

1

AppSleuth: a Tool for Database Tuning at the Application
Level

ABSTRACT
Excellent work [1]][2][3][4][5][6] has shown that memory
management and transaction concurrency levels can often be
tuned automatically by the database management system. Other
excellent work [7]][8][9][10][11][12][13][14] has shown how to
use the optimizer to do automatic physical design. Our tuning
experience across various industries (finance, gaming, data
warehouses, and travel) has shown that enormous additional
tuning benefits (sometimes amounting to two orders of
magnitude) can come from reengineering application code and
table design. The question is: can a tool help in this effort? We
believe so. We present a tool called AppSleuth that parses
application code and the tracing log for a popular database
management system in order to lead a competent tuner to the hot
spots in an application. Specifically, this paper discusses
representative application "delinquent design patterns", an
application code parser to find them, a log parser to identify the
patterns that are critical, and a display to give a global view of
the issue. We present an extended sanitized example from a
travel application to show the results of the tool at different
stages of a tuning engagement. This is the first tool of its kind
that we know of.

Keywords
Database tuning, application-level optimization, performance
tool

1. INTRODUCTION
Database administrators can call on a variety of tools to help with
physical configuration [7][8][9][10][11][12][13][14], system
monitoring and maintenance [20][21][22][23] .

Current automatic physical tuning tools have become
sophisticated. Given a representative workload of SQL

statements; they find the best physical design for the workload.
They do this based on what-if analyses using a cost-based query
optimizer. Beyond that effort in automatic physical design,
Oracle’s SQL Tuning advisor [19] can collect statistics, correct
system parameters, and recommend changes to SQL statements.
(In the running example of this paper, the Tuning advisor found
high load SQL statements and identified bad query features like
Cartesian products.)

Self-tuning memory management in database systems has also
gained much attention. [1] proposes adaptive memory allocation
in DB2 based on monitoring the characteristics of the workload
during run time. Other commercial products also have
implemented self-tuning memory management facilities to
improve the performance of the database systems [3][4].

Quest Software's TOAD[24] is a commercial tool that offers
help at the application programming level (see
http://www.orafaq.com/node/846 for a tutorial explanation).
Primarily, it consists of software engineering advice of the form
"make your variable names self-describing" and encouragement
to reduce code complexity as measured by metrics such as
McCabe's cyclomatic complexity (which measures the number of
independent paths through program code -- the fewer the better).

Within TOAD, a special module called CodeXpert offers
performance tuning help. CodeXpert allows the user to invoke a
pre-defined set of rules or to create new ones. The rules pertain
to single SQL statements. An example would be: find all SQL
statements that join more than four tables. A more sophisticated
example is to find queries that have insufficient index support.
To identify the latter, codeXpert runs the queries through the
Explain Plan facility. CodeXpert then simulates the addition of
possibly useful indexes and reruns Explain Plan.

Whereas we applaud the general use of tools that either
suggest indexes or flag complex SQL statements, many design
patterns that cause the greatest problems span multiple
statements, sometimes even multiple subprograms. That is the
target of AppSleuth.

2. DELINQUENT DESIGN PATTERNS
Even though hardware has become vastly faster over the last
decades, database tuning continues to be necessary. The accepted
reason for this is that databases grow in size as disk capacities
increase. The problem with this explanation is that indexes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, Providence, RI, USA.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

2

should have mitigated this effect enough so data access time
would grow only with the log of the data size, not linearly. We
think the deeper reason is that application programmers mistreat
their databases. Typical application delinquent design patterns
include:

1). Insert records into a table one at a time, crossing protection
boundaries and flushing the instruction cache each time. For
example, the following code snippet in Oracle PL/SQL runs for
20 minutes with appropriate indexes on the table sku_word
(several hours without indexes) having about 3,400,000 rows and
on the table hotel_desc with 220,000 rows. (A sku is a particular
instance of a product type. In our running example, it’s a
particular room type in a hotel on a particular night)

Figure 1. Delinquent design patterns for insert.

By contrast, all the work can be done in one insert-select
statement in about one minute on the same hardware and with
the same indexes (a factor of 20 improvement).

2) Fetching one record at a time from within, say, a Java loop as
opposed to selecting many records into an array. For example,
the following java code queries the descriptions for the first 1000
hotels.

By contrast, the following code issues one query to the database
and fetches the result into a collection data type.

