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ABSTRACT 
Excellent work [1]][2][3][4][5][6] has shown that memory 
management and transaction concurrency levels can often be 
tuned automatically by the database management system. Other 
excellent work [7]][8][9][10][11][12][13][14] has shown how to 
use the optimizer to do automatic physical design. Our tuning 
experience across various industries (finance, gaming, data 
warehouses, and travel) has shown that enormous additional 
tuning benefits (sometimes amounting to two orders of 
magnitude) can come from reengineering application code and 
table design. The question is: can a tool help in this effort? We 
believe so. We present a tool called AppSleuth that parses 
application code and the tracing log for a popular database 
management system in order to lead a competent tuner to the hot 
spots in an application. Specifically, this paper discusses 
representative application "delinquent design patterns", an 
application code parser to find them, a log parser to identify the 
patterns that are critical, and a display to give a global view of 
the issue. We present an extended sanitized example from a 
travel application to show the results of the tool at different 
stages of a tuning engagement. This is the first tool of its kind 
that we know of. 

Keywords 
Database tuning, application-level optimization, performance 
tool 

1. INTRODUCTION 
Database administrators can call on a variety of tools to help with 
physical configuration [7][8][9][10][11][12][13][14], system 
monitoring and maintenance [20][21][22][23] . 

Current automatic physical tuning tools have become 
sophisticated. Given a representative workload of SQL 

statements; they find the best physical design for the workload. 
They do this based on what-if analyses using a cost-based query 
optimizer. Beyond that effort in automatic physical design, 
Oracle’s SQL Tuning advisor [19] can collect statistics, correct 
system parameters, and recommend changes to SQL statements.  
(In the running example of this paper, the Tuning advisor found 
high load SQL statements and identified bad query features like 
Cartesian products.) 

Self-tuning memory management in database systems has also 
gained much attention. [1] proposes adaptive memory allocation 
in DB2 based on monitoring the characteristics of the workload 
during run time. Other commercial products also have 
implemented self-tuning memory management facilities to 
improve the performance of the database systems [3][4]. 

Quest Software's TOAD[24] is a commercial tool that offers 
help at the application programming level (see 
http://www.orafaq.com/node/846 for a tutorial explanation). 
Primarily, it consists of software engineering advice of the form 
"make your variable names self-describing" and encouragement 
to reduce code complexity as measured by metrics such as 
McCabe's cyclomatic complexity (which measures the number of 
independent paths through program code -- the fewer the better). 

Within TOAD, a special module called CodeXpert offers 
performance tuning help. CodeXpert allows the user to invoke a 
pre-defined set of rules or to create new ones. The rules pertain 
to single SQL statements. An example would be: find all SQL 
statements that join more than four tables. A more sophisticated 
example is to find queries that have insufficient index support. 
To identify the latter, codeXpert runs the queries through the 
Explain Plan facility. CodeXpert then simulates the addition of 
possibly useful indexes and reruns Explain Plan.  

Whereas we applaud the general use of tools that either 
suggest indexes or flag complex SQL statements, many design 
patterns that cause the greatest problems span multiple 
statements, sometimes even multiple subprograms. That is the 
target of AppSleuth.  

2. DELINQUENT DESIGN PATTERNS 
Even though hardware has become vastly faster over the last 
decades, database tuning continues to be necessary. The accepted 
reason for this is that databases grow in size as disk capacities 
increase. The problem with this explanation is that indexes 
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should have mitigated this effect enough so data access time 
would grow only with the log of the data size, not linearly. We 
think the deeper reason is that application programmers mistreat 
their databases. Typical application delinquent design patterns 
include:  

1). Insert records into a table one at a time, crossing protection 
boundaries and flushing the instruction cache each time. For 
example, the following code snippet in Oracle PL/SQL runs for 
20 minutes with appropriate indexes on the table sku_word 
(several hours without indexes) having about 3,400,000 rows and 
on the table hotel_desc with 220,000 rows. (A sku is a particular 
instance of a product type. In our running example, it’s a 
particular room type in a hotel on a particular night)  

 
Figure 1. Delinquent design patterns for insert. 

