
RF-Propagation Measurements
and Radio-Channel Modeling and Simulation

Despite recent advances in high-frequency simula-

tion tools based on ray tracing and similar techni-

ques, collection and reduction of large amounts

of experimental channel response data remains

the mainstay of wireless channel modeling. In other scien-

tific fields where collection of experimental data is also

time consuming and expensive, researchers have begun

to establish a tradition of sharing their data through the

establishment of Web-based data repositories and man-

agement systems. This makes it possible for researchers

to pool their data sets to yield more reliable or broadly
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applicable results or to extract additional value from data that may have been col-

lected for other purposes. Moreover, recent developments in Web technologies will

greatly add to the capabilities of such systems in the coming years. Account must

also be taken of the significant differences between channel-response data and data

collected in other scientific fields.

Wireless technologies are expanding at a tremendous rate. New wireless technolo-

gies for vehicle-to-vehicle, vehicle-to-infrastructure, millimeter-wave devices, and other

innovative applications are pushing wireless beyond the traditional realms of cellular,

radio, and satellite communications. A side effect of this brisk expansion is a rapid

increase in the types and numbers of channel models and measurements collected by

industry and the research community, as each new system or application has new uses in

common bands or operates in new, unexplored frequency bands (e.g., 60 GHz) or a new physi-

cal environment (e.g., within a vehicle). This increase in data due to the proliferation of new

devices or applications is not unique to the wireless community. Indeed, the fields of medicine,

biology, power systems, and astronomy, among others, have begun to use novel semantic Web and

cloud-computing approaches to make the experimental data more useful and available [1]–[4]. These

approaches result in the creation of collaborative data repositories and tools that encourage new tech-

nologies and help researchers and practitioners to determine areas of a subject that have not been com-

pletely explored or elucidated. These approaches also result in standardized models that can be easily

transported across platforms, greatly reducing the confusion and facilitating model comparisons by the

research community. By adopting semantic Web- and cloud-computing technologies, the wireless re-

search community will benefit as it develops emerging areas such as vehicle-to-vehicle communications

and yet unimagined use cases. The wireless community should invest in creating an online semantic Web

tool for modeling channels and archiving channel data.

Modeling and Measurement Campaigns—The Need for Improved Data Sharing

Tables 1–3 illustrate the recent breadth of propagation measurement, modeling, and simulation efforts

for wireless technologies in addition to the wide range of software tools available to study wireless

channels. Recent efforts to understand vehicle-to-vehicle channels, vehicle-to-infrastructure channels,

millimeter-wave channels, and channels in novel environments such as cruise ships, airplanes, and pub-

lic safety/emergency areas underscore the growth in wireless beyond traditional cellular radio services.

A broad range of tools, including simulations of impulse responses for channels with impulse noise (SIR-

CIM), WinProp from AWE (AWE is a German company that specializes in the production of software for

modeling wireless propagation to facilitate wireless network design and estimation of electromagnetic

compatibility), EDX Wireless Signal Pro, LANPlanner from Motorola/Wireless Valley, Mentum Planet,

and CINDOOR, (a computer tool for planning and design of wireless systems in enclosed space), allow

the researchers to study a broad range of environments. However, most of these tools are proprietary,

and researchers often cannot afford the expensive fees required to use them. This nonstandardized

approach results in many models being presented once at a conference or in a journal and then being

subsequently abandoned or forgotten or being put into a useful but proprietary tool. It also means that

researchers who often have great intuition about innovation are constrained in their ability to use these

data to test new ideas or applications. By creating an open semantic Web repository and data-manage-

ment tool, the research community will increase the value of propagation measurement and modeling

campaigns, thereby encouraging practitioners and research to make high-quality models that are as useful

as possible. A Web-based tool would also allow the channel models to connect to other online databases,

such as geographical information service (GIS) databases like Google Maps [5], to discover new correlations
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between channel parameters and users. Certain evolution-

ary steps toward creating an online open-source repository

have been taken in Europe [6], [7]. However, these Web

sites do not offer the simulation and collaboration tools that

are needed to make them of sufficient interest to a wide

range of users. Also, by using an eXtensible Markup

Language (XML)-encoded data approach, a new online

open-source tool could greatly improve data integrity by

TABLE 2 Recent channel modeling efforts.