3). Processing one record at a time within the stored procedures
of a database management system, testing for conditions within
that record using if statements. For example, suppose that for
each hotel and each room_type, the price varies based on the day
of the week. We may have code like the following using if
statements:

A better way would be to translate the if condition into one or
more where clauses to update many records at a time:

DECLARE
l_sku_id INTEGER;
l_hotel_id VARCHAR2(10);
l_room_type_id INTEGER;
l_desc hotel_desc.description%TYPE;
CURSOR c1 IS SELECT sku_id, hotel_id, room_type_id
FROM sku_word;
BEGIN

OPEN c1;
 LOOP
 FETCH c1 INTO l_sku_id, l_hotel_id,
l_room_type_id;
 EXIT WHEN c1%NOTFOUND;
 FOR item IN (SELECT description FROM
hotel_desc WHERE hotel_id = l_hotel_id AND
room_type_id = l_room_type_id)
 LOOP
 INSERT INTO drs_sku(id, description)
 VALUES (l_sku_id, item.description);
 END LOOP;
 END LOOP;
 CLOSE c1;
END;

{
 ResultSet rs = null;
 Statement stmt = conn.createStatement();

l_hotel_id = 1;
while (l_hotel_id <= 1000)
{

 rs = stmt.executeQuery(“select description from
hotel_desc where hotel_id =” + l_hotel_id);
 while (rs.next())
 {…}

}
}

…
IF weekday(this_date) == 0 THEN
 Price = Sunday_price;
…
ELSIF weekday(this_date) == 1 THEN
 Price = Monday_price;
…
END IF;

{
 ResultSet rs = null;
 Statement stmt = conn.createStatement();
 rs = stmt.executeQuery(“select description from
hotel_desc where hotel_id between 1 and 1000”);
 while (rs.next())
 {…

}
}

Figure 5. Process data using IF statements to insert the price
into a table DatePrice for a particular date “this_date”. (We

omit constraints on hotel and room_type for the sake of
exposition.)

Figure 2. An equivalent single insert-select statement that is
20 times faster.

INSERT INTO drs_sku(id, description)
SELET sku_id, description
FROM sku_words, hotel_desc
WHERE sku_words.hotel_id = hotel_desc. hotel_id
 AND sku_words.room_type_id = hotel_desc.room_type_id;

Figure 4. Single SQL statement that implements the same
functionality.

Figure 3. Execute an SQL statement many times in a Java
loop.

3

But even this improvement would require 7 update statements,
one for each day of the week. So an even better way would be to
have a table of prices S(hotel, room_type, dayofweek, price) with
7 items for every (hotel, room_type) pair and then do a join:

These examples of poor performance in the initial design show
the tendency of programmers to do record-at-a-time programming
as opposed to set-at-a-time programming. This is compounded by
the use of stored procedures, because a subprogram A may loop
on records and call a subprogram B for each record. B may do
some joins and then again call subprograms for each record
produced. Tools like the Oracle Tuning Advisor or CodeXpert
don’t look for such problems.

These problems may appear to be a symptom of what Dave
Maier famously called the "impedance mismatch" between the
record-at-a-time C-style language and the bulk database
language. But the deeper problem is that application
programmers perversely embrace the impedance mismatch by
treating the database as a giant record store. Programmers are
trained (in school, alas) to write programs on small amounts of

data. As a result, they reach the workplace and test their program
on 100 record databases. With such small databases, inserting
records one at a time works blindingly fast. They are then
surprised when it takes hours to insert a million records.

4). Denormalizing tables for convenience of query performance
at horrendous costs to updates

This is a schema rather than code delinquent design pattern.
From our tuning experience, we have noticed that delinquent
designs occur together – denormalization, record-at-a-time
processing, poor use of indexes and excessive use of subqueries
happen in close proximity to one another.

Code copying causes delinquent design patterns to proliferate
across an application. The tuner normally doesn't have time to
correct every problem. For this reason, it is essential to know
which procedures are costing the most time. To do this, a tool
must examine the database statements found in the log and
determine where they come from. The goal is to find the
superdelinquents -- delinquent design patterns that take up lots
of time -- and then turn them over to a competent tuner.

AppSleuth both analyzes code and the DBMS’s SQL statement
tracing facility to discover superdelinquents. AppSleuth currently
works only on Oracle PL/SQL. We plan to implement versions
for other popular commercial DBMS’s and other delinquent
design patterns (as found in database tuning books and online
guides) in the future. The basic architecture – perform a global
parse, identify critical paths, and match against the database
trace – will change little.