By contrast, all the work can be done in one insert-select 
statement in about one minute on the same hardware and with 
the same indexes (a factor of 20 improvement). 

2) Fetching one record at a time from within, say, a Java loop as 
opposed to selecting many records into an array. For example, 
the following java code queries the descriptions for the first 1000 
hotels.  

 

By contrast, the following code issues one query to the database 
and fetches the result into a collection data type. 

 

3). Processing one record at a time within the stored procedures 
of a database management system, testing for conditions within 
that record using if statements. For example, suppose that for 
each hotel and each room_type, the price varies based on the day 
of the week. We may have code like the following using if 
statements:  

A better way would be to translate the if condition into one or 
more where clauses to update many records at a time:  

 

DECLARE 
l_sku_id   INTEGER; 
l_hotel_id    VARCHAR2(10); 
l_room_type_id INTEGER; 
l_desc    hotel_desc.description%TYPE; 
CURSOR c1 IS SELECT sku_id, hotel_id, room_type_id 
FROM sku_word; 
BEGIN 

OPEN c1; 
 LOOP 
  FETCH c1 INTO l_sku_id, l_hotel_id, 
l_room_type_id; 
  EXIT WHEN c1%NOTFOUND; 
  FOR item IN (SELECT description FROM 
hotel_desc WHERE hotel_id = l_hotel_id AND 
room_type_id = l_room_type_id) 
  LOOP 
   INSERT INTO drs_sku(id, description) 
   VALUES (l_sku_id, item.description); 
  END LOOP; 
 END LOOP; 
 CLOSE c1; 
END; 

{ 
 ResultSet rs = null; 
 Statement stmt = conn.createStatement(); 

l_hotel_id = 1; 
while (l_hotel_id <= 1000) 
{ 

  rs = stmt.executeQuery(“select description from 
hotel_desc where hotel_id =” + l_hotel_id); 
  while (rs.next()) 
  {…} 

} 
} 

… 
IF weekday(this_date) == 0 THEN 
 Price = Sunday_price; 
… 
ELSIF weekday(this_date) == 1 THEN 
 Price = Monday_price; 
… 
END IF; 

{ 
 ResultSet rs = null; 
 Statement stmt = conn.createStatement(); 
 rs = stmt.executeQuery(“select description from    
hotel_desc where hotel_id between 1 and 1000”); 
 while (rs.next()) 
 {… 

} 
} 

Figure 5. Process data using IF statements to insert the price 
into a table DatePrice for a particular date “this_date”.  (We 

omit constraints on hotel and room_type for the sake of 
exposition.)  

Figure 2. An equivalent single insert-select statement that is 
20 times faster. 

INSERT INTO drs_sku(id, description) 
SELET sku_id, description 
FROM sku_words, hotel_desc 
WHERE sku_words.hotel_id = hotel_desc. hotel_id  
 AND sku_words.room_type_id = hotel_desc.room_type_id; 

Figure 4. Single SQL statement that implements the same 
functionality. 

Figure 3. Execute an SQL statement many times in a Java 
loop. 
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But even this improvement would require 7 update statements, 
one for each day of the week. So an even better way would be to 
have a table of prices S(hotel, room_type, dayofweek, price) with 
7 items for every (hotel, room_type) pair and then do a join: 

 
These examples of poor performance in the initial design show 
the tendency of programmers to do record-at-a-time programming 
as opposed to set-at-a-time programming. This is compounded by 
the use of stored procedures, because a subprogram A may loop 
on records and call a subprogram B for each record. B may do 
some joins and then again call subprograms for each record 
produced. Tools like the Oracle Tuning Advisor or CodeXpert 
don’t look for such problems. 

These problems may appear to be a symptom of what Dave 
Maier famously called the "impedance mismatch" between the 
record-at-a-time C-style language and the bulk database 
language. But the deeper problem is that application 
programmers perversely embrace the impedance mismatch by 
treating the database as a giant record store. Programmers are 
trained (in school, alas) to write programs on small amounts of 

data. As a result, they reach the workplace and test their program 
on 100 record databases. With such small databases, inserting 
records one at a time works blindingly fast. They are then 
surprised when it takes hours to insert a million records. 

