JustMyFriends: Full SQL, Full Transactional Amenities,
and Access Privacy

Arthur Meacham
Department of Computer Science
Courant Insitute of Mathematical Sciences
New York University
251 Mercer St
NY, NY 10012
meacham@cs.nyu.edu

ABSTRACT

A major obstacle to using Cloud services for many enter-
prises is the fear that the data will be stolen. Bringing
the Cloud in-house is an incomplete solution to the prob-
lem because that implies that data center personnel as well
as myriad repair personnel must be trusted. An ideal se-
curity solution would be to share data among precisely the
people who should see it ("my friends”) and nobody else.

Encryption might seem to be an easy answer. Each friend
could download the data, update it perhaps, and return it to
a shared untrusted repository. But such a solution permits
no concurrency and therefore no real sharing.

JustMyFriends ensures sharing among friends without re-
vealing unencrypted data to anyone outside of a circle of
trust. In fact, non-friends (such as system administrators)
see only encrypted blobs being added to a persistent store.
JustMyFriends allows data sharing and full transactions. It
supports the use of all SQL including stored procedures, up-
dates, and arbitrary queries. Additionally, it provides full
access privacy, preventing the host from discovering patterns
or correlations in the user’s data access behavior.

The demonstration will show how friends in an unnamed
government agency can coordinate the management of a spy
network in a transactional fashion. Demo visitors will be
able to play the roles of station chiefs and/or of trouble-
makers. As station chiefs, they will write their own transac-
tions and queries, logout, login. As troublemakers, visitors
will be able to play the role of a curious observer, kill client
processes, and in general try to disrupt the system.

Categoriesand Subject Descriptors

H.2.0 [Database Management|: GeneralSecurity, integrity,
and protection; C.2.4 [Distributed Systems]: Distributed
ApplicationsCloud Computing

Dennis Shasha
Department of Computer Science
Courant Insitute of Mathematical Sciences
New York University
251 Mercer St
NY, NY 10012
shasha@cs.nyu.edu

General Terms

database outsourcing, privacy

1. MOTIVATION

Despite the growing acceptance of cloud computing, real
concerns still linger about the security of data outsourced
to the cloud. To use the cloud, one must entrust one’s data
to an outside party, the cloud provider. Generally, the only
assurances of privacy are the word of the provider and the
legal and business incentives for the provider not to leak or
abuse information.

Even if we trust that the provider is truly scrupulous and
motivated to protect user data, there is still the danger of
corrupt or sloppy individuals within the provider organiza-
tion, or of the sort of large-scale data breach that makes the
news with alarming frequency[2][1]. Furthermore, data on
the cloud is exposed to attacks that did not exist in tradi-
tional architectures, as seen in recent, high-profile exploits
affecting major infrastructure providers[15][14].

Given the risks, it is understandable that some users might
be hesitant or unwilling to move sensitive data to the cloud.
JustMyFriends addresses these concerns by enabling the out-
sourcing of databases in a secure, access-private manner.

2. RELATED WORK

JustMyFriends builds on work first presented in the Blind
Stone Tablet[16]. These systems use a client-side approach
to privacy, a model also seen in such work as SPORC[4]. In
our design, as in the Blind Stone Tablet, the untrusted host
provides ACID guarantees and data distribution to clients
without ever seeing data in the clear, while all data pro-
cessing is performed on client machines. Our design also
supports all SQL.

There have been a number of other approaches to preserv-
ing privacy while accessing data on untrusted servers. These
include Private Information Retrieval and 1-out-of-N Oblivi-
ous Transfer, strategies that focus on retrieving data without
revealing the desired piece of data to the server([3][8][9][12][13].
These solutions are strictly read-only, and can only handle
certain types of query.

Another technique that has been explored is Bucketization,
in which an encrypted table is partitioned into a number

Client 1 Client 2

Client Application

Client Application

1.

JustMyFriends
ODBC Shim

JustMyFriends
ODBC Shim

2.
JustMyFriends
Distributor

JustMyFriends
Executor

JustMyFriends
Distributor

JustMyFriends
Executor

&

6.

