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ABSTRACT
The continuing success of the relational model results from
the happy combination of expressive power and simplicity
of expression. These virtues result from the fact that the
model is based on a single data type and a few operations:
unordered tables which can be selected, projected, joined,
and aggregated. We contend that the unordered aspect of
this model is in fact unnecessary for simplicity and needlessly
limits the expressive power, making it difficult to express
queries on ordered data such as time series data and other
sequence data.

AQuery, introduced theoretically in [Lerner and Shasha(2003)],
is a modest syntactic and semantic extension to SQL 92.
AQuery supports ordered tables, called arrables (for array
tables), which can be organized based on the values in one
or more columns. Specifically, AQuery adds one clause (an
assuming order clause) to SQL 92, and new (both system
and user-defined) order-sensitive aggregates, such as mov-
ing average and running difference.

This paper reviews the semantics of AQuery both for-
mally and through examples. The paper’s first contribution
is to explain the special optimization problems that arise
because of order, the transformations that mitigate some
of these problems, and an optimization framework to use
those transformations. The paper’s second contribution is
to show the viability of the model through experiments com-
paring AQuery against other popular data analytic systems
including Sybase IQ, Python’s popular Pandas library and
MonetDB using the union of benchmarks that those systems
use themselves. On the same hardware, AQuery is overall
significantly faster than all of those systems while offering
simplicity of expression. Our examples come predominantly
from finance and networking to show the variety of applica-
tions that can be handled.

AQuery itself is written using standard compiler tools, so
could provide a front end to a wide variety of array systems.

1. INTRODUCTION
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Programmers of applications that depend on ordered events
face a dilemma. They would like to use a relational database
system, but the model makes it hard to express queries over
order. The reason is that relational systems are based on an
unordered table model, so order is provided by an ORDER
BY clause basically as an afterthought. Such application
programmers therefore either build their own time series
database system or access data in their relational system
and then use a separate language to process it (commonly,
R, Python, Matlab, or even Java).

We assert (we are not alone in this [Seshadri et al.(1996)Seshadri,
Livny, and Ramakrishnan] [Ng(2001)] [Kersten et al.(2011)Kersten,
Zhang, Ivanova, and Nes]) that rethinking the relational
model to allow order to be treated as a first class con-
cept would open these applications to relational-like systems
without unduly complicating the languages.

Here for example is a query that computes the average of
end-of-day prices of a stock in SQL 92. Consider a table of
the form prices(ID,Date, EndOfDayPrice).

SELECT avg(EndOfDayPrice) as avg_px
FROM prices
WHERE ID = ‘‘AAPL’’

Here is the same query written in AQuery.

SELECT avg(EndOfDayPrice) as avg_px
FROM prices
WHERE ID = ‘‘AAPL’’

It’s identical. Here is the SQL 99 expression of the query
that computes the three day moving average of prices of
stocks over a year.

SELECT Date ,
avg(EndOfDayPrice) OVER (

ORDER BY Date ROWS BETWEEN 2
PRECEDING AND CURRENT ROW

) as ap
FROM prices
WHERE
Date BETWEEN ‘2014-01-01’ AND ‘2015-01-01’

By contrast, here is the AQuery formulation of that same
moving average query.

SELECT Date , avgs(EndOfDayPrice ,3) as ap
FROM prices
ASSUMING ASC Date
WHERE
Date BETWEEN ‘2014-01-01’ AND ‘2015-01-01’

Note that all that AQuery did was add an ASSUMING
clause to the simple average query that says intuitively ”or-



der this table by date” and a moving average aggregate that
makes sense given this order.

While the semantics of this query say to order the whole
table, we in fact need to order only the particular columns re-
quired by the query result (in this case the end-of-day price).
So we can already see one order-related optimization. An
additional obvious optimization is to recognize that a table
that is already ordered consistently with the ASSUMING
clause requires no further sorting.

Less obvious optimizations include figuring out when to
perform the ordering relative to a join. For example, if we
have a hash index on a join column, we might want to join
before we order. So we have built a set of transformations
to reflect possible optimizations. These generalize common
relational transformations such as ”select before join”.

While our transformations are novel, our optimization
strategy is currently rule-based. Transitioning to a cost-
based optimization strategy is not hard, but that is not the
research contribution we make here.

As for experiments, we build our system on top of a free
version of ”q”, an array programming language provided by
kx systems (www.kx.com) mostly for finance. This enables
us to compare our system with other systems used in data
science.

Section 2 will discuss related work in both language design
and query optimization. Section 3 will present the seman-
tics of AQuery and give examples. Section 4 will discuss the
transformations we have implemented and our simple rule-
based optimization strategy. Section 5 will present exper-
iments comparing AQuery against MonetDB, Pandas, and
Sybase IQ on the same hardware. Upon final publication,
our software and data will be available to make our experi-
ments fully reproducible.

2. RELATED WORK
Among the excellent work in the development of time se-

ries databases, much has focused on developing architec-
tures that allow for scalability and performance for simple
queries, rather than developing a performant language sup-
porting complex queries, including, for example, joins and
order-sensitive aggregates.

For example, DruidIO [Yang et al.(2014)Yang, Tschet-
ter, Léauté, Ray, Merlino, and Ganguli] developed an open
source data store for exploratory analytics. Their design is
column-oriented, as is AQuery’s, but their query language
does not support common analytic functionality such as
joins. Instead their focus is on data ingestion and real-time
processing.

Another open-source timeseries solution, Influxdb, pro-
vides a simple-to-deploy solution because it has no external
dependencies [Influxdb(2015 (accessed November 6, 2015))].
In contrast to other options, Influxdb supports a SQL-like
language, but with restricted expressability. For example,
user-defined functions have been discussed [Influxdb(2013-
2015 (accessed November 7, 2015)a)], but are not yet sup-
ported. User-defined functions are useful to implement read-
able and efficient analytical tasks such as financial trading
strategies. Further, Influxdb does not support sorting a ta-
ble by multiple columns, which complicates queries for mul-
tidimensional time series data [Influxdb(2013-2015 (accessed
November 7, 2015)b)].