4). Denormalizing tables for convenience of query performance 
at horrendous costs to updates  

This is a schema rather than code delinquent design pattern. 
From our tuning experience, we have noticed that delinquent 
designs occur together – denormalization, record-at-a-time 
processing, poor use of indexes and excessive use of subqueries 
happen in close proximity to one another. 

Code copying causes delinquent design patterns to proliferate 
across an application. The tuner normally doesn't have time to 
correct every problem. For this reason, it is essential to know 
which procedures are costing the most time. To do this, a tool 
must examine the database statements found in the log and 
determine where they come from. The goal is to find the 
superdelinquents -- delinquent design patterns that take up lots 
of time -- and then turn them over to a competent tuner. 

AppSleuth both analyzes code and the DBMS’s SQL statement 
tracing facility to discover superdelinquents. AppSleuth currently 
works only on Oracle PL/SQL. We plan to implement versions 
for other popular commercial DBMS’s and other delinquent 
design patterns (as found in database tuning books and online 
guides) in the future. The basic architecture – perform a global 
parse, identify critical paths, and match against the database 
trace – will change little. 

The rest of this paper contains three sections:  the architecture of 
AppSleuth, a case study, and a conclusion. 

3. COMPONENTS OF APPSLEUTH 
AppSleuth parses and analyzes the application source code, 
collects useful statistics from the tracing log, detects potential 
critical hot spots in them and presents visualized output to a 
tuner. AppSleuth has four main parts: (i) a parser which 
underlies both (ii) a structure analyzer for the application source 
code, and (iii) a log analyzer for trace files. All three components 
feed a (iv) visualization output generator. The different 
components are shown in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

UPDATE DatePrice 
SET price = (SELECT price FROM S 

          WHERE 
     weekday(DatePrice.this_date) = S.dayofweek 
          AND  DatePrice.hotel = S.hotel 

          AND DatePrice.room_type = S.room_type) 

UPDATE DatePrice  
SET price = Sunday_price  
WHERE weekday(this_date) = 0; 

Figure 6. The if condition becomes a where clause that can 
apply to many rows at a time. 

Figure 7. Code after introducing new table. Here we have 
included the hotel and room_type constraints, so the full logic 

of the query is given. 

 
 

 
 
 

 
 
 

          AppSleuth 
Code Parser 

Code Structure Analyzer Trace File Analyzer 

Output Generator 

Source files 

Trace file 

Figure 8. Components of AppSleuth. Source files are code. The trace file contains SQL that 
hits the database, but does not identify the source of that SQL. 
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1) Brief introduction to PL/SQL 

PL/SQL is a full (Turing-Complete) programming language 
including procedures, conditionals, loops, exceptions, 
overloading, and integrated SQL. In order to do a global analysis 
of performance issues, AppSleuth parses the code and identifies 
delinquent design patterns in semantic actions. Because these 
patterns include loop and subroutine calls, the parser has to 
detect blocks, functions, three kinds of subprograms, and four 
kinds of loops (basic, for, while, and cursor). 

Here are two examples of loop constructs:  

2) Inputs to AppSleuth. 

AppSleuth takes one or more source code files as inputs and 
locates delinquent design patterns as well as the intra- and inter-

file call graph. For example, in our running travel application 
case study, AppSleuth reads in all the source code files, analyzes 
the structure in each file and finds the inter-file calling 
relationships between them. After viewing the inter-file call 
graph, the tuner can zoom into one specific file to look at its 
internal structures and intra-file call graph. 

A second input is the trace file holding the SQL statements that 
hit the DBMS, for example, the Oracle SQL trace files. Because 
some SQL that hits the database comes from programming 
language (e.g. Java, Matlab) files, problems may arise that have 
nothing to do with PL/SQL. AppSleuth finds the source of 
problems by comparing the database trace against programming 
language files that issue SQL statements as well as stored 
procedures. The parser also records execution times to see which 
programming language source code files and stored subprograms 
require special attention.  

3) Output of AppSleuth. 

The output of AppSleuth presents a global picture of database 
problems by showing a call graph with critical paths highlighted. 

