that g1 is equivalent to g2 and write g1 ≈ g2. Notice
that ≈ is an equivalence relation on G. A graph g1 is said to
be subgraph isomorphic to another graph g2 if there exist a
subgraph isomorphism between g1 and g2. In this case we
say that g1 is contained in g2 and write g1 - g2.

In this paper, the following two problems will be discussed:

First query occurrence problem: Given a database of n graphs
D = {g1,g2,...,gn} and a query graph q, executing the query
q on D is equivalent to find all graphs g of D such that
q is subgraph isomorphic to g. In the following we assume,
without loss in generality, that all graphs of D and the query
graph, share the same alphabet Σ.

All query occurrences problem: Given a database of n graphs
D = {g1,g2,...,gn} and a query graph q, executing the query
q on D is equivalent to find all subgraph isomorphisms be-
tween q and elements of D.

We will make extensive use of the notion of feature. Features
are formally introduced by the following definition.

Definition 1. Let G be the set of all possible graphs in a
given alphabet of labels. A set F is a set of features on G iff
there exists a binary relation is a feature ⊆ F×G such that
the following property holds (graph upward monotonicity):

∀f ∈ F , q, g ∈ G,
is a feature(f, q) ∧ q - g → is a feature(f, g)

In what follows is a feature(f, g) is expressed by saying
that g contains f .

Every set of features defines a pruning rule for the subgraph
isomorphism problem:



Figure 1: A database of two graphs g1, g2 and a query
q. q - g1 but q 6- g2.

Pruning rule 1. If is a feature(f, q) and ¬ is a feature(f, g)
then q cannot be subgraph isomorphic to g.

Examples of set of features are:

• The set Paths≤k of all labeled paths of length ≤ k.
Here a labeled path is the sequence of labels.

• The set Subtrees≤k of all labeled subtrees of depth
≤ k.

• The set Subgraphs≤k of all labeled subgraphs of size
≤ k.

This paper considers the set of features Paths occ≤k of pairs
(p, n), where p is a labeled path of length ≤ k and n is a
lower bound on the number of occurrences of p in the given
graph. The corresponding pruning property asserts that if
the query graph q contains at least n occurrences of a given
labeled path p and g does not contain at least n occurrences
of p, then q cannot be subgraph isomorphic to g and g can
be pruned.

Notice that in all above examples if a feature f is a subfea-
ture of a given feature f ′ of g then f ′ is also a feature of g.
The following definition formalizes this notion.

A downward monotonic set of features is a partially ordered
set of features (F ,¹) such that:

∀f, f ′ ∈ F , g ∈ G,
f ¹ f ′ ∧ is a feature(f ′, g) → is a feature(f, g)

For instance Paths≤k is a downward monotonic set of fea-
tures with respect to the subsequence relation between la-
beled paths. Paths occ≤k is downward monotonic with re-
spect to the number of occurrences. However it is not down-
ward monotonic with respect to the subsequence relation.
Indeed in Figure 1, (ABC,2) is a feature of g1 but (AB,2) is
not a feature of g1.

A downward monotonic set of features allows an additional
optimization in the pruning process: the pruning rule can
be restricted only to maximal features f in the query. This
means that no other feature f ′ in the query can be strictly
greater than f in the partial order of features.

3. RELATED WORKS

Table 1: Review of the main graph indexing systems

System Features Data mining All matches
GraphGrep Path No Yes
gIndex Graphs Yes No
FGIndex [1] Graphs Yes No
GDIndex [6] Graphs No Yes
TreePi [8] Tree Yes No
Tree+δ [9] Tree+graphs Yes No
CTree - No No
GCoding - No Yes
SING Path No Yes

Graph indexing systems are based on a filter-and-verification
scheme which includes two main phases: (1) preprocessing:
an index is built by scanning the database; (2) query pro-
cessing: the index is probed to efficiently answer the query.
The query processing is divided in two sub-steps: filtering
and matching. The filtering step prunes all graphs of the
database which cannot contain the query graph, generating
a set of candidate graphs. The matching step executes a sub-
graph isomorphism algorithm on all candidate graphs. All
graph indexing systems except CTree [4] and GCoding [10]
use the concept of feature. Table 1 synthesizes the character-
istics of the main graph indexing tools. In the next subsec-
tions we briefly survey feature-based and non-feature-based
systems respectively.