Array-oriented languages, often based on APL, have long
held a prominent position in time series analytics. Recent

work has sought to bring their expressive power to databases.
SciQL [Kersten et al.(2011)Kersten, Zhang, Ivanova, and
Nes] extends MonetDB [Nes and Kersten(2012)] with arrays
as first-class entities and provides elegant idioms for their
use in scientific applications. Similarly, the system currently
underlying AQuery’s execution, q [Whitney(2009 (accessed
November 6, 2015))], enables succint algorithm expression
through its array orientation.

Excellent optimization work has focussed on reliability
and scalability [Pelkonen et al.(2015)Pelkonen, Franklin, Teller,
Cavallaro, Huang, Meza, and Veeraraghavan] [StumpleUpon(2015
(accessed November 6, 2015))], but not on query plans. AQuery
attempts to encompass both traditional (i.e. unordered ta-
ble) query transformations and order-specific transforma-
tions extending and realizing the previous work [Lerner and
Shasha(2003)].

Anecdotal evidence for Python’s increasing role in data
science includes the scores of articles [Cass(2015 (accessed
November 7, 2015))] that indicate its popularity among pro-
grammers. Python’s simple and expressive syntax, in combi-
nation with its productive open source community, has led to
the creation of a well-known library for data analysis called
Pandas. Pandas provides in-memory array-oriented data
structures called data frames [pandas development team(2015
(accessed November 7, 2015))], along with tools to manipu-
late them.

Pandas is explicitly aimed at achieving high performance.
Critical parts of its implementation have been optimized us-
ing Cython, C, and numpy (an array oriented library for
scientific computing) [Oliphant(2006)]. Finally, Pandas has
seen heavy adoption in the finance community (Pandas was
in fact developed at AQR, a financial institution). The
overarching goals of simplicity and performance, combined
with the domain and scale of adoption ( [Sta(2015 (accessed
November 7, 2015))] shows 17,229 questions tagged as Pan-
das in stackoverflow.com), justifies a comparison between
AQuery and Pandas.

Major database vendors have also implemented column-
oriented solutions. Sybase IQ is one of the best known.
The system has become popular for basic business analytics
across different industries, with the overarching goal of pro-
viding “high-performance decision-support” [SAP(2013 (ac-
cessed November 8, 2015)a)] . Like AQuery, Sybase IQ
attempts to provide users with easy-to-use analytic func-
tionality, allowing developers to extend the platform with
user-defined functions that allow deeper analysis. These
user-defined functions may be implemented in Java/C/C++
[SAP(2013 (accessed November 8, 2015)b)] which are then
linked to SQL functions. Sybase IQ has found significant use
within the financial services industry: it underlies Sybase
RAP, which provides a range of risk, trading, and support
analytics targeted at finance [SAP(2015 (accessed November
8, 2015))].

3. AQUERY SEMANTICS AND EXAMPLES
In this section, we explore the semantics of the AQuery

language and show examples where appropriate.
The Arrable, short for array-table, is the key data type

underlying AQuery. Unlike its traditional SQL counterpart
[Codd(1970)], the rows in an arrable are ordered. Further,
an arrable permits individual elements to be non-atomic, so
a query can, for example, place an array as a valid value in
an arrable’s column.



Given arrables of the form ti(c1, ..., cni), boolean expres-
sions of the form wj(ti.c1, ..., ti.cni), expressions of any type
pj(ti.c1, ..., ti.cni) and gj(ti.c1, ..., ti.cni) a query in AQuery
can be broken down into various separate clauses, imple-
menting various of the operations defined in [Lerner(2003)]:

• A from-clause, that can consist of a single arrable ti,
or various arrables combined using ×(t1, ..., tn) (cross-
product) or join operators, such as ./wj ,...,wk (ti, ..., tn).

• An assuming-clause, which declares (and enforces) the
appropriate ordering of an arrable. Assuming clauses
consist of a series of ASC/DESC statements along
with the appropriate column to use for the ordering.

• A where-clause, that enforces selection σwj ,...,wk .

• A group-by clause, that performs groupings along ex-
pressions gj , and results in a nested arrable

• A having-clause, which performs selections based on
groupings by applying predicates of the form wj .

• A projection-clause, which projects a series of expres-
sions pj over an arrable

The assuming clauses constitutes the main extension to
SQL-92. We now explore each clause in further detail.

3.1 From-Clause
All AQuery queries have as a source one or more arrables,

which may include temporary local tables to achieve some
of the functionality of nested queries.

Semantically, the from-clause is executed first, in order to
materialize the data required by the following steps. While
users’ joins performed using explicit INNER JOIN/ FULL
OUTER JOIN operations are performed in the order pro-
vided, joins performed using the cartesian product operator
and predicates are subject to reordering by the optimizer.

So

SELECT *
FROM
prices INNER JOIN

sales INNER JOIN dividends USING Id
USING TradeDate

would first join sales and dividends, and then join prices,
as these operations are right-associative in AQuery. The
query below, however, could be subject to reorderings.

SELECT *
FROM prices , sales , dividends
WHERE sales.Id = dividends.Id AND prices.

TradeDate = sales.TradeDate

3.2 Assuming-Clause
An arrable ti(c1, ..., cni) can be ordered by various of its

columns, cj , ..., ck. Furthermore, the ordering can be ascend-
ing or descending along the values in the various columns.
The assuming clause allows a query to specify the expected
order for the data and presumes this order is available for
all operations. Semantically, this takes place after execution
of the from-clause.

Assume an arrable
network(base station, date, hour stamp, num cons)
represents network loads across various base stations

SELECT avgs(num_conns , 24)
FROM network
ASSUMING ASC date , ASC hour_stamp
WHERE base_station =1

Figure 1: A networking query: the user declares that the
arrable should be sorted by date and hour stamp, selects
data relevant to a particular base station and then calculates
a moving average with window-size 24

In the simple example in Figure 1, (a copy of) the network
arrable is sorted by ascending date, and within each date,
by ascending hour stamp. This then lets the user calculate
a moving average with window size 24 (ie. 24 hours) over
the number of connections for base station 1.