3.1 AppSleuth Analysis 
The LALR parser scans each file and analyzes its structure to 
detect loops and subroutine calls as well as more local 
performance-related features such as the number of SQL 
statements in subprograms, the variables and arguments which 
are declared but never referenced in the source code, and the 
number of tables in SQL statements. The output generator 
produces a call graph with thin lines for calls from the top level 
of the calling procedure to the called procedure and thick lines if 
the calling procedure makes the call from within a loop. 
  

 
                Figure10. Example of AppSleuth's inter-file call edges. 

3.1.1 Finding loop structures 
Inside loop statements there is much information worth 
analyzing. For example, SQL statements within cursor loops are 
a delinquent design pattern. Replacing them by a single SQL 
statement might help as we saw in section 2.  

3.1.2 Finding subprogram calls 
AppSleuth must determine which subprogram is being called in 
the source code based on the name of the subprogram and the 
calling parameters. Because PL/SQL allows overloading of 
nested subprogram and packaged subprogram names, AppSleuth 

standalone stored subprogram X (PL/SQL block included)  

Statement (loop) 

Plsql blocks Statements  

Nested 
subprogram 
definitions 

stored subprog Y stored subprog Z 

The thick edge indicates 
Z is called from within 
a loop statement in X 

The thin edge indicates 
Y is called from the 
top level of X 

for_loop_statement ::= [<<label_name>>]  
         FOR index_name IN [REVERSE] lower_bound .. 
upper_bound 

 LOOP 
Statements 

 END LOOP [label_name] ‘;’ 

cursor_for_loop_statement ::= [<<label_name>>]  
       FOR record_name IN (cursor | ‘(‘select_statement ‘)’ ) 

LOOP 
Statements 

END LOOP [label_name] ‘;’ 

Figure 9. Syntax for basic and cursor for loops statements in 
PL/SQL. 
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examines all subprogram overloading mechanisms as well as 
forward subprogram declaration mechanisms to disambiguate 
subroutine calls having the same name. 
When some code block X calls Y several times, the graph 
represents the “most pessimistic” call, i.e. the one from the most 
deeply nested loop. That pessimistic call is likely to reveal a 
critical path.  

3.2 Trace File Analyzer 
SQL Trace files tell which SQL statements hit the database, 
when they begin and other information for the statements. These 
SQL statements can come from stored procedures or 
programming language (e.g. Java) code. AppSleuth links those 
SQL statements back to the source code files as follows: When 
parsing the source code files, AppSleuth collects the static SQL 
statements of a procedure into a “footprint”. Because some of 
these SQL statements appear inside a conditional or inside a 
looping construct, they may appear in the trace zero, one or more 
times. AppSleuth parses the trace file and determines which 
standalone stored subprogram left footprints in the trace file. If 
more than one subprogram contains the same SQL statement s, 
then neighboring SQL statements in the trace may help to 
disambiguate the source of s. For example, if s1 could come from 
subprograms P1 or P2 and s2 could come from P2 or P3, then if 
the trace shows s1 and s2 in close proximity, they probably come 
from an invocation of subprogram P2. The eventual goal is to 
assign a time duration to each subprogram in PL/SQL or in a 
programming language. 

4. TRAVEL IS US: a sanitized case study 
This section presents a case study of global tuning at the 
application level. The application is a web-based travel agency 
whose database consists of 2000 hotels, each having between one 
and fifteen room types. A room type could be “double room with 
sea view”, “suite with balcony”, etc. There are approximately 
1500 different room types for all the hotels. Each hotel for each 
room type may charge different amounts depending on the day of 
the week (or the season, though season and vacation periods are 
processed separately). A customer can make a reservation for a 
certain number of rooms of one or more certain room types in one 
or more hotels for a period of time. So a certain room type in a 
certain hotel on a given date forms a sku. 

In the application, every room type in every hotel has a literal 
description in English (the base language). The descriptions must 
be translated into 10 other languages.  

This excerpted part from the application deals with translating 
the descriptions for designated languages for each sku.  