3.1 Feature-based graph indexing systems
All feature-based graph indexing systems are characterized
by choosing a set of features F and apply Pruning rule 1
to features of F . To prune as many graphs as possible, the
graph indexing systems consider a set of features Fq ⊆ F
such that each feature f ∈ Fq is contained in q, and prune all
graphs g ∈ D which do not contain some feature in Fq. The
filter-and-verification scheme is performed in the following
way:

• Preprocessing: each graph of the database is exam-
ined off-line in order to extract all features of F which
are contained in the graph. An inverted index is gen-
erated, which maps each feature f ∈ F into the set
graph set(f) of all graphs containing f .

• Query processing:

– Filtering: The given query q is examined in or-
der to extract a suitable set Fq ⊆ F of features
contained in q. A set of candidate graphs C is
then computed by C =

⋂
f∈Fq

graph set(f).

– Matching: Each candidate graph is examined in
order to verify that the given query is subgraph
isomorphic to it. If the All query occurrences
problem must be solved, then an exhaustive enu-
meration of all distinct subgraph matches is exe-
cuted.

The differences among the various graph indexing systems
lie mainly on the choice of the sets F and Fq. F can be a
set of bounded-size graphs, trees or paths. Since the number
of features can be very high, some graph indexing systems



select a restricted feature set from the database. For exam-
ple gIndex selects frequent subgraphs of bounded size. This
operation requires to perform a heavy graph data mining
step during the preprocessing phase. A possible choice for
Fq is Fall = {f ∈ F|is a feature(f, q)}. If F is an ordered
feature set, Fq can be chosen, without loss in pruning power,
to be the set Fmax of all maximal features in Fall. It is also
possible to choose any set Fq : Fmax ⊆ Fq ⊆ Fall. This is
the choice made in SING.

Some indexing systems consider also more effective pruning
rules based on the number of feature occurrences and the
distances between features. Some systems define compact
representations of the index. A description of the various
indexing systems follows, with a discussion about positive
and negative aspects of the various choices.

3.1.1 Graph features
Let G/≈ be the partition of G induced by graph isomorphism.
Given two classes G1, G2 ∈ G/≈, we say that G1 - G2 if
g1 - g2 for some g1 ∈ G1 and g2 ∈ G2. This is equivalent to
saying that g1 - g2 for every g1 ∈ G1 and g2 ∈ G2. Notice
that G/≈ and each subset of it are partially ordered by the
relation -.

Some systems such as gIndex [7], GDIndex [6] and FGIn-
dex [1] use graphs as features. They consider a set of features
F = G/≈. All isomorphic graphs are considered as a unique
feature represented by their equivalence class. The main ad-
vantage of using graph features is that they are more suitable
to capture the topological structure of graphs. Consequently
they tend to produce a fewer number of candidates. On the
other hand, some problems need to be faced.

First, a simple representation of the equivalence classes of
G must be found. To efficiently manage such classes, the
graph-features-based indexing systems code each graph into
a string, called canonical label, which is invariant with re-
spect to isomorphism. Hence, each class in G is represented
by its unique canonical label. Similarly to graph isomor-
phism, the canonical labeling problem is not known whether
it is NP-hard or not. However some proposed practical im-
plementations show good performance [5].

Another problem is that the number of graph features grows
exponentially with the graph size, leading to a large index
which degrades the performance of the preprocessing and
filtering phases. To solve this problem gIndex and FGIndex
choose as features a set of frequent subgraphs. gIndex con-
siders also the concept of discriminative subgraphs to fur-
ther reduce the number of features. All these approaches
require to perform a heavy data mining step in the pre-
processing phase, leading to a loss of efficiency. Moreover,
when it comes to coping with large graphs the mining step
may become unfeasible. FGIndex uses a small index res-
ident in main memory, and stores the remaining index in
secondary storage. The authors of FGIndex use a novel
concept of δ tolerance closed frequent subgraph to distin-
guish from main-memory-resident features and secondary-
memory-resident ones. When the query cannot be performed
using only the main-memory-resident index, it is used to
identify the blocks of the secondary memory index to be
loaded. To avoid expensive disk accesses, a small set of

maximal features which cover the whole query graph is se-
lected.