The sorted order of an arrable (if any) is maintained as
meta-data, so the result of this query is identified as being
sorted by (asc date, asc hour stamp). This may be useful
for future queries.

3.2.1 Order and Operations: Dependence, Preser-
vation, Equivalence

The ordered nature of AQuery in turn means that the
behavior of operations relative to order can be characterized
as either order-dependent or order-independent and either
order-preserving or non-order-preserving.

Definition 1. An operation op is order-independent if for
all different orderings a1 and a2 of an arrable a, applying op
to a1, denoted op(a1), yields the same result as op(a2) after
some permutation of op(a1).

For example, a standard group by aggregate is order-
independent. If this doesn’t hold then op is order-dependent.
For example, moving average is order-dependent.

Definition 2. An operation is order-preserving if it pre-
serves the pre-existing order in an arrable. So if row ri pre-
cedes rj in the arrable before an order-preserving operation
and both rows survive the operation, then ri will precede rj
in the result.

For example, a selection that scans sequentially through a
table and outputs rows that meet constraints as it encoun-
ters them will be order-preserving. A selection that uses a
non-clustered index will likely be non-order-preserving.

Definition 3. We call two arrables a and b permutation-
equivalent if some permutation of a yields b. So they must
contain the same number of rows and there must be a 1-1,
onto mapping among the rows. In the sequel, when we say
that a query q1 is semantically equivalent to a query q2, we
mean that q1 applied to any state s will yield a permutation-
equivalent result as q2 appied to s.

3.3 Where-Clause
Similarly to SQL-92, AQuery permits users to specify se-

lections in the where-clause by specifying a series of predi-
cates that must hold on the resulting arrable. Semantically,
the where-clause applies after the assuming clause has exe-
cuted. This implies that the where-clause conditions must
semantically be order-preserving. Consider,

SELECT max(volume)
FROM stocks



ASSUMING ASC TradeDate
WHERE
ticker = ‘‘IBM’’ AND price >prev(price)

along with three tuples in our arrable:

(‘‘HP’’, 2015-11-16, 100)
(‘‘IBM’’, 2015-11-17, 150)
(‘‘IBM’’, 2015-11-18, 170)

The prev operation results in an array of the same size,
with all elements shifted forward one position, such that
given an array a, prev(a)[i] = a[i − 1], with the value at
prev(a)[0] replaced with a null marker.

The AQuery semantics are that the predicates are applied
in the order they appear. So, semantically, the predicate on
“IBM” executes to completion, then, in a second pass, the
prev is applied. This will yield just the last tuple, because
the IBM part of the query will leave just the last two tuples.
By contrast, the query

SELECT max(volume)
FROM stocks
ASSUMING ASC TradeDate
WHERE
price >prev(price) AND ticker = ‘‘IBM’’

would find the last 2 tuples in a first pass, and its second
pass would simply return them. This observation implies
that the where-clause plays a key role in determining which
attributes to order and when.

3.4 Group-By and Having-Clauses
A group-by clause specifies a series of expressions gj , each

as a function of arrays in the arrable, that are then used to
group the arrable into nested arrable subsets corresponding
to the unique product of values across the expressions gj .
So for example:

SELECT base_station , date , hour_stamp ,
num_conns

FROM network
GROUP BY base_station

would take the first arrable in Figure 2 and return the
second nested arrable.

The Having-clause allows users to specify predicates on
the nested arrable and refine the arrable prior to projection.
Implicitly, operations taking place in the having-clause are
modified automatically to handle the nested nature of the
arrable. This introduces the AQuery algebra modifier each,
a modifier shared with AQuery’s ancestor k [Whitney(2009
(accessed November 6, 2015))]. each takes an expression
e(ci, ..., cj) and applies it to a nested arrable by applying it to
the fields associated with each group, which are themselves
arrays.

For example, the query in Figure 3 would first group the
arrable, resulting in the nested arrable shown in Figure 2,
and then the each modifier applies over the operations in the
HAV ING clause, allowing the user to apply the sum aggre-
gate over each nested arrable and then select those subsets
that have at least 50 connections.

Semantically, the group-by clause is executed after the
where-clause, followed by the having-clause.

base station date hour stamp num conns

1 04/01/15 1 10
1 04/01/15 2 20
2 04/01/15 1 30
2 04/01/15 2 40

base station | date hour stamp num conns

1 | [04/01/15,04/01/15] [1, 2] [10, 20]
2 | [04/01/15,04/01/15] [1, 2] [30, 40]

Figure 2: Grouping may generate nested arrables in which
field values are arrarys

SELECT base_station ,
COUNT (*) as ct
FROM network
GROUP BY base_station
HAVING sum(num_conns) >= 50

base station | ct

2 | 2

Figure 3: each allows us to adapt function behavior for
nested arrables, so powerful aggregates can be applied on
nested arrables intuitively

3.5 Projection-clause
The projection clause takes a series of expressions ei(cj , ..., ck)

and applies them one at a time to form the output arrable.
The operations in the projection-clause may be order-dependent
as in the moving average examples we’ve already seen. Se-
mantically, the projection clause is the final evaluation step
prior to returning the query result to the user.

3.6 UDFs, Local Queries, and Array Extrac-
tion

To provide an expressive analytics platform, AQuery al-
lows the definition of user-defined functions (UDFs) using
the AQuery language. UDFs are treated identically to built-
ins, meaning they can be used wherever a normal expression
would be permitted.