The rest of this paper contains three sections: the architecture of
AppSleuth, a case study, and a conclusion.

3. COMPONENTS OF APPSLEUTH
AppSleuth parses and analyzes the application source code,
collects useful statistics from the tracing log, detects potential
critical hot spots in them and presents visualized output to a
tuner. AppSleuth has four main parts: (i) a parser which
underlies both (ii) a structure analyzer for the application source
code, and (iii) a log analyzer for trace files. All three components
feed a (iv) visualization output generator. The different
components are shown in Figure 8.

UPDATE DatePrice
SET price = (SELECT price FROM S

 WHERE
 weekday(DatePrice.this_date) = S.dayofweek
 AND DatePrice.hotel = S.hotel

 AND DatePrice.room_type = S.room_type)

UPDATE DatePrice
SET price = Sunday_price
WHERE weekday(this_date) = 0;

Figure 6. The if condition becomes a where clause that can
apply to many rows at a time.

Figure 7. Code after introducing new table. Here we have
included the hotel and room_type constraints, so the full logic

of the query is given.

 AppSleuth
Code Parser

Code Structure Analyzer Trace File Analyzer

Output Generator

Source files

Trace file

Figure 8. Components of AppSleuth. Source files are code. The trace file contains SQL that
hits the database, but does not identify the source of that SQL.

4

1) Brief introduction to PL/SQL

PL/SQL is a full (Turing-Complete) programming language
including procedures, conditionals, loops, exceptions,
overloading, and integrated SQL. In order to do a global analysis
of performance issues, AppSleuth parses the code and identifies
delinquent design patterns in semantic actions. Because these
patterns include loop and subroutine calls, the parser has to
detect blocks, functions, three kinds of subprograms, and four
kinds of loops (basic, for, while, and cursor).

Here are two examples of loop constructs:

2) Inputs to AppSleuth.

AppSleuth takes one or more source code files as inputs and
locates delinquent design patterns as well as the intra- and inter-

file call graph. For example, in our running travel application
case study, AppSleuth reads in all the source code files, analyzes
the structure in each file and finds the inter-file calling
relationships between them. After viewing the inter-file call
graph, the tuner can zoom into one specific file to look at its
internal structures and intra-file call graph.

A second input is the trace file holding the SQL statements that
hit the DBMS, for example, the Oracle SQL trace files. Because
some SQL that hits the database comes from programming
language (e.g. Java, Matlab) files, problems may arise that have
nothing to do with PL/SQL. AppSleuth finds the source of
problems by comparing the database trace against programming
language files that issue SQL statements as well as stored
procedures. The parser also records execution times to see which
programming language source code files and stored subprograms
require special attention.

3) Output of AppSleuth.

The output of AppSleuth presents a global picture of database
problems by showing a call graph with critical paths highlighted.

3.1 AppSleuth Analysis
The LALR parser scans each file and analyzes its structure to
detect loops and subroutine calls as well as more local
performance-related features such as the number of SQL
statements in subprograms, the variables and arguments which
are declared but never referenced in the source code, and the
number of tables in SQL statements. The output generator
produces a call graph with thin lines for calls from the top level
of the calling procedure to the called procedure and thick lines if
the calling procedure makes the call from within a loop.

 Figure10. Example of AppSleuth's inter-file call edges.

3.1.1 Finding loop structures
Inside loop statements there is much information worth
analyzing. For example, SQL statements within cursor loops are
a delinquent design pattern. Replacing them by a single SQL
statement might help as we saw in section 2.

3.1.2 Finding subprogram calls
AppSleuth must determine which subprogram is being called in
the source code based on the name of the subprogram and the
calling parameters. Because PL/SQL allows overloading of
nested subprogram and packaged subprogram names, AppSleuth

standalone stored subprogram X (PL/SQL block included)

Statement (loop)

Plsql blocks Statements

Nested
subprogram
definitions

stored subprog Y stored subprog Z

The thick edge indicates
Z is called from within
a loop statement in X

The thin edge indicates
Y is called from the
top level of X

for_loop_statement ::= [<<label_name>>]
 FOR index_name IN [REVERSE] lower_bound ..
upper_bound

 LOOP
Statements

 END LOOP [label_name] ‘;’

cursor_for_loop_statement ::= [<<label_name>>]
 FOR record_name IN (cursor | ‘(‘select_statement ‘)’)

LOOP
Statements

END LOOP [label_name] ‘;’

Figure 9. Syntax for basic and cursor for loops statements in
PL/SQL.