Reference, Year, Affiliation Frequency Model Type

[8], 2009, Lund University, Sweden 5.2 GHz Stochastic geometric
[10], 2010, Lund University, Sweden 2.6 GHz MIMO, statistical
[27], 2010, IEH, University of Karlsruhe,
Germany

915 MHz, 2.45 GHz Body area network

[28], 2004, IHE, University of Karlsruhe,
Germany

5.2 GHz Ray tracing optical

[7], [29], and [30], On-going to March 2011,
intergovernmental European effort

Multiple bands, 3GPP bands
(e.g., 2.1 GHz)

Geometry-based stochastic MIMO

[31]–[33], 2001–2005, intergovernmental
European effort

Multiple bands UHF-millimeter wave Geometry-based stochastic MIMO

[34]–[36], through 2011, WINNER + Industrial
and Academic Consortium

IMT-Advanced, 4G bands Geometry-based stochastic MIMO

[37]–[39], 2004–2007, WINNER Industrial and
Academic Consortium

2 and 5 GHz Geometry-based stochastic MIMO

TABLE 1 Channel measurement campaigns.

Reference, Year,
Affiliation Frequency/BW Environment/Use Case Method

[8], 2009, Lund University,
Sweden

5.2 GHz, 240 MHz Vehicle-to-vehicle, ad hoc
vehicle

Switched array orthogonal
frequency division multiplex-
ing (OFDM)

[9], 2010, University of
Genova

2.4 GHz, narrow band Cruise ship, passenger aps Vector network analyzer
(VNA)

[10], 2010, Ericsson, Lund
University, Sweden

2.6 GHz, 200 MHz Outdoor ground level,
sensor arrays

OFDM wide-band VNA

[11], 2010, University of
Vigo, Spain

2.4 and 5.8 GHz, narrow
band

Forest, peer-to-peer,
emergency

Narrow-band VNA

[12], 2010, DECOM UFES,
Brazil

3.5 GHz, 900 MHz Urban,skyscraper to ground,
WiMAX

VNA wide band

[13], 2010, Sandia
National Labs, New
Mexico

50, 150, 225, 450, and
900 MHz, narrow band

Large buildings, indoor to
outdoor, emergency

VNA narrow band

[14], 2010, IMTEK,
Freiburg, Germany

0.5–2.2 GHz, wide band Collapsed buildings,
emergency response

VNA broad band

[15], 2010, University of
Nicosia

62.4 and 1 GHz Lecture rooms and corridors VNA swept frequency

[16], University of
Ilmenau, Germany

2.53 GHz, two bands of
45 MHz

Urban, MIMO base station
(BS)

RUSK TUI-FAU Medav,
GmbH

[17], 2010, Heinrich-Hertz
Institute

2.53 GHz, 21.25 MHz Urban, MIMO BS capacity
improvements

HyEff multitone sounder

[18], 2009, Heinrich-Hertz
Institute

5.2 GHz, 120 MHz Campus MIMO multitone sounder

[19], 2002, Virginia
Polytechnic Institute

60 GHz, wide band University campus Sliding correlator

[20], 2002, Vienna
University of Technology

5.2 GHz, 120 MHz Urban courtyard, MIMO
capacity

RUSK ATM*

[21], 2004, Virginia
Polytechnic Institute

60 GHz, wide band University campus, hallways Sliding correlator

[22], 2007, Tokyo Institute
of Technology

4.5 GHz, 120 MHz Rural, MIMO RUSK Fujitsu MIMO sounder

[23], 2009, University of
Ilmenau, Germany

60 and 3 GHz Airline cabin, in-flight
entertainment

Multiantenna, spread
spectrum

* A RUSK-type channel sounder is a commercially available measurement device for estimating the impulse response of wide-band chan-
nels and MIMO wide-band channels. RUSK channel sounders may be purchased or rented from MEDAV GmbH, a German firm specializing
in channel sounding. Please refer to http://www.medav.de.
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requiring the submitters to fully document and explain all

aspects of a data set.

Works in [6] and [7], while being good first steps, lack

such safeguards, thus limiting their potential. Figure 1 (from

[24]) illustrates the paradigm shift such a tool would repre-

sent. The current approach of letting measurement results

lie fallow in often-forgotten literature will be tremendously

improved by an online tool that will make the channel mod-

els persistently available to researchers and companies for

maximum utility.