While nested queries are not permitted in AQuery, the
WITH clause incorporates query-local temporary tables into
a larger table. For example, the following SQL query:

SELECT sum(volume) FROM
(SELECT *
FROM sales
WHERE TradeDate BETWEEN ‘ ‘01/01/2014’’

AND ‘ ‘12/31/2014’’
) y14

INNER JOIN prices USING Id
WHERE price > 100

becomes the following AQuery query:

WITH
y14 AS (

SELECT *
FROM sales
WHERE TradeDate BETWEEN

‘ ‘01/01/2014’’ AND
‘ ‘12/31/2014’’

)

SELECT sum(volume)
FROM y14 INNER JOIN prices USING Id



WHERE price > 100

y14 ’s scope is limited to statements that follow it within
the WITH and up until the main query, which returns the
resulting arrable to the user.

Finally, it is possible to bind the columns in a query’s
result with stand-alone variables, allowing users to utilize
query results in further computations as arrays.

EXEC ARRAYS
SELECT avgs(px, 7) as moving_average
FROM prices
ASSUMING ASC TradeDate

allows the user to extend the environment with a variable
moving average, which has a value bound to a copy of the
array moving average in the resulting arrable. The user is
now free to use this variable in other queries or functions.

4. TRANSFORMATIONS
In this section, we introduce the transformations applied

to queries under this implementation of AQuery. We demon-
strate their semantic equivalence where necessary and jus-
tify their use. Finally, we describe the current heuristic rule-
based optimization strategy employed when analyzing a new
query provided by the user. As mentioned above, the even-
tual goal is cost-based optimization.

4.1 Eliminating Sorts
Suppose an arrable t is already ordered by t.ci, ..., t.cj . If a

query’s assuming clause indicates a required order (t.ck, ..., t.cl),
where, t.ck, ..., t.cl is a prefix of the existing order, we don’t
need to sort t. This is the simple optimization mentioned
in the introduction. Note however that this implies that all
operations must be order-preserving.

4.2 Sequence Selection
As discussed in the semantics section, AQuery’s selection

predicates are interpreted as a sequence of selections, in the
spirit of relational cascades [Elmasri and Navathe(2014)].
Like relational systems, AQuery reorders the selections as
long as these reorderings result in semantically equivalent
selections.

Assume a sequence of selection predicatesW = (w1, ..., wn).
If there does not exist an i such that wi’s result depends on
the order of elements in the array, then the sequence W can
be freely rearranged, just as in relational systems.

Now assume a sequence of selection predicates
W = (w1, ..., wj , ..., wn), such that wj represents the first
and only selection that has inter-row dependencies (i.e. de-
pends on order). We can split this sequence into 3 subse-
quences, (w1, ..., wj−1), (wj), and (wj+1, ..., wn). We can
freely reorder selections within the first subsequence, and
within the last subsequence, as they reduce to the first case.
We do not move operations from one subsequence to an-
other, as this might change the semantics as we saw in the
IBM/prev example of section 3.3.

The analysis extends inductively to selections with mul-
tiple predicates with inter-row dependence. The intuition
can be summarized as: inter-row dependent (i.e. order-
dependent) selections act as boundaries for selection re-ordering.

As in relational optimizers, we perform re-orderings such
that selections involving columns with useful index informa-
tion evaluate first, this reduces the data we need to work

with and allows us to take advantage of existing index in-
formation.

Theorem 4.1. Suppose a query q contains a where-clause
consisting of a sequence of selection predicates W = (w1, ..., wn)
and predicates with order-dependent operations Pod = (p1, ..., pk)
at positions I = (ip1 , ..., ipk ). A query q2 that reorders pred-
icates in W within the subsequences demarcated by I has the
same semantics as q provided that, in q2, all predicates in-
cluding and following the first order-dependent predicate are
order-preserving with respect to the assuming clause.

Proof Sketch. Query q has the semantics that the assum-
ing clause is executed first and all operations are order-
preserving and executed in sequence. Each order-independent
predicate applies to tuples one at a time. This implies that
two such predicates can be applied in any order to an input
arrable a to yield permutation-equivalent results. In q2, an
order consistent with the assuming-clause is established be-
fore the first order-dependent predicate and preserved there-
after. Thus q and q2 will be semantically equivalent.

4.3 Delayed Sorting
Because order-preserving operations often lead to slower

implementations than non-order-preserving ones, an opti-
mizer will often delay sorting as much as possible. For ex-
ample, given a sequences of selections W = (w1, ..., wn) such
that wj represents the first predicate with order-dependent
operations, we execute (w1, ..., wj−1) prior to sorting. This
results in a smaller arrable to sort.

This heuristic requires adaptation in the face of joins.
Consider a join between arrables t1 ./ t2. Our system

seeks to perform any index-based joins prior to the first
order-dependent where-clause predicate. Furthermore, in
order to reduce the size of the arrables joined we take se-
lections prior to this first order-dependent predicate, so the
optimizer uses the following rules:

• Evaluate equality selections before the join

• But perform the index-supported join before non-equality
selections

This rule-based approach assumes that the benefit from
the reduction in arrable size from a selection predicate in-
volving equality will outweigh any benefits from the index-
supported join.

Theorem 4.2. Given a query q, we can execute any order-
independent operations prior to the first order-dependent op-
eration without sorting. Sorting and execution of the re-
maining operations is guaranteed to yield the same result as
sorting prior to the first operation.

4.4 Sorting Columns, Not Arrables
Often, ASSUMING does not require sorting the entire

arrable. In any given query q over an arrable t, we can iden-
tify a subset of columns that require sorting Cod = {c|c ∈
t ∧ needs − sort(c)}. The needs − sort predicate indenti-
fies columns requiring sorting to create a query q2 that is
semantically equivalent to q.