5

examines all subprogram overloading mechanisms as well as
forward subprogram declaration mechanisms to disambiguate
subroutine calls having the same name.
When some code block X calls Y several times, the graph
represents the “most pessimistic” call, i.e. the one from the most
deeply nested loop. That pessimistic call is likely to reveal a
critical path.

3.2 Trace File Analyzer
SQL Trace files tell which SQL statements hit the database,
when they begin and other information for the statements. These
SQL statements can come from stored procedures or
programming language (e.g. Java) code. AppSleuth links those
SQL statements back to the source code files as follows: When
parsing the source code files, AppSleuth collects the static SQL
statements of a procedure into a “footprint”. Because some of
these SQL statements appear inside a conditional or inside a
looping construct, they may appear in the trace zero, one or more
times. AppSleuth parses the trace file and determines which
standalone stored subprogram left footprints in the trace file. If
more than one subprogram contains the same SQL statement s,
then neighboring SQL statements in the trace may help to
disambiguate the source of s. For example, if s1 could come from
subprograms P1 or P2 and s2 could come from P2 or P3, then if
the trace shows s1 and s2 in close proximity, they probably come
from an invocation of subprogram P2. The eventual goal is to
assign a time duration to each subprogram in PL/SQL or in a
programming language.

4. TRAVEL IS US: a sanitized case study
This section presents a case study of global tuning at the
application level. The application is a web-based travel agency
whose database consists of 2000 hotels, each having between one
and fifteen room types. A room type could be “double room with
sea view”, “suite with balcony”, etc. There are approximately
1500 different room types for all the hotels. Each hotel for each
room type may charge different amounts depending on the day of
the week (or the season, though season and vacation periods are
processed separately). A customer can make a reservation for a
certain number of rooms of one or more certain room types in one
or more hotels for a period of time. So a certain room type in a
certain hotel on a given date forms a sku.

In the application, every room type in every hotel has a literal
description in English (the base language). The descriptions must
be translated into 10 other languages.

This excerpted part from the application deals with translating
the descriptions for designated languages for each sku.

4.1 Schema Information
Tables involved in this part of the application include
(throughout this example, we present only those columns
relevant to tuning; all indexes are non-clustered):

4.1.1 trans_dict
The table trans_dict (Figure 11) stores the dictionary of
translations for all descriptions in all languages. Here the column
“phrase” stores the description in the language indicated by the
column lang; each description, indicated by desc_id, is stored in

as many rows as there are the languages. So the primary key of
trans_dict is (desc_id, lang).

4.1.2 sku_translated
The table sku_translated (Figure 12) stores all the already
translated descriptions for the skus. This is by far the largest
table in the application. The primary key for this table is (sku_id,
lang).

4.2 Pseudo Code of the Application
In the application’s initial design, each hotel is processed as
follows:

1) skut_manager
Skut_manager receives as an input argument a hotel id and calls
skut_loop to do the translation of all room types for all dates (i.e.
all skus) for this hotel unless the hotel needs to be checked
(Figure 13).

2) skut_loop

Procedure skut_loop just does the translation for each sku
through the procedure skut_tran.

skut_manager(i_hotel_id)
1. Get the status for hotel_id, and from_language,
to_language, for its translation

2. If the hotel’s status is ‘need checking’ then
 skut_check(hotel_id, from_language, to_language);
 Else if the hotel’s status is ‘passed checking’ then

 skut_loop(hotel_id, from_language, to_language);
 End if;

trans_dict (
 desc_id SMALLINT,
 phrase VARCHAR2(255),
 lang CHAR(2)
)

Figure 11. Columns of table trans_dict,
with primary key (desc_id, lang) and an

index on desc_id

sku_translated (
 sku_id SMALLINT,
 translated VARCHAR2(255),
 lang CHAR(2),
 …
)

Figure 12. Columns of sku_translated
with primary key (sku_id, lang)

Figure 13. Pseudo-code for skut_manager.

