Toward Millisecond-Scale Molecular Dynamics Simulations of Proteins

David E. Shaw

D. E. Shaw Research and

Center for Computational Biology and Bioinformatics Columbia University

D. E. Shaw Research

- Independent research lab
 - Computational biochemistry
 - Focus on basic science, with long time horizon
- Central focus: Molecular dynamics simulations
 - Elucidate structural, dynamic behavior of
 - Proteins
 - Other biologically significant molecules
 - Provide tools for development of new drugs

Our Goal

- Single, millisecond-scale MD simulations
 - Protein with ~25K to 50K atoms, including water
- One long trajectory, not many short ones
- Why a millisecond?
 - That's a time scale at which many biologically interesting things start to happen.

Binding of Drugs to their Molecular Targets

Dynamics of Conformational Changes

Interactions Between Proteins

Protein Folding

Image: Istvan Kolossvary & Annabel Todd, D. E. Shaw Research

What Will It Take to Simulate a Millisecond?

- Will require truly massive parallelism
 - Current single processor codes: ~ 1 ns / day
 - Fastest current parallel codes: ~ 100 ns/day
 - Goal will require ~ 10,000 ns / day
- Key to massive parallelism:
 - Avoid interprocessor communication bottlenecks

Illustration of Required Speedup

2 ns simulated time

3.4 days to simulate now on single CPU

Illustration of Required Speedup

2 ns simulated time

3.4 days to simulate now on single CPU

13 seconds at target speed

Our Approach

New architectures

- Designing specialized machine: Anton
- Enormously parallel architecture
- Based on special-purpose ASICs
- Dramatically faster for MD, but less flexible
- Projected completion: end of 2008 (chips working now)
- New algorithms
 - Desmond: Massively parallel MD code
 - Applicable to
 - Conventional clusters (Desmond C)
 - Available without cost to academic users
 - Anton (Desmond A)

... and iterate

$1 \text{ ms} \approx 10^{12} \text{ time steps}$

Molecular Mechanics Force Field

$$E = \sum_{\text{bonds}} k_b (r - r_0)^2 \qquad \text{Stretch} \\ + \sum_{\text{angles}} k_\theta (\theta - \theta_0)^2 \qquad \text{Bend} \qquad \text{Bonded} \\ + \sum_{\text{torsions}} A[1 + \cos(n\tau - \varphi)] \qquad \text{Torsion}$$

$$+\sum_{i}\sum_{j>i}\frac{q_{i}q_{j}}{r_{ij}}$$
Electrostatic
$$+\sum_{i}\sum_{j>i}\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^{6}}$$
Van der Waals
Bonded

Non-bonded calculations account for most of the work

Algorithms: Desmond and the NT Method

Separating Near and Distant Interactions

- Efficient methods known for distant interactions
- What's left is a range-limited *N*-body problem

Meeting on Neutral Territory

Traditional Method

NT Method

Scaling of Traditional vs. NT Method 64 Processors

Scaling of Traditional vs. NT Method 512 Processors

Scaling of Traditional vs. NT Method 4K Processors

Scaling of Traditional vs. NT Method 32K Processors

Architectures: The Anton Machine

Source of Speedup on Anton

- Judicious use of arithmetic specialization
 - Flexibility, programmability only where needed
 - Elsewhere, hardware tailored for speed
 - Tables and parameters, but not programmable
- Carefully choreographed communication
 - Data flows to just where it's needed
 - Almost never need to access off-chip memory

One Anton Segment (512 ASICs)

Anton PC Board

Pairwise Point Interaction Pipeline (32 per chip)

Array of 32 Pairwise Point Interaction Pipelines

Step 1

Step 5

Test Run (GB3) on a Real Anton Chip

Comparative Performance

Platform	Size	ns/day
GROMACS on single processor	1 processor core	~1.0

Platform	Size	ns/day
GROMACS on single processor	1 processor core	~1.0
MDGRAPE-3	12 ASICs	3.3

Platform	Size	ns/day
GROMACS on single processor	1 processor core	~1.0
MDGRAPE-3	12 ASICs	3.3
IBM Blue Matter on Blue Gene/L	512 processor cores	4.8 / 9.5

Platform	Size	ns/day
GROMACS on single processor	1 processor core	~1.0
MDGRAPE-3	12 ASICs	3.3
IBM Blue Matter on Blue Gene/L	512 processor cores	4.8 / 9.5
GROMACS 4 (new parallel implementation)	128 processor cores	~42

Platform	Size	ns/day
GROMACS on single processor	1 processor core	~1.0
MDGRAPE-3	12 ASICs	3.3
IBM Blue Matter on Blue Gene/L	512 processor cores	4.8 / 9.5
GROMACS 4 (new parallel implementation)	128 processor cores	~42
NAMD on cluster (benchmark params)	512 processor cores	77

Platform	Size	ns/day
GROMACS on single processor	1 processor core	~1.0
MDGRAPE-3	12 ASICs	3.3
IBM Blue Matter on Blue Gene/L	512 processor cores	4.8 / 9.5
GROMACS 4 (new parallel implementation)	128 processor cores	~42
NAMD on cluster (benchmark params)	512 processor cores	77
Desmond on cluster (benchmark params)	512 processor cores	132

Platform	Size	ns/day
GROMACS on single processor	1 processor core	~1.0
MDGRAPE-3	12 ASICs	3.3
IBM Blue Matter on Blue Gene/L	512 processor cores	4.8 / 9.5
GROMACS 4 (new parallel implementation)	128 processor cores	~42
NAMD on cluster (benchmark params)	512 processor cores	77
Desmond on cluster (benchmark params)	512 processor cores	132
Desmond on cluster (production params)	512 processor cores	280

Ref: Bowers ... Shaw, Proc. SC06, 2006

Comparative Performance of Anton (Dihydrofolate reductase benchmark; 23,558 atoms)

Platform	Size	ns/day
GROMACS on single processor	1 processor core	~1.0
MDGRAPE-3	12 ASICs	3.3
IBM Blue Matter on Blue Gene/L	512 processor cores	4.8 / 9.5
GROMACS 4 (new parallel implementation)	128 processor cores	~42
NAMD on cluster (benchmark params)	512 processor cores	77
Desmond on cluster (benchmark params)	512 processor cores	132
Desmond on cluster (production params)	512 processor cores	280
Anton (benchmark params)	512 ASICs	4,547

Ref: Shaw, et al., Proc. ISCA07, 2007

Comparative Performance of Anton (Dihydrofolate reductase benchmark; 23,558 atoms)

Platform	Size	ns/day
GROMACS on single processor	1 processor core	~1.0
MDGRAPE-3	12 ASICs	3.3
IBM Blue Matter on Blue Gene/L	512 processor cores	4.8 / 9.5
GROMACS 4 (new parallel implementation)	128 processor cores	~42
NAMD on cluster (benchmark params)	512 processor cores	77
Desmond on cluster (benchmark params)	512 processor cores	132
Desmond on cluster (production params)	512 processor cores	280
Anton (benchmark params)	512 ASICs	4,547
Anton (production params)	512 ASICs	14,115

Ref: Shaw, et al., Proc. ISCA07, 2007

Applications

Mechanism of NhaA Antiporting

Arkin, ..., Shaw, Science 317, 799 (2007)

DFG Flip in Abl Kinase

- Experimental predictions:
 - Effects of pH variations
 - Effects of mutations
- Experimental results consistent with predictions
 - John Kuriyan's lab, Berkeley

Folding of Villin Headpiece