An example of where a semantic Web tool would be

useful in channel modeling was provided in 2010 by Rap-

paport et al. [25], who created a simulation tool for

understanding the impact of out-

of-band emissions (OOBE) from

cellular services on noise-limited

digital mobile services such as sat-

ellite radio. The tool’s source

code is readily available through

the Federal Communications Com-

mission, but its reach is limited

because it relies on MATLAB (a

proprietary software suite) and

requires a manual download with

no technical support. The simula-

tion tool provides users with the

ability to model realistic mobile-to-

mobile channel interference effects

and takes real-life traffic data into

account with Google Maps [5]. By

porting this code over to an open-

source platform such as Scilab scien-

tific computing environment [26], it

could be easily accessed using cloud

infrastructure-as-a-service resources

such as Amazon’s elastic cloud

(EC2). Figure 2 illustrates the GIS-

enabled tool developed by Rappa-

port et al. [25]. If this tool became

part of a larger collaborative model

and simulation-repository tool, then

other researchers could link to this

simulation to study new effects

such as the correlation between vehicle density and

channel capacity.

Efforts in Other Fields of Research

Movement toward using cloud computing and semantic

Web for scientific purposes has already begun in many

other fields. For example, in the field of anatomy, an entire

virtual human body has been placed online through the

project Prometheus [1]. Space telemetry has utilized novel

modeling paradigms of the semantic Web to store and

share astronomical data [2]. Chip-design companies have

invested in collaboration tools such as wiki’s that share

many aspects of the semantic Web [3]. The power industry

Scientific Data Life Cycle 

From This (Publish and Forget)...

Instruments

Phenomena/

Experiments

... to This One
Experiments

Persistent
Repositories

Studies

Acquisition
Tools

Temporary
Storage

Analysis
Tools

Literature

FIGURE 1 Improvement on the use of scientific data, such as channel measurements, by making

them persistently available to users is shown (from [24]). (Image courtesy of Mario Valle.)

TABLE 3 Many channel simulation tools, both open source and proprietary, are available.

Tool Use Cases and Features Availability

SIRCIM [40] 10 MHz–60 GHz, indoor, outdoor, wide band, and narrow band Open source
EDX Wireless Signal Pro [41] Channel parameters, GIS linking, standards simulation Proprietary
Mentum Planet [42] Channel parameters, model tuning, GIS linking Proprietary
Winprop [41], [43] Channel parameters, GIS linking, standards simulation Proprietary
CINDOOR [41], [44] Ray-tracing indoor environment simulation for network

planning, wide band, and narrow band
Proprietary

LANPlanner [45] 802.11 a/b/g/n network simulation, import building models,
channel capacity

Proprietary
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and other utilities are deploying novel unified modeling

language resource description framework (RDF) methods

for sharing infrastructure information in deregulated mar-

kets [4]. These projects in other fields should convince the

wireless community of the value in using novel Web-based

technologies for channel modeling.

The semantic Web, which is revolutionizing the field of

knowledge representation, expands the ability of Web users

to collaborate online by clarifying complex structures rang-

ing from complex human sentences to channel models [46].

This technology uses formal ontology languages and unified

modeling languages (UMLs) (formal logical languages with

strict rules for grammatical correctness) to create easily

expandable descriptions that are as useful to a machine as

they are to a human reader. This facilitates software that can

more usefully manage information than in the first iteration

of the Internet so that the software can be easily written that

encourages human collaboration.

The Semantic Web, Resource-Description

Frameworks, and Cloud Computing

A key technology of the semantic Web is RDFs [47], which

are the formal methods of describing structures typically

encoded in XML. Formulating an RDF begins with a map of

the structure to be described, as shown in Figure 3, to

describe a wireless channel (based on the explanation in

[48]). The map describes Triples, statements that relate a

subject to an object using a predicate. For example, a triple

that describes a channel is ‘‘outdoor channel 23 has a root-

mean-square (RMS) delay spread of 50 ns.’’ The subject of

the statement is ‘‘channel 23.’’ The object is ‘‘RMS delay

spread,’’ and the predicate is ‘‘has a’’ indicating posses-

sion. ‘‘RMS delay spread’’ in the sentence is also a subject

with objects ‘‘time unit’’ and ‘‘value.’’ These triples are

written into XML for interpretation and automatic man-

agement by a computer. For example, we might write this

triple in XML with the following (which uses several fic-

tional Web sites).