UnixODBC

Figure 1: Query Flow: The life of a query from
the initiating client to all other clients. (1) The
Client application begins a database access via the
ODBC API. (2) The ODBC call is captured by Just-
MyFriends and passed to the Distributor. (3) The
Distributor marshalls and encrypts the statement
and any arguments or bound data. The encrypted
statement description is then forwarded to the Con-
duit. (4) The Conduit assigns a sequence number
to the statement description, appends it to a log,
then forwards the sequence number and description
to all connected JustMyFriends clients. (5) On each
client, the statement description is received by the
Executor, where it is decrypted and enqueued for
processing. (6) Statements are unmarshalled, data
is bound, and the actual call to the unixODBC layer
is made. Multistep transactions are executed con-
currently, with commits happening in order of se-
quence number. (7) The actual statement is exe-
cuted on the local replica of the database. When
conflicts occur, the Executor detects and prevents
potential inconsistencies. On the initiating client,
any results and return values are given to the call-
ing application.

of "buckets”, and queries on the encrypted data determine
which buckets may contain matching rows[6][7]. Bucketiza-
tion supports all of SQL, but has a tradeoff between per-
formance (small buckets) and privacy (large buckets), and
weakens security in able to support full SQL on encrypted
data.

Finally, breakthroughs in fully-homomorphic encryption tech-
niques have been touted as a potential solution to the dan-
gers of hosting data on untrusted servers[5]. While fully-
homomorphic encryption is still not practical from a per-
formance standpoint, others have proposed weakening the
requirement to somewhat-fully-homomorphic encryption to
achieve performance gains[11]. Even if a practical FHE solu-
tion is achieved, however, it will not provide access privacy.

3. TECHNICAL OVERVIEW

Following the Blind Stone Tablet, our solution takes advan-
tage of the low cost of disk storage on client machines to

JustMySpies o

Real Name Code Name Stationed In Slush Fund
1 Austin Powers Mojo London 1,000,000.00
2 James Bond 007 Monaco 32,500,000.00
3 Maxwell Smart Agent 86 Washington D.C. 6.51
5 Sidney Bristow Bluebird Moscow 530,000.00
Transfer Selected Agent To: | Patagonia v (o«)

Figure 2: JustMySpies GUI: A location window in
which Demo Viewers can see positions of spies and
transfer them among stations.

maintain replicas of the database on each trusted client. Be-
fore being executed, all database transactions are encrypted
and forwarded to a service residing on the cloud, referred to
as the conduit. The conduit records the encrypted message
in a backup log on the cloud (achieving durability), assigns
a sequence number to the transaction, then forwards it to all
trusted clients. The clients are able to decrypt the message
and apply it to their local replicas of the database. If a new
client joins the system, or a client has to recover from a fail-
ure, the client can replay the transactions from the log on
the cloud. Using ideas presented in SUNDRJ[10], the system
includes mechanisms to detect misbehavior by the conduit,
such as fork attacks or data corruption.

For the current implementation, we have modified unixODBC,
a standard open source ODBC driver manager. This allows
JustMyFriends to work with unmodified application bina-
ries, and with a wide range of database products. When a
client program uses the ODBC API to communicate with
a DBMS, the call is captured by the driver manager, en-
crypted, and forwarded to the conduit. Once a database
operation has been distributed to the clients by the conduit,
it is passed on to each local DBMS for processing.

Transactions run concurrently on each local machine, with
commits executed in the order of sequence number. The
local DBMS is relied upon to handle deadlock detection.
Once a commit has been received, JustMyFriends deter-
mines whether a transaction on an individual client has
reached a different state than that of the initiating client,
generally as a result of a local deadlock caused by a race
condition. If such a ”disobedient” state is detected, then

JustMyFriends iSQL Console

>

SQL> select realname from spies where relationship = 'Enemy’
+
| realname

+

Doctor Evil
Doctor No
Boris Badenov
Natasha Fatale

|
|
|
|
+
4 Rows Affected

SQL> drop table spies
1 Row Affected

sor> I

N4

Figure 3: Console: The demo visitor will be able to
find spies, move them, change the slush fund value,
and perform arbitrary SQL

all affected transactions on the disobedient client are rolled
back and executed serially. Once disobedience has been cor-
rected, concurrent processing is resumed.

4. DEMO EXPERIENCE

The demonstration will consist of an application in which
various local station chiefs in a fictional spy agency use a
shared database to manage agents and resources. Because
they want to avoid leaks, but trust each other, they use
JustMyFriends to host their shared database.

Multiple client machines will be available to the user, each
representing a different country in the spy network. There
will also be a machine acting as untrusted conduit, on which
the user will be able to examine the data traffic as seen by
the outside host.