4.1 Schema Information 
Tables involved in this part of the application include 
(throughout this example, we present only those columns 
relevant to tuning; all indexes are non-clustered): 

4.1.1 trans_dict 
The table trans_dict (Figure 11) stores the dictionary of 
translations for all descriptions in all languages. Here the column 
“phrase” stores the description in the language indicated by the 
column lang; each description, indicated by desc_id, is stored in 

as many rows as there are the languages. So the primary key of 
trans_dict is (desc_id, lang).  

 

4.1.2 sku_translated 
The table sku_translated (Figure 12) stores all the already 
translated descriptions for the skus. This is by far the largest 
table in the application. The primary key for this table is (sku_id, 
lang). 

 

4.2 Pseudo Code of the Application 
In the application’s initial design, each hotel is processed as 
follows: 

1) skut_manager 
Skut_manager receives as an input argument a hotel id and calls 
skut_loop to do the translation of all room types for all dates (i.e. 
all skus) for this hotel unless the hotel needs to be checked 
(Figure 13).  

 
 
2) skut_loop 

Procedure skut_loop just does the translation for each sku 
through the procedure skut_tran.  

skut_manager(i_hotel_id) 
1. Get the status for hotel_id, and from_language, 
to_language, for its translation 

2. If the hotel’s status is ‘need checking’ then 
 skut_check(hotel_id, from_language, to_language); 
    Else if the hotel’s status is ‘passed checking’ then 

 skut_loop(hotel_id, from_language, to_language); 
    End if; 

trans_dict ( 
 desc_id    SMALLINT, 
 phrase    VARCHAR2(255), 
 lang    CHAR(2) 
) 

Figure 11. Columns of table trans_dict, 
with primary key (desc_id, lang) and an 

index on desc_id 

sku_translated ( 
 sku_id   SMALLINT, 
 translated  VARCHAR2(255), 
 lang   CHAR(2), 
 … 
) 

Figure 12. Columns of sku_translated 
with primary key (sku_id, lang)  

Figure 13. Pseudo-code for skut_manager. 



 

6 

 

3) Other stored procedures along the way 

In skut_tran, the step of performing the translation is 
implemented by the stored procedure skut_tran_sku.  
Procedure skut_tran_sku, in turn, calls skut_sku_dict to look up 
the dictionaries for the designated translation of the sku. After 
every translated entry for the sku is returned, the procedure 
inserts a row into sku_translated.  

4.3 AppSleuth in Application Tuning 
The first graph (Figure 15) presents the analysis of structure 
(before the analysis of the trace log). The graph shows more than 
we’ve discussed, but one can see the flow from skut_mangager 
through skut_loop in the description translation path.  It turns out 
that another path translates “attributes of rooms” though we 
don’t analyze this further. 

Calls from within loops are represented by bold edges and the 
“loop layer” is the depth of the loop in the application. 

 For purposes of exposition, we restrict our attention to the core 
of the application.  

1) Two other working tables 
 hotel_desc table: 

 
Table hotel_desc (Figure 16) records descriptions in English for 
hotel-room_type pairs. Translating such descriptions from 
English to all other languages entails a lookup in the dictionary 
table trans_dict and the appending of the translated descriptions 
to the table sku_translated. The primary key of hotel_desc is 
(hotel_id, room_type_id) pair. There is an index on columns of 
(hotel_id, room_type. 

 sku_def table: 
sku_def table records the mapping from all the generated skus to 
hotel – room_type pairs. The primary key is sku_id. 

 
There is an index on the columns of (hotel_id, room_type_id, 
sku_id). 
2) Stored procedures involved 

The application core consists of the following stored procedures: 
 manager 
 preparehotel 

 skuttran 
 insertsku. 

Stored procedure “manager” receives a set of hotel ids to work 
on.  For each hotel id, manager calls preparehotel to prepare for 
the translation.  The pseudo code is like  

skut_loop(hotel_id, home_lang, target_lang) 
For every sku (hotel, room type, date) of the given hotel 

  call skut_tran to do the actual translation for the 
current sku of its description in the home language; 

End loop; 

Figure 14. Pseudo-code for skut_loop. 