Consider the example in Figure 4, from a finance setting
Reading the where-clause from left-to-right, we can eval-

uate the first 2 predicates without sorting, as neither is
order-dependent. The third predicate is order-dependent,



SELECT
getYear(TradeDate) as year ,
max(avgs(ClosePrice , 10)) as max_mavg
FROM stock_history
ASSUMING ASC TradeDate
WHERE Id = ‘‘IBM’’
AND TradeDate BETWEEN ‘‘2010-01-01’’ AND

‘‘2015-01-01’’
AND sums(volume) >= 1000000
GROUP BY getYear(TradeDate)

Figure 4: A query from finance, showing the use of order-
independent and order-dependent predicates along with
other clauses. Analyzing clauses left to right, it is clear we
can evaluate the first two order-independent selection predi-
cates in the where-clause. Prior to the first order-dependent
predicate, we sort all attributes used in the remaining selec-
tions, group-by and projection clauses.

and thus at this point AQuery must collect all attributes
that require sorting by inspecting the remaining selections
in the where-clause, group-by and projection clauses. This
results in Cod = {volume, TradeDate, ClosePrice}. Once
we have sorted these columns, we can apply the remaining
selections, group, and aggregate. The result is semantically
equivalent to sorting from the start.

The strategy followed in analyzing Figure 4 is a unique
case of the more general approach explained in Algorithm 1.

Theorem 4.3. Given an AQuery query q, Algorithm 1 yields
a query q2 that is semantically equivalent to q.

Proof Sketch. q2 consists of two queries: an order-independent
one q2A and an order-dependent one q2B. q2A includes
expressions/clauses that don’t require order up to the first
order-dependent operation. q2B sorts all attributes neces-
sary from that point onwards in a manner consistent with
the assuming clauses of q and all operations in q2B are order-
preserving. Combining these two is semantically equivalent
to q.

4.5 Full Strategy Sketch
Given a new query q, the heuristic optimization approach

is sketched out in Algorithm 2.

5. EXPERIMENTS
In all our experiments, we measure average response time

(in milliseconds) to evaluate performance of other systems
relative to AQuery. For all experiments, the execution order
of the queries is randomized.

Experiments against Pandas and MonetDB are run in a
single-user setting on a MacBook Air with a 2-Core 1 .7 GHz
Intel Core i7 processor, with 8GB of memory. The Sybase
IQ comparison is performed on a multi-user linux system
with 4 16-Core 2.1 GHz AMD Opteron 6272 processors, with
256GB of memory.

For all experiments we use the following systems/libraries:

• Pandas version 0.17.0

• Numpy version 1.10.1

• Python version 2.7.5

• MonetDB version 1.7, built from the pyapi branch that
allows for embedded Python

Input : An AQuery query q
Output : Order of evaluation and attributes needing

sort
Clauses in q are analyzed in the order: where-clause
(W ), assuming-clause (A), group-by-clause (G),
having-clause (H), projection-clause (P ).
Thus G is “subsequent” to W for example.
Each clause is analyzed from left-to-right.
case W has first order-dependent predicate at j

Evaluate all Wi<j according to Theorem 4.1
Sort all attributes in Wi>=j , and subsequent clauses
Evaluate selections Wi>=j according to
Theorem 4.1 and subsequent clauses

end
case G or H have any order-dependent expression

Evaluate all selections W according to Theorem 4.1
Sort all attributes in subsequent clauses
Evaluate G and subsequent clauses

end
case P has any order-dependent expression

Evaluate all selections W according to Theorem 4.1
Evaluate G and H
Determine attributes that need sorting by analyzing
P , sort them
Evaluate P

end

Algorithm 1: Identifying order of evaluation and at-
tributes to sort.
Once an order-dependent predicate is found, all at-
tributes in the following predicates in the where- clause
and all attributes in subsequent clauses must be sorted.
If there are no order-dependent predicates in the where
clause, then if any predicate in the group-clause is order-
dependent, then every attribute in the group, having,
and projection clauses must be sorted. Once the sort-
ing takes place, all operations must be order-preserving.
So for example, selections in W after the first order-
dependent predicate must all be order-preserving. Simi-
larly for the remaining clauses.

Input : An AQuery query q
Output : Heuristically optimized query plan
if from-clause involves crossproduct then

Replace cross products and selection predicates
within joins

if has foreign key joins then
Replace explicit joins with pointer-based access for
foreign keys, rather than materializing the join.

Execute Algorithm 1.
Return improved plan.

Algorithm 2: A Sketch of Optimizations



Query Condensed Description

0

Get the closing price of a set of 10 stocks for a 10-year
period and group into weekly/monthly/yearly aggregates.
For each determine low/high/avg value. The output
should be sorted by id and trade date.

1
Adjust all prices and volumes for a set of 1000 stocks to
reflect the split events during a specified 300 day period.

2
For each of 1000 stocks, find the differences between the
daily high/low on day of each split event during a specified
period.

3
Calculate the value of the S&P500 for a specified day using
unadjusted prices.

4
Calculate the value of the Russell 2000 for a specified day
using unadjusted prices.

5
Find the 21-day and 5-day moving average price for a
specified list of 1000 stocks during a 6-month period.
(Use split adjusted prices)

6
(Based on the previous query) Find the points when
the 5-day moving average intersects the 21-day moving
average. The output is to be sorted by id and date.

7

Determine the value of $100,000 now if 1 year ago it was
invested equally in 10 specified stocks. When 21-day moving
average crosses over 5-month moving average the complete
allocation for that stock is invested and when 21-day moving
average crosses below 5-month moving average the entire
position is sold.

8
Find the pair-wise coefficients of correlation in a set of 10
securities for a 2 year period. Sort by coefficient.

9
Determine the yearly dividends and annual yield for
the past 3 years for all the stocks in the Russell 2000
index that did not split during that period.

Table 1: Financial Queries Description

• Sybase IQ version 16.0

• q version 3.2 2014.11.01

• AQuery compiler a2q version 1.0

Because time is the most common way to organize data
and because finance provides many examples of data anal-
ysis on time series, we start with the following financial
benchmark from Sybase [SAP(2008 (accessed November 8,
2015))], Table 1 briefly describes the queries. While these
queries represent common analytic tasks in finance, it is easy
to find analogous operations in other domains where ordered
data matters.