6

3) Other stored procedures along the way

In skut_tran, the step of performing the translation is
implemented by the stored procedure skut_tran_sku.
Procedure skut_tran_sku, in turn, calls skut_sku_dict to look up
the dictionaries for the designated translation of the sku. After
every translated entry for the sku is returned, the procedure
inserts a row into sku_translated.

4.3 AppSleuth in Application Tuning
The first graph (Figure 15) presents the analysis of structure
(before the analysis of the trace log). The graph shows more than
we’ve discussed, but one can see the flow from skut_mangager
through skut_loop in the description translation path. It turns out
that another path translates “attributes of rooms” though we
don’t analyze this further.

Calls from within loops are represented by bold edges and the
“loop layer” is the depth of the loop in the application.

 For purposes of exposition, we restrict our attention to the core
of the application.

1) Two other working tables
 hotel_desc table:

Table hotel_desc (Figure 16) records descriptions in English for
hotel-room_type pairs. Translating such descriptions from
English to all other languages entails a lookup in the dictionary
table trans_dict and the appending of the translated descriptions
to the table sku_translated. The primary key of hotel_desc is
(hotel_id, room_type_id) pair. There is an index on columns of
(hotel_id, room_type.

 sku_def table:
sku_def table records the mapping from all the generated skus to
hotel – room_type pairs. The primary key is sku_id.

There is an index on the columns of (hotel_id, room_type_id,
sku_id).
2) Stored procedures involved

The application core consists of the following stored procedures:
 manager
 preparehotel

 skuttran
 insertsku.

Stored procedure “manager” receives a set of hotel ids to work
on. For each hotel id, manager calls preparehotel to prepare for
the translation. The pseudo code is like

skut_loop(hotel_id, home_lang, target_lang)
For every sku (hotel, room type, date) of the given hotel

 call skut_tran to do the actual translation for the
current sku of its description in the home language;

End loop;

Figure 14. Pseudo-code for skut_loop.

Figure 16. Columns of the description table for
hotels and room types with primary key

(hotel_id, room_type_id). There is an index on
(hotel_id, room_type_id)

sku_def (
 sku_id SMALLINT,

 hotel_id SMALLINT,
 room_type_id SMALLINT
)

Figure 15. Output of AppSleuth for the original application
code

Figure 17. Columns of the table sku_def, with
primary key sku_id and an index on (hotel_id,

room_type_id, sku_id)

hotel_desc (
 hotel_id SMALLINT,
 room_type_id SMALLINT,

 descriptioninEN VARCHAR2(255)
)

7

Figure 18. Pseudo code for “manager”.

Stored procedure preparehotel finds all the skus belonging to the
hotel, and does translation for each sku:

Stored procedure skuttran does the translation of a sku’s English
description into all the languages:

The last stored procedure insertsku does the insertion into
sku_translated. The pseudo code is

4.3.1 AppSleuth’s output without a trace file
After analysis of the code, AppSleuth outputs the call graph of
Figure 22. We can see the loop structures detected by AppSleuth
which form a critical path.

4.3.2 AppSleuth’s output with a trace file
After doing the translation for a set of 10 hotels with the
execution traced, AppSleuth outputs the result with trace
analysis in Figure 23. The brown edges show the actually
executed calls. The call graph does a best effort guess of the
number of times each stored procedure has executed. The
elapsed time in each node is the total execution time of that

stored subprogram. So the time shown in the top procedure
manager is the total elapsed time for processing translations for
10 hotels (including all subroutines).

The graph of Figure 23 shows that the delinquent design pattern
starting at preparehotel is in fact a superdelinquent, because the
total elapsed time is large and the number of subroutine calls
grows as one descends the tree from 10 calls to 1068 calls to
11748. (We applied both the Oracle SQL Tuning Advisor and
Quest SQL Optimizer, but neither recommended any changes.)

4.3.3 Table design improvement
A tuner looking at this graph would follow the critical path from
preparehotel to skuttran to insertsku and start to take a look at
the queries and the table design. Analysis of the code shows that
translations are done for each sku. The inserted description for
each sku depends on the possible language. There are 11
languages involved in the application, so each of the 1068 skus
in the 10 hotels is inserted into sku_translated table for all the 11
languages (1068 * 11 = 11748) .On the other hand, the call to the
translation routine depends only on hotel_id and room_type.
(This makes sense because the description “double bedroom with
a sea view” does not change over time.) So the denormalization
of sku_translated table is one root cause of the slow performance.
On the other hand, lots of (unshown) application code depends
on the existence of the sku_translated table, so we first consider

insertsku(sku_id, description, language)
 insert into sku_translated(sku_id, description,
language);

manager(a set of hotel ids)

 For each hotelid
 preparehotel(hotelid)
 End for;

preparehotel (i_hotel_id)
 Find all the skus belonging to this i_hotel_id from
sku_def;
 For each sku

 get its description from the hotel_desc table;
 do translation for this description (calling
skuttran(sku_id, descriptioninEN))
 End for;

Figure 19. Pseudo code for preparehotel.