GDIndex enumerates all induced subgraphs contained in
each graph of the database. It organizes all the features
in a DAG representing the partial order relation ⊆ among
features. The size of the index is reduced by avoiding re-
dundancy. Each feature is associated with the set of graphs
containing it and not containing any ancestor-feature in the
DAG. During the filtering phase, the set of graphs contain-
ing a feature can be deduced by the feature-DAG. Enumer-
ating all subgraphs of a graph is very expensive, therefore
this approach can be used only on databases of very small
graphs.

3.1.2 Tree features
Tree features are easier to be managed since the tree-isomorphism
problem can be solved in polynomial time. TreePi [8] is the
first attempt to use trees as features. Authors describe a
linear-time algorithm for computing the canonical labeling
of a tree. They experimentally show that tree features cap-
ture the topological structure well enough. Therefore, using
them may result in a good compromise between efficiency
and effectiveness of filtering. Since trees, unlike graphs, have
unique centers, the distance (shortest path) between pairs
of features in a graph can be computed. TreePi uses an ad-
ditional pruning rule based on distances between features to
improve the quality of the match. More precisely, this prun-
ing rule is based on the observation that for a query graph
to be subgraph isomorphic to a target graph, the distance
between each pair of query vertices cannot be lower than the
distance between corresponding vertices in the target graph.
Tree+δ [9] uses as features both trees and a restricted class
small graphs to improve the filtering performance. As for
graphs, enumerating all trees of bounded size still produces
a large amount of features. Consequently, a restricted set of
features needs to be selected by an expensive data mining
step.

3.1.3 Path features
3.2 Non-feature based graph indexing systems
4. A NEW APPROACH BASED ON FEATURE

LOCATION
5. EXPERIMENTAL RESULTS
6. CONCLUSIONS
7. ACKNOWLEDGMENT
8. REFERENCES
[1] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index:

towards verification-free query processing on graph
databases. Proceedings of ACM SIGMOD
international conference on Management of data,
pages 857 – 872, 2007.

[2] A. Ferro, R. Giugno, M. Mongiovi, A. Pulvirenti,
D. Skripin, and D. Shasha. Graphfind: enhancing
graph searching by low support data mining
techniques. BMC Bioinformatics, (9), 2008.

[3] R. Giugno and D. Shasha. Graphgrep: A fast and
universal method for querying graphs, 2002.

[4] H. He and A. K. Singh. Closure-tree: An index
structure for graph queries. In ICDE ’06: Proceedings



of the 22nd International Conference on Data
Engineering, page 38, Washington, DC, USA, 2006.
IEEE Computer Society.

[5] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. Proceedings of International Conference
Data Mining, pages 313–320, 2001.

[6] D. W. Williams, J. Huan, and W. Wang. Graph
database indexing using structured graph
decomposition. In Data Engineering, 2007. ICDE
2007. IEEE 23rd International Conference on, pages
976–985, 2007.

[7] X. Yan, P. S. Yu, and J. Han. Graph indexing based
on discriminative frequent structure analysis. ACM
Transactions on Database Systems, 30(4):960–993,
2005.

[8] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph
indexing method. Proceedings of IEEE 23rd
International Conference on Data Engineering, pages
181–192, 2007.

[9] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree
+ delta ≤ graph. In VLDB ’07: Proceedings of the
33rd international conference on Very large data bases,
pages 938–949. VLDB Endowment, 2007.

[10] L. Zou, L. Chen, J. X. Yu, and Y. Lu. A novel spectral
coding in a large graph database. In EDBT ’08:
Proceedings of the 11th international conference on
Extending database technology, pages 181–192, New
York, NY, USA, 2008. ACM.