5.1 The Sybase IQ Financial Benchmark
The results shown in this section correspond to simulated

data. Some of the queries require random parameters, for
example the starting and ending dates or a subset of stock
identifiers. Given this, we perform various iterations of our
experiments, consisting of generating data at different sizes
(100K, 1M, and 10M observations) and randomly generat-
ing the query parameters multiple times. We present the
average reponse time for the various systems in Figures 5, 6
and 7.

We note that AQuery is faster than Pandas on the fi-
nancial benchmark in Figure 5, significantly outperforming
across data sizes and queries.

Similarly, AQuery is faster than MonetDB in all queries
for a data set of 100K rows. At 1M rows, AQuery is faster
for 8 of 10 queries and comparably performant for the re-
maining 2. At 10M rows, we see a significant advantage in
7 of 10 queries, slightly slower performance in 1 query and
comparable in another query.

Finally, when compared to Sybase IQ we note that AQuery
is orders of magnitude faster on the 100K and 1M data sets.
The performance is much more varied in the 10M data set,
with wider standard errors. However, on average AQuery
outperforms in 8 out of 10 queries.
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Figure 5: Pandas Comparison on Sybase IQ Financial
Benchmark: AQuery is faster with stock history of 100K,
1M and 10M rows across all queries. In various of these,
AQuery’s average response time is orders of magnitude
shorter.The first set of graphs excludes query 0, for ease
of reading, given the vastly different response time. The
second set shows query 0 separately. And the third shows
all queries combined.
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Figure 6: MonetDB Comparison on Sybase IQ Financial
Benchmark: AQuery is faster across the board for 100K
rows of stock history. When we increment to 1M AQuery
remains faster in 8 of 10 queries, and comparable in the
remaining 2. At 10M rows, AQuery is slightly slower for
query 2, comparable for query 7, and faster in all others.
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Figure 7: Sybase IQ Comparison on Sybase IQ Financial
Benchmark: With 100K and 1M rows, AQuery outperforms
Sybase IQ in all of the queries evaluated. At 10M rows, per-
formance is a bit more varied, with larger standard errors,
but on average AQuery is faster in 8 of the 10 benchmark
queries.

Table 2: Pandas benchmarking: queries and descriptions

Query Description

0 selection
1 group-by w/ multiple functions
2 count instances of each value
3 group-by along multiple columns
4 append to existing data
5 merge based on multiple columns
6 calculate standard deviation

5.2 Pandas Benchmark: Data Science Opera-
tions

In order to compare AQuery to Pandas, we pick a subset of
operations that Pandas uses to track the library’s historical
performance evolution [the pandas development team(2011
(accessed November 18, 2015))]. The chosen subset repre-
sents common tasks in data science, for example: subsetting,
grouping, summarizing, and merging data, amongst others.

Figure 8 shows the performance results in terms of aver-
age response time. The experiments are repeated along var-
ious baseline data sizes: 100K elements (as used in Panda’s
benchmarking), 1M, and 10M elements. For each of the
data sizes, we randomly generate the data 5 times, on each
data set we measure the average execution time for each
query over 5 repeated evaluations. The results presented
here represent an average of these times. Table 2 provides
brief descriptions of each query.

We note that AQuery outperforms in 5 of 7 queries in
most of the data sets we evaluated. Furthermore, AQuery’s
advantage in these queries is significant, with some running
up to 3 times faster than in Pandas.

5.3 MonetDB Benchmark: Quantiles
MonetDB’s ability to embed R [Mon(2014 (accessed Novem-

ber 18, 2015))], and more recently, Python/NumPy [Raasveldt(2015
(accessed November 06, 2015))], directly into a query makes
it a very flexible and appealing approach for data scientists
and developers looking to integrate their data storage/query
and analysis tools.

For comparison with MonetDB, we used MonetDB’s bench-
marking quantile computation, used in both [Mon(2014 (ac-
cessed November 18, 2015))] and [Raasveldt(2015 (accessed
November 06, 2015))].

Specifically, we evaluated AQuery’s performance in quan-
tile calculation compared to MonetDB’s performance using
a performant NumPy function. On the AQuery side, we im-
plement a naive quantile function, which sorts a column and
then takes the appropriate value. We calculate the 95th and
5th quantiles across random data.

Figure 9 shows our results, in terms of average response
time in milliseconds. The experiments are repeated along
various data sizes: 100K, 1M, 10M, and 25M values. For
each data size, we generate 5 random data sets, and measure
average execution time for each quantile calculation over
5 iterations. These response times are then averaged and
appropriate standard error measures calculated.

In all cases, AQuery outperforms the equivalent calcula-
tion in MonetDB + embedded Python/Numpy, with the gap
in performance narrowing in larger data sets. However, we
remind the reader that the AQuery implementation uses a
naive quantile function which sorts the data completely.
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Figure 8: Pandas Benchmarking Operations: For 100K
rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations eval-
uated. The first set of graphs excludes query 3, for ease of
reading, given the vastly different response time. The sec-
ond set shows query 3 separately. And the third shows all
queries combined.
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Figure 9: MonetDB Quantile Benchmarking: AQuery out-
performs in all the dataset sizes evaluated. While the ad-
vantage narrows with larger data, we highlight AQuery’s im-
plementation is currently using a naive quantile calculation
that involves sorting the entire array.

6. CONCLUSION
We have described a query language, transformations, and

implementation designed to address the challenges of analyz-
ing data that require order. AQuery shows that order can be
introduced with minimal complication to the language and
computational model. The paper describes the semantics of
AQuery through examples and a simple formalism. The pa-
per describes various heuristic optimization approaches im-
plemented in our system and demonstrates their semantic
correctness. Finally, the paper compares the performance
of AQuery on known benchmarks with excellent alternative
systems. We show that AQuery’s simple model can yield
good performance, providing data scientists and developers
with an efficient and intuitive platform upon which to issue
order-dependent queries.