Figure 20. Pseudo code for skuttran.

skuttran(sku_id, descriptioninEN)
 Find the desc_id for this description in trans_dict

 For each of the phrases with the same desc_id
 insert into sku_translated with sku_id, phrase, and
the corresponding language.
 End for;

Figure 23. Output of
AppSleuth for the original
application code as well as

the trace.

Figure 22. Output of
AppSleuth of the original

simplified version.

Figure 21. Pseudo code for insertsku.

8

how to insert into it more efficiently. We do so by taking
descriptions from a table that depends only on hotel_id,
room_type_id. So the first fundamental improvement is to alter
the hotel_desc table by replacing descriptioninEN by desc_id
(having values from the domain of trans_dict.desc_id).

To shorten the length of the critical path of repeatedly called
subprograms, given the i_hotel_id as the input argument, the
insertion into sku_translated table can be implemented using one
insert-select statement in a three table join (Figure 25).

Figure 25. A single insert-select replaces nested loops.

This improvement greatly reduces the numbers of calls and the
elapsed time as shown by Figure 26:

Figure 26. AppSleuth's output after the first improvement.

Specifically, the total elapsed time improves by a factor of nearly
200 (from 21 seconds to 0.11 seconds). The call graph is of
course radically simplified too, potentially enhancing
maintainability.

4.3.4 .Second Improvement of the Application
Reexamining the table schema design of the application, we
noticed that it would be beneficial to reduce the three-table join
to a two-table join by adding the desc_id column to the sku_def
table instead of to the hotel_desc table. Although this
denormalizes the sku_def table, the number of rows remains
unchanged and one table is eliminated from the join. (We tried
Quest SQL Optimizer and Oracle SQL Tuning Advisor to tune
the SQL statement of Figure 25, but neither suggested any
improvement.) Table sku_def becomes (Figure 27):

The insert-select with the two-way join is much simpler:

Figure 28. An even more optimized insert-select statement.

Denormalization improves the query performance by a factor of
nearly 50% as shown in Figure 29.

Figure 29. Output of AppSleuth after the second

improvement.

INSERT INTO sku_translated(sku_id, translated, lang)

SELECT sku_def.sku_id, trans_dict.phrase, trans_dict.lang
FROM sku_def, trans_dict
WHERE sku_def.hotel_id = i_hotel_id

 AND sku_def.desc_id = trans_dict.desc_id

INSERT INTO sku_translated (sku_id, translated, lang)
SELECT sku_def.sku_id, trans_dict.phrase, trans_dict.lang

FROM sku_def, hotel_desc, trans_dict
WHERE sku_def.hotel_id = hotel_desc.hotel_id
 AND sku_def.room_type_id = hotel_desc.room_type_id

 AND hotel_desc.hotel_id = i_hotel_id
 AND hotel_desc.desc_id = trans_dict.desc_id

Figure 27. Optimized table schema for sku_def to
store description ids.

sku_def (
 sku_id SMALLINT,
 hotel_id SMALLINT,

 room_type_id SMALLINT,

 desc_id SMALLINT
)

hotel_desc (

 hotel_id SMALLINT,
 room_type_id SMALLINT,

 desc_id SMALLINT
)

Figure 24. Optimized table schema for
hotel_desc.

9

Overall, these two improvements reduce the overall elapsed
time, by a factor of 300 compared to the original design (from 21
seconds to 0.07s). This occurred without changing indexes, the
buffer management, or hardware. No tool that we know of would
help point the way leading to either improvement.

5. CONCLUSION
AppSleuth parses stored procedure code and the trace log of a
database application to find delinquent design patterns and uses
the timing information from the database trace log to find those
delinquents that are on a critical path, the “superdelinquents”.
AppSleuth displays these in a global flow graph to focus the
attention of a tuner who can often (as in our sanitized travel
application example) improve performance by an order of
magnitude or more. As far as we know, this is the first global
application code analyzer for database tuning ever built.