Figure 16. Columns of the description table for 
hotels and room types with primary key 

(hotel_id, room_type_id). There is an index on 
(hotel_id, room_type_id) 

sku_def ( 
  sku_id   SMALLINT, 

  hotel_id  SMALLINT, 
  room_type_id SMALLINT 
 ) 

Figure 15. Output of AppSleuth for the original application 
code 

Figure 17. Columns of the table sku_def, with 
primary key sku_id and an index on (hotel_id, 

room_type_id, sku_id) 

hotel_desc ( 
  hotel_id   SMALLINT, 
  room_type_id  SMALLINT, 

  descriptioninEN VARCHAR2(255) 
 ) 
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Figure 18. Pseudo code for “manager”. 

Stored procedure preparehotel finds all the skus belonging to the 
hotel, and does translation for each sku: 

Stored procedure skuttran does the translation of a sku’s English 
description into all the languages: 

The last stored procedure insertsku does the insertion into 
sku_translated. The pseudo code is  

 
 
 

4.3.1 AppSleuth’s output without a trace file 
After analysis of the code, AppSleuth outputs the call graph of 
Figure 22. We can see the loop structures detected by AppSleuth 
which form a critical path.  

4.3.2 AppSleuth’s output with a trace file 
After doing the translation for a set of 10 hotels with the 
execution traced, AppSleuth outputs the result with trace 
analysis in Figure 23. The brown edges show the actually 
executed calls. The call graph does a best effort guess of the 
number of times each stored procedure has executed. The 
elapsed time in each node is the total execution time of that 

stored subprogram. So the time shown in the top procedure 
manager is the total elapsed time for processing translations for 
10 hotels (including all subroutines). 

The graph of Figure 23 shows that the delinquent design pattern 
starting at preparehotel is in fact a superdelinquent, because the 
total elapsed time is large and the number of subroutine calls 
grows as one descends the tree from 10 calls to 1068 calls to 
11748. (We applied both the Oracle SQL Tuning Advisor and 
Quest SQL Optimizer, but neither recommended any changes.)  

4.3.3 Table design improvement 
A tuner looking at this graph would follow the critical path from 
preparehotel to skuttran to insertsku and start to take a look at 
the queries and the table design. Analysis of the code shows that 
translations are done for each sku. The inserted description for 
each sku depends on the possible language. There are 11 
languages involved in the application, so each of the 1068 skus 
in the 10 hotels is inserted into sku_translated table for all the 11 
languages (1068 * 11 = 11748) .On the other hand, the call to the 
translation routine depends only on hotel_id and room_type. 
(This makes sense because the description “double bedroom with 
a sea view” does not change over time.) So the denormalization 
of sku_translated table is one root cause of the slow performance.  
On the other hand, lots of (unshown) application code depends 
on the existence of the sku_translated table, so we first consider 

insertsku(sku_id, description, language) 
 insert into sku_translated(sku_id, description, 
language); 

manager(a set of hotel ids) 

 For each hotelid 
  preparehotel(hotelid) 
 End for; 

preparehotel (i_hotel_id) 
 Find all the skus belonging to this i_hotel_id from 
sku_def; 
 For each sku 

  get its description from the hotel_desc table; 
  do translation for this description (calling 
skuttran(sku_id, descriptioninEN)) 
 End for; 

Figure 19. Pseudo code for preparehotel. 

Figure 20. Pseudo code for skuttran. 

skuttran(sku_id, descriptioninEN) 
 Find the desc_id for this description in trans_dict 

 For each of the phrases with the same desc_id  
  insert into sku_translated with sku_id, phrase, and 
the corresponding language. 
 End for; 

Figure 23. Output of 
AppSleuth for the original 
application code as well as 

the trace. 

Figure 22. Output of 
AppSleuth of the original 

simplified version. 

Figure 21. Pseudo code for insertsku. 
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how to insert into it more efficiently. We do so by taking 
descriptions from a table that depends only on hotel_id, 
room_type_id. So the first fundamental improvement is to alter 
the hotel_desc table by replacing descriptioninEN by desc_id 
(having values from the domain of trans_dict.desc_id).  

To shorten the length of the critical path of repeatedly called 
subprograms, given the i_hotel_id as the input argument, the 
insertion into sku_translated table can be implemented using one 
insert-select statement in a three table join (Figure 25). 