The demo visitor as a station chief will have the ability to
execute pre-written transactions to perform tasks such as
transferring spies to new locations or allocating slush funds.
Additionally, the demo visitor will be able to write and ex-
ecute arbitrary SQL, including data definition statements.
Finally, the user as troublemaker will have the ability to
cause failures or wipe out the local state on some or all of
the clients, observe untrusted storage, and then perform a
recovery on the affected machines.

5. REFERENCES

[1] Citi breach may have compromised customer data -ft,
2011.

[2] BAKER, L. B. Sony suffers second major user data
theft, May 2011.

[3] CHOR, B., GOLDREICH, O., KUSHILEVITZ, E., AND
SUDAN, M. Private information retrieval. Foundations
of Computer Science, Annual IEEE Symposium on 0
(1995), 41.

[4] FELDMAN, A. J., ZELLER, W. P., FREEDMAN, M. J.,
AND FELTEN, E. W. Sporc: group collaboration using
untrusted cloud resources. In Proceedings of the 9th
USENIX conference on Operating systems design and
implementation (Berkeley, CA, USA, 2010), OSDI’10,
USENIX Association, pp. 1-.

[5] GENTRY, C. Fully homomorphic encryption using
ideal lattices. In Proceedings of the 41st annual ACM
symposium on Theory of computing (New York, NY,
USA, 2009), STOC 09, ACM, pp. 169-178.

[6] HAacicUMUs, H., IYER, B., L1, C., AND MEHROTRA,
S. Executing sql over encrypted data in the
database-service-provider model. In Proceedings of the
2002 ACM SIGMOD international conference on
Management of data (New York, NY, USA, 2002),
SIGMOD ’02, ACM, pp. 216-227.

[7] HORE, B., MEHROTRA, S., AND TSUDIK, G. A
privacy-preserving index for range queries. In
Proceedings of the Thirtieth international conference
on Very large data bases - Volume 30 (2004), VLDB
04, VLDB Endowment, pp. 720-731.

[8] KusHILEVITZ, E., AND OSTROVSKY, R. Replication is
not needed: single database, computationally-private
information retrieval. In Foundations of Computer
Science, 1997. Proceedings., 38th Annual Symposium
on (oct 1997), pp. 364 —373.

[9] KusHILEVITZ, E., AND OSTROVSKY, R. One-way
trapdoor permutations are sufficient for non-trivial
single-server private information retrieval, 2000.

[10] L1, J., KrROHN, M., MAZIERES, D., AND SHASHA, D.
Secure untrusted data repository (sundr). In
Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation - Volume
6 (Berkeley, CA, USA, 2004), USENIX Association,
pp. 9-9.

[11] NAEHRIG, M., LAUTER, K., AND VAIKUNTANATHAN,
V. Can homomorphic encryption be practical? In
Proceedings of the 3rd ACM workshop on Cloud
computing security workshop (New York, NY, USA,
2011), CCSW ’11, ACM, pp. 113-124.

[12] NAOR, M., AND PINKAS, B. Oblivious transfer and
polynomial evaluation. In Proceedings of the
thirty-first annual ACM symposium on Theory of
computing (New York, NY, USA, 1999), STOC 99,
ACM, pp. 245-254.

[13] NAOR, M., AND PINKAS, B. Efficient oblivious
transfer protocols. In Proceedings of the twelfth annual
ACM-SIAM symposium on Discrete algorithms
(Philadelphia, PA, USA, 2001), SODA ’01, Society for
Industrial and Applied Mathematics, pp. 448-457.

[14] RISTENPART, T., TROMER, E., SHACHAM, H., AND
SAVAGE, S. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In
Proceedings of the 16th ACM conference on Computer
and communications security (New York, NY, USA,
2009), CCS ’09, ACM, pp. 199-212.

[15] SoMOROVSKY, J., HEIDERICH, M., JENSEN, M.,
SCHWENK, J., GRUSCHKA, N., AND Lo Tacono, L.
All your clouds are belong to us: security analysis of
cloud management interfaces. In Proceedings of the
3rd ACM workshop on Cloud computing security
workshop (New York, NY, USA, 2011), CCSW ’11,
ACM, pp. 3-14.

[16] WiLLIAMS, P., SION, R., AND SHASHA, D. The blind
stone tablet: Outsourcing durability tountrusted
parties. In Proceedings of the 16th Annual Network
and Distributed System Security Symposium (2009),
NDSS’09.