7. APPENDIX

7.1 AQuery SybaseIQ Financial Benchmark
Queries

7.1.1 Query 0

WITH
Target(Id, TradeDate , ClosePrice) AS
(SELECT
Id, TradeDate ,ClosePrice
FROM price
WHERE Id IN stock10 AND
TradeDate >= startYear10 AND
TradeDate <= startYear10 + 365 * 10)

weekly(Id, bucket ,name ,low ,high ,mean) AS
(SELECT
Id,
timeBucket ,
"weekly",
min(ClosePrice),
max(ClosePrice),
avg(ClosePrice)
FROM Target
GROUP BY Id, getWeek(TradeDate) as

timeBucket)

monthly(Id,bucket ,name ,low ,high ,mean) AS
(SELECT
Id,
timeBucket ,
"monthly",
min(ClosePrice),
max(ClosePrice),
avg(ClosePrice)
FROM Target
GROUP BY Id, getMonth(TradeDate) as

timeBucket)

yearly(Id,bucket ,name ,low ,high ,mean) AS
(SELECT
Id,
timeBucket ,
"yearly",
min(ClosePrice),
max(ClosePrice),
avg(ClosePrice)
FROM Target
GROUP BY Id, getYear(TradeDate) as

timeBucket)

SELECT
Id, bucket , name , low , high , mean
FROM
CONCATENATE(weekly , monthly , yearly)
ASSUMING ASC Id, ASC name , ASC bucket

7.1.2 Query 1

WITH
pxdata(Id,TradeDate ,HighPrice ,LowPrice ,

ClosePrice ,OpenPrice ,Volume) AS
(SELECT
Id, TradeDate ,
HighPrice , LowPrice ,
ClosePrice , OpenPrice ,
Volume
FROM price
WHERE Id IN stock1000 AND
TradeDate >= start300Days AND
TradeDate <= start300Days + 300)

splitdata(Id, SplitDate , SplitFactor) AS
(SELECT
Id, SplitDate , SplitFactor
FROM split
WHERE Id IN stock1000 AND
SplitDate >= start300Days)

adjdata(Id, TradeDate , AdjFactor) AS
(SELECT
Id, TradeDate , prd(SplitFactor)
FROM
pxdata INNER JOIN splitdata USING Id
WHERE TradeDate < SplitDate
GROUP BY Id, TradeDate)

SELECT Id, TradeDate ,
HighPrice* fill(1, AdjFactor) as

HighPrice ,
LowPrice * fill(1, AdjFactor) as

LowPrice ,
ClosePrice * fill(1, AdjFactor) as

ClosePrice ,
OpenPrice * fill(1, AdjFactor) as

OpenPrice ,
Volume / fill(1, AdjFactor) as Volume
FROM
pxdata FULL OUTER JOIN adjdata
USING (Id , TradeDate)
ASSUMING ASC Id, ASC TradeDate

7.1.3 Query 2

WITH
pxdata(Id,TradeDate ,HighPrice ,LowPrice)

AS
(SELECT
Id, TradeDate ,
HighPrice , LowPrice
FROM price
WHERE Id IN stock1000 AND
TradeDate BETWEEN startPeriod AND

endPeriod)

splitdata(Id,TradeDate ,SplitFactor) AS
(SELECT
Id, SplitDate , SplitFactor
FROM split
WHERE Id IN stock1000 AND
SplitDate BETWEEN startPeriod AND

endPeriod)

SELECT
Id as Id,
TradeDate as TradeDate ,
HighPrice - LowPrice as MaxDiff
FROM pxdata INNER JOIN splitdata
USING (Id , TradeDate)
ASSUMING ASC Id, ASC TradeDate

7.1.4 Query 3

select avg(ClosePrice) as avg_close_price
FROM price
WHERE Id IN SP500 AND
TradeDate = startPeriod

7.1.5 Query 4

select avg(ClosePrice) as avg_close_price



FROM price
WHERE Id IN Russell2000 AND
TradeDate = startPeriod

7.1.6 Query 5

WITH
pxdata(Id, TradeDate , ClosePrice) AS
(SELECT
Id, TradeDate , ClosePrice
FROM price
WHERE Id IN stock1000 AND
TradeDate >= start6Mo AND
TradeDate < start6Mo + 31 * 6)

splitdata(Id , SplitDate , SplitFactor) AS
(SELECT
Id, SplitDate , SplitFactor
FROM split
WHERE Id IN stock1000 AND
SplitDate >= start6Mo)

splitadj(Id, TradeDate , ClosePrice) AS
(SELECT
Id, TradeDate ,
first(ClosePrice * prd(SplitFactor))
FROM pxdata INNER JOIN splitdata USING

Id
WHERE TradeDate < SplitDate
GROUP BY Id, TradeDate)

avgInfo(Id,TradeDate ,ClosePrice ,m21 ,m5)
AS

(SELECT
Id,
TradeDate ,
fill(pxdata.ClosePrice , splitadj.

ClosePrice),
avgs(21, fill(pxdata.ClosePrice ,

splitadj.ClosePrice)),
avgs(5, fill(pxdata.ClosePrice ,

splitadj.ClosePrice))
FROM pxdata FULL OUTER JOIN splitadj
USING (Id, TradeDate)
ASSUMING ASC Id, ASC TradeDate
GROUP BY Id)

SELECT *
FROM FLATTEN(avgInfo)
ASSUMING ASC Id, ASC TradeDate

7.1.7 Query 6

WITH
pxdata(Id, TradeDate , ClosePrice) AS
(SELECT
Id, TradeDate , ClosePrice
FROM price
WHERE Id IN stock1000 AND
TradeDate >= start6Mo AND
TradeDate < start6Mo + 31 * 6)

splitdata(Id , SplitDate , SplitFactor) AS
(SELECT
Id, SplitDate , SplitFactor
FROM split
WHERE Id IN stock1000 AND
SplitDate >= start6Mo)

splitadj(Id, TradeDate , ClosePrice) AS
(SELECT
Id, TradeDate ,

first(ClosePrice * prd(SplitFactor))
FROM
pxdata INNER JOIN splitdata USING Id
WHERE TradeDate < SplitDate
GROUP BY Id, TradeDate)

avgInfo(Id, TradeDate , ClosePrice , m21 ,
m5) AS

(select
Id,
TradeDate ,
fill(pxdata.ClosePrice , splitadj.