 
Figure 25. A single insert-select replaces nested loops. 

This improvement greatly reduces the numbers of calls and the 
elapsed time as shown by Figure 26: 

 
Figure 26. AppSleuth's output after the first improvement.  

Specifically, the total elapsed time improves by a factor of nearly 
200 (from 21 seconds to 0.11 seconds). The call graph is of 
course radically simplified too, potentially enhancing 
maintainability. 

4.3.4 .Second Improvement of the Application 
Reexamining the table schema design of the application, we 
noticed that it would be beneficial to reduce the three-table join 
to a two-table join by adding the desc_id column to the sku_def 
table instead of to the hotel_desc table. Although this 
denormalizes the sku_def table, the number of rows remains 
unchanged and one table is eliminated from the join. (We tried 
Quest SQL Optimizer and Oracle SQL Tuning Advisor to tune 
the SQL statement of Figure 25, but neither suggested any 
improvement.) Table sku_def becomes (Figure 27):  

 
The insert-select with the two-way join is much simpler: 

 
Figure 28. An even more optimized insert-select statement. 

Denormalization improves the query performance by a factor of 
nearly 50% as shown in Figure 29. 

 
Figure 29. Output of AppSleuth after the second 

improvement. 

INSERT INTO sku_translated(sku_id, translated, lang) 

SELECT sku_def.sku_id, trans_dict.phrase, trans_dict.lang 
FROM sku_def, trans_dict 
WHERE sku_def.hotel_id = i_hotel_id 

  AND sku_def.desc_id = trans_dict.desc_id 

INSERT INTO sku_translated (sku_id, translated, lang) 
SELECT sku_def.sku_id, trans_dict.phrase, trans_dict.lang 

FROM sku_def, hotel_desc, trans_dict 
WHERE sku_def.hotel_id = hotel_desc.hotel_id 
  AND sku_def.room_type_id = hotel_desc.room_type_id 

  AND hotel_desc.hotel_id = i_hotel_id 
  AND hotel_desc.desc_id = trans_dict.desc_id  

Figure 27. Optimized table schema for sku_def to 
store description ids. 

sku_def ( 
  sku_id   SMALLINT, 
  hotel_id  SMALLINT, 

  room_type_id SMALLINT, 

  desc_id   SMALLINT 
 ) 

hotel_desc ( 

  hotel_id  SMALLINT, 
  room_type_id SMALLINT, 

  desc_id   SMALLINT 
 ) 

Figure 24. Optimized table schema for 
hotel_desc. 
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Overall, these two improvements reduce the overall elapsed 
time, by a factor of 300 compared to the original design (from 21 
seconds to 0.07s). This occurred without changing indexes, the 
buffer management, or hardware. No tool that we know of would 
help point the way leading to either improvement. 

5. CONCLUSION 
AppSleuth parses stored procedure code and the trace log of a 
database application to find delinquent design patterns and uses 
the timing information from the database trace log to find those 
delinquents that are on a critical path, the “superdelinquents”.  
AppSleuth displays these in a global flow graph to focus the 
attention of a tuner who can often (as in our sanitized travel 
application example) improve performance by an order of 
magnitude or more. As far as we know, this is the first global 
application code analyzer for database tuning ever built.  

We have focused on the misuse of loops, because that was the 
most challenging-to-detect tuning problem we knew of that has 
great practical importance. Detecting other tuning bugs (like 
sequences of SQL statements that take a long time) falls out 
naturally. 

Future work includes generalizing the tool to discover other 
delinquents and exploiting the synergy between our tool and 
statement-at-a-time and physical design tools. The eventual goal 
is to go beyond detection of problems to explicit suggestions for 
improvement. 

When we do database tuning professionally, we find that we can 
sometimes so much improve applications by correcting 
delinquent design patterns that we upset our clients. It's 
remarkably hard to show an application programmer that his or 
her "extremely complicated" application which takes 9 hours in 
production can in fact run in under a minute using much less 
code. Often such a programmer will ignore the suggestion. With 
a tool like AppSleuth, the tuner can deflect the anger to the 
software. 
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