We have focused on the misuse of loops, because that was the
most challenging-to-detect tuning problem we knew of that has
great practical importance. Detecting other tuning bugs (like
sequences of SQL statements that take a long time) falls out
naturally.

Future work includes generalizing the tool to discover other
delinquents and exploiting the synergy between our tool and
statement-at-a-time and physical design tools. The eventual goal
is to go beyond detection of problems to explicit suggestions for
improvement.

When we do database tuning professionally, we find that we can
sometimes so much improve applications by correcting
delinquent design patterns that we upset our clients. It's
remarkably hard to show an application programmer that his or
her "extremely complicated" application which takes 9 hours in
production can in fact run in under a minute using much less
code. Often such a programmer will ignore the suggestion. With
a tool like AppSleuth, the tuner can deflect the anger to the
software.

6. REFERENCES
[1] Storm, A. J., Garcia-Arellano, C., Lightstone, S., Diao, Y.,

and Surendra, M. Adaptive self-tuning memory in DB2. In
Proceedings of the 32nd International Conference on Very
Large Data Bases (VLDB’06) (Seoul Korea, September 12 –
15, 2006). VLDB Endowment, 1081-1092.

[2] [Baryshnikov, B., Clinciu, C., Cunningham, C.,
Giakoumakis, L., Oks, S., and Stefani, S. Managing query
compilation memory consumption to improve DBMS
throughput. In Proceedings of he 3rd Biennial Conference on
Innovative Database Systems Research (CIDR’07)
(Asilomar, CA, January 7 – 10, 2007). www.crdrdb.org,
2007, 275 – 280.

[3] Dageville, B., and Zait, M. SQL memory management in
Oracle 9i. In Proceedings of the 28nd International
Conference on Very Large Data Bases (VLDB’02) (Hong
Kong China, August 20 – 23, 2002). VLDB Endowment,
962- 973.

[4] Microsoft Corporation. SQL Server 2005 books online:
Dynamic memory management. SQL Server product

documentation. http://msdn.microsoft.com/en-
us/library/ms178145(SQL.90).aspx, September 2007.

[5] Larson, P., Graefe, G., Memory management during run
generation in external sorting. In Proceedings of the 1998
ACM SIGMOD International Conference on Management of
Data (SIGMOD’98) (Seattle, Washington, June 2 – 4,
1998). ACM Press, New York, NY, 1998, 472 – 483.

[6] Weikum, G., Hasse, C., MoenKeberg, A., and Zabback, P.
The COMFORT automatic tuning project. Invited Project
Review. Inf. Syst., 19, 5 (Jan. 1994), 381 – 432.

[7] Zilio, D., Rao, J., Lightstone, S., Lohman, G., Storm, A. J.,
Garcia-Arellano, C., and Fadden, S. DB2 Design Advisor:
integrated automatic physical database design. . In
Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB ‘04) (Toronto, Canada, August 31
– September 3, 2004). Morgan Kaufmann, San Fransisco,
CA, 2004, 1110 – 1121.

[8] Oracle Corporation. Performance tuning using the SQL
Access Advisor. Oracle White Paper, http://otn.oracle.com,
2007.

[9] Agrawal, S., Chaudhuri, S., Koll{\’a}r, L., Mathare, A. P.,
Narasayya, V. R., and Syamala, M. Database Tuning
Advisor for Microsoft SQL Server 2005. In Proceedings of
the 30th International Conference on Very Large Data Bases
(VLDB ‘04) (Toronto, Canada, August 31 – September 3,
2004). Morgan Kaufmann, San Fransisco, CA, 2004, 1110 –
1121.

[10] Bruno, N., and Chaudhuri, S. Automatic physical database
tuning: a relaxation-based approach. In Proceedings of the
2005 ACM SIGMOD International Conference on
Management of Data (SIGMOD’05) (Baltimore, Maryland,
June 13 – 16, 2005). ACM Press, New York, NY, 2005, 227
– 238.

[11] Agrawal, S., Chaudhuri, S., Narasayya, V. R. Automated
selection of materialized views and indexes in SQL
databases. In Proceedings of the 26nd International
Conference on Very Large Data Bases (VLDB’00) (Cairo,
Egypt, September 10 – 14, 2000). Morgan Kaufmann, San
Fransisco, CA, 2000, 496 – 505.