ClosePrice),
avgs(21, fill(pxdata.ClosePrice ,

splitadj.ClosePrice)),
avgs(5, fill(pxdata.ClosePrice ,

splitadj.ClosePrice))
FROM pxdata FULL OUTER JOIN splitadj
USING (Id , TradeDate)
ASSUMING ASC Id, ASC TradeDate
GROUP BY Id)

SELECT
Id,
TradeDate as CrossDate ,
ClosePrice
FROM FLATTEN(avgInfo)
WHERE Id = prev(Id) AND
// cross over
(prev(m5) <= prev(m21) & m5 > m21)
OR
// cross under
(prev(m5) >= prev(m21) & m5 < m21)

7.1.8 Query 7

// encode execution of our trading
strategy

FUNCTION
execStrategy(alloc ,mavgday ,mavgmonth ,px) {

buySignal := mavgday > mavgmonth;
alloc * prd(

CASE maxs(buySignal)
WHEN TRUE THEN

CASE buySignal
WHEN TRUE THEN 1 / px
ELSE px

END
ELSE 1

END)
}

WITH
pxdata(Id, TradeDate , ClosePrice) AS
(SELECT
Id, TradeDate , ClosePrice
FROM price
WHERE Id IN stock10 AND
TradeDate >= max(TradeDate) - 365)

splitdata(Id, SplitDate , SplitFactor) AS
(SELECT Id, SplitDate , SplitFactor
FROM split
WHERE Id IN stock10 AND
SplitDate >= max(SplitDate) - 365)

splitadj(Id, TradeDate , ClosePrice) AS
(SELECT
Id, TradeDate ,
first(ClosePrice * prd(SplitFactor))
FROM
pxdata INNER JOIN splitdata USING Id
WHERE TradeDate < SplitDate



GROUP BY Id, TradeDate)

adjpxdata(Id , TradeDate , ClosePrice) AS
(SELECT
Id, TradeDate ,
fill(pxdata.ClosePrice , splitadj.

ClosePrice) as ClosePrice
FROM pxdata FULL OUTER JOIN splitadj
USING (Id, TradeDate))

movingAvgs(Id, TradeDate , ClosePrice ,
m21day , m5month) AS

(SELECT
Id, TradeDate ,
ClosePrice ,
avgs(21, ClosePrice),
avgs (160, ClosePrice)
FROM adjpxdata
ASSUMING ASC Id, ASC TradeDate
GROUP BY Id)

simulated AS (
SELECT Id,
execStrategy (10000 , m21day , m5month ,

ClosePrice) as result ,
last(m21day) > last(m5month) as

stillInvested
FROM FLATTEN(movingAvgs)
WHERE Id = prev(Id) AND
(prev(m5month) <= prev(m21day) & m5month

> m21day)
OR
(prev(m5month) >= prev(m21day) & m5month

< m21day)
GROUP BY Id )

latestPxs AS
(SELECT *
FROM adjpxdata
WHERE TradeDate=max(TradeDate))

SELECT
sum(

fill (10000 , result * CASE WHEN
stillInvested THEN ClosePrice ELSE
1 END)

) as stock_value
FROM latestPxs FULL OUTER JOIN simulated
USING Id

7.1.9 Query 8

FUNCTION covariance(x, y) {
xmean := avg(x);
ymean := avg(y);
avg((x - xmean) * (y - ymean))

}

FUNCTION sd(x) {
sqrt(covariance(x, x))

}

FUNCTION pairCorr(x, y) {
covariance(x, y) / (sd(x) * sd(y))

}
<q>pairCorrEach:pairCorr ’</q>

WITH
stocksGrouped(Id, ClosePrice) AS
(SELECT
Id, ClosePrice
FROM price

ASSUMING ASC Id, ASC TradeDate
WHERE Id IN stock10 AND
TradeDate >= startYear10 AND
TradeDate <= startYear10 + 365 * 2
GROUP BY Id)

pairsGrouped(Id1 , Id2 , ClosePrice1 ,
ClosePrice2) AS

(SELECT
st1.Id, st2.Id,
st1.ClosePrice , st2.ClosePrice
FROM
stocksGrouped st1 , stocksGrouped st2
GROUP BY st1.Id, st2.Id)

corrTable(Id1 , Id2 , corrCoeff) AS
(SELECT
Id1 , Id2 ,
pairCorrEach(ClosePrice1 , ClosePrice2)
FROM pairsGrouped
WHERE Id1 != Id2)

SELECT *
FROM corrTable
ASSUMING ASC corrCoeff

7.1.10 Query 9

WITH
DateInfo(startYear , startDate) AS
(SELECT
getYear(max(TradeDate) - 365 * 3), max(

TradeDate) - 365 * 3
FROM price)

// we introduce a dummy column to avoid
having q

// group on distinct
splitdata(Dummy , Id) AS
(SELECT 1, distinct(Id)
FROM split
WHERE Id IN Russell2000 AND
getYear(SplitDate) >= first(DateInfo("

startYear")))

nosplit_avgpx AS
(SELECT
Id, year , avg(ClosePrice) as avg_px
FROM price
WHERE Id IN Russell2000 AND
TradeDate >= first(DateInfo("startDate")

) AND
Id NOT IN splitdata("Id")
GROUP BY Id, getYear(TradeDate) as year)

divdata AS
(SELECT
Id, year , sum(DivAmt) as total_divs
FROM dividend
WHERE Id IN Russell2000 AND
getYear(AnnounceDate) >= first(DateInfo(

"startYear")) AND
Id NOT IN splitdata("Id")
GROUP BY Id, getYear(AnnounceDate) as

year)

SELECT
Id, year , avg_px ,
total_divs , total_divs / avg_px as yield
FROM nosplit_avgpx INNER JOIN divdata
USING (Id , year)
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