In this example, the first Web site is a link to a fictional

namespace, which is a large repository of precise defini-

tions. For example, this namespace contains definitions

for RMS delay spread (represented by rmsdelay), units of

time (represented by timeunit), and numeric values (repre-

sented by value). The second Web site is a uniform

resource identifier (URI) that uniquely specifies the location

of an object or resource (Channel 23) in a database with a

uniform resource locator (URL) (http://ieeevts_future_web-

site/models/ in this example) and uniform resource name

(URN) (Channel 23) in this example.

A key strength of an RDF implemented in XML is that it

requires data to be explicitly and correctly formatted to

be considered as compliant data. By using this approach,

the online archiving tool would address the key concern

of data validity and integrity that has prevented greater

success of other efforts such as [6] and [7]. The RDF will

require data submissions to contain full measurement

parameters, including measurement-equipment specifica-

tions and simulation environments.

FIGURE 2 In [25], Google Maps [5] was part of a simulation that studied the effects of OOBEs on satellite radio. Because the simulation links to

an online database and could be supported with open-source software platforms such as SciLab [26], it would be ideal for inclusion in an

online collaborative semantic Web model and simulation repository.
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Describing channel measurements or models in a way

that can be easily and automatically managed by computers

is the first step to creating an online semantic Web applica-

tion for wireless researchers. The second step is using these

verbose representations in software and making them avail-

able to the research community. This may be accomplished

using services such as Amazon Web service’s elastic com-

pute cloud (EC2) and simple storage service (S3), which

allow the individual users or enterprises to rent virtual

machines on the cloud and to store data for use by the

virtual machines or downloading [47], [49]. Upon logging

into the online tool through, for example, a link on the IEEE

Vehicular Technology Society (VTS) Web site, the user

could be seamlessly directed to the repository loaded on

Amazon’s EC2 and S3 platforms. If the user only needs

access to model or measurement data, then he or she

would only need to access the storage available on Ama-

zon S3 using user interfaces specifically created for that

purpose. Source code or binary representations of novel

simulation tools could be saved in S3, and when a user
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FIGURE 3 The map serves as the basis for creating an RDF to model a channel (based on [48]).
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requests to use them, the system would automatically

load and run the application in a virtual machine and

then display the results.

The online collaboration tool that could be loaded on a

cloud-computing service would be architected after suc-

cessful online collaboration tools such as Wikipedia [3].

An example structure of the tool is shown in Figure 4. The

users would have different roles according to their needs

and responsibilities. Simple users would only have read

access to the tool, while editors and contributors would

have the privilege to add new data sets and simulation

code. Subject area experts would have the privileges in

mediating or deciding in disputes about model data or

simulations, and administrators would oversee the func-

tioning of the Web tool. The repository and simulation

Web tool would be partitioned into measurement and

model repositories, which would be stored on a service

such as Amazon’s S3, and simulation tools, which could

be stored on S3 until needed, at which point they would

run on a service such as Amazon’s E2. Contributing users

would have the right to make certain data sets, models, or

simulation tools private until fully tested. All other content

would be viewable in public pages by all users. Because it

would be online, the tool could easily link to other data-

bases such as Google Maps and measurement reposito-

ries maintained by the International Telecommunications

Union (ITU). Users of the tool would benefit from forums

targeted at discussions of measurement experiences, chan-

nel data analysis, and other topics. Such forums would aid

new researchers in constructing measurement systems and

would allow the users to identify faulty data incorrectly

loaded onto the tool site.

Conclusions

Establishment of a Web-based repository for wireless

multipath channel measurement data would make it pos-

sible for the researchers to pool their data sets to yield

more reliable or broadly applicable results or to extract

additional value from data that may have been collected

for other purposes. It would also allow the validity of

models derived from certain data sets to be more easily

tested against other data sets than at present. Moreover,

ongoing developments in Web technologies will greatly

add to the capabilities of such repositories in the coming

years. While the wireless community would greatly bene-

fit from the establishment of such a repository for chan-

nel measurement data, account must be taken of the

significant differences between wireless channel-response

data and data collected in other scientific fields. A particu-

lar challenge is to ensure that essential details concern-

ing the measurement equipment used to collect the

data, the manner in which the equipment was calibrated

and verified, the data collection procedure, and details

of the environment in which the data were collected are

adequately documented and linked to the channel-

response data. Nevertheless, it seems likely that the

return from such a wireless channel-response data

repository would justify the effort required to set up

and maintain it.
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