[12] Kornacker, M., Shah, M., and Hellerstein, J. M., Amdb: a
design tool for access methods. IEEE Data Engineering
Bulletin, 26, 2 (Jun. 2003), 3 – 11.

[13] Aboulnaga, A., Gebaly, K. EI., Robustness in automatic
physical design. In Proceedings of the 11th International
Conference on Extending Database Technology (EDBT’08)
(Nantes, France, March 25 -29, 2008). ACM Press, New
York, NY, 2008, 145 – 156.

[14] Papadomanolakis, S., Dash, D., Ailamaki, A., Efficient use
of the query optimizer for automated physical design. . In
Proceedings of the 33th International Conference on Very
Large Data Bases (VLDB ‘07) (University of Vienna,
Austria, September 23 – 27, 2007). ACM Press, New York,
NY, 2008, 1093 – 1104.

[15] Babu, S., Bizarro, P., DeWitt, D., Proactive re-optimization.
In Proceedings of the 2005 ACM SIGMOD International

10

Conference on Management of Data (SIGMOD’05)
(Baltimore, Maryland, June 13 – 16, 2005). ACM Press,
New York, NY, 107 – 118.

[16] Stillger, M., Lohman, G. M., Markl, V., Kandil, M., LEO:
DB2’s LEarning Optimizer. In Proceedings of the 27th
International Conference on Very Large Data Bases (VLDB
‘01) (Roma, Italy, September 11 – 14, 2001) Morgan
Kaufmann, San Fransisco, CA, 2001, 19 – 28.

[17] Raman, V., Markl, V., Simmen, D., Lohman, G., and
Pirahesh, H., Progressive optimization in action. . In
Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB ‘04) (Toronto, Canada, August 31
– September 3, 2004). Morgan Kaufmann, San Fransisco,
CA, 2004, 1337 – 1340.

[18] Ross, K. A., Cieslewicz, J., Rao, J., and Zhou J.,
Architecture sensitive database design: examples from
Columbia group. IEEE Data Engineering Bulletin, 28, 2
(Jun. 2005), 5 – 10.

[19] Dageville, B., Das, D., Dias, K., Yagoub, K., Zait, M.,
Ziauddin, M. Automatic SQL tuning in Oracle 10g. In
Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB ‘04) (Toronto, Canada, August 31
– September 3, 2004). Morgan Kaufmann, San Fransisco,
CA, 2004, 1110 – 1121.

[20] Oracle Corporation. The self-managing database: automatic
performance diagnosis. Oracle White Paper,
http://otn.oracle.com, 2007.

[21] Dias, K., Ramacher, M., Shaft, U., Ventakaramani, V., and
Wood, G., Automatic performance diagnosis and tuning in

Oracle. In Proceedings of he 2nd Biennial Conference on
Innovative Database Systems Research (CIDR’05)
(Asilomar, CA, January 4 – 7, 2005). www.crdrdb.org,
2005, 84 – 94.

[22] Garcia-Arellano, C. M., Lightstone, S., Lohman, G., Markl,
V., Storm, A., Autonomic features of the IBM DB2
Universal Database for Linux, UNIX, and Windows. IEEE
Transactions on Systems, Man, and Cybernetics special
issue on Engineering Autonomic Systems, 36, 3 (May 2006),
365 – 376.

[23] Microsoft Corporation. SQL Server 2005 books online:
Automating administrative tasks. SQL Server product
documentation. http://msdn.microsoft.com/en-
us/library/ms187061(SQL.90).aspx, September 2007.

[24] Quest Software. Toad: SQL Tuning Software for Database
Development & Administration.
http://www.quest.com/toad/, 2008.

[25] Shasha, D., and Bonnet, P. Database Tuning: principles,
experiments and troubleshooting techniques. Morgan
Kaufmann, San Fransisco, CA, 2002.

[26] RYU, I. K., and Thomasian, A., Analysis of database
performance with dynamic locking. J. ACM 37, 3 (Jul.
1990a), 491 – 523. [Dennis: Are the following two for
transaction tuning?]

[27] Tay, Y. C., Issues in modeling locking performance. In
Stochastic Analysis of Computer and communication
Systems, H. Takagi, Ed., North-Holland, New York, 631 –
658.

