
A tutorial for implementing a programming
language on top of q/kdb+

José Pablo Cambronero and Dennis Shasha

Courant Institute/New York University

September 17, 2016

Motivation

Why would we want our own programming language?

I Fit the language to the task: rise in popularity of Domain
Specific Languages (DSL)

I Enable custom optimizations

I Make life for experts easier, allow non-experts a comfortable
way to explore useful computing

Why do we want to target q/kdb+?

I High level

I Easy metaprogramming (parse/eval/value): data↔ program

I Blazingly fast (something everyone in this room knows)

Overview of Domain Specific Language Approaches

1. External: stand-alone, with own parser, (possibly analysis),
translation, and execution [1]

2. Internal (aka embedded): extend an existing language
I Shallow: domain specific language implemented directly in the

host language semantics, using function calls (no abstract
syntax tree built)

I Deep: Constructs abstract syntax tree through calls, semantics
are given by an ”interpreter” function[2]

I There are some very interesting, and deeper connections,
between the two initially disparate-seeming approaches, see [2]
for a nice overview

AQuery: a hybrid between external and internal. Has standalone
parsing and translation, but relies on q for execution and allows
embedding of literal q code in AQuery files

Orderly: A (very simple) DSL for market orders

I We need a language simple enough to address in 20-30 min
but meaty enough for fun

I We’ll follow both approaches from above:
I ”External”: Standalone parsing, analysis and translation in

external-orderly
I ”Internal (deep)”: Parsing using o) mode, analysis and

execution in internal-orderly

https://github.com/josepablocam/kxmeetup/tree/master/orderly-external
https://github.com/josepablocam/kxmeetup/tree/master/orderly-internal

Orderly EBNF

〈program〉 ::= (〈order〉 -> 〈ident〉) +

〈order〉 ::= 〈side〉 〈vol〉 of 〈ident〉 at $〈num〉 〈modifier〉 (for
〈ident〉)?

〈side〉 ::= buy

| sell

〈vol〉 ::= 〈num〉 shares
| $ 〈num〉

〈mod〉 ::= if "〈monadic-fun-in-q〉"
| on 〈date〉

Orderly Running Examples
s e l l 1000 s h a r e s o f IBM at $50 on 05/16/2016 f o r BAML −> order book

2 // u s e s an embedded q fun
buy $1e6 o f AAPL at $100 i f ”{ [env] 10 < exec avg c l o s e p r i c e from env where

s e c t o r=`Tech} ” −> order book

Figure 1: Internal: End-to-end execution

Figure 2: Internal: External code generation (w/o optimization)

Syntax Analysis

I Accept programs that satisfy grammar, reject all others.
Construct AST for accepted.

Figure 3: External: Succesful parse’s resulting AST

Syntax Analysis (aka tokenization + parsing)

I Ideally parsing code is clear and extendable

1 def order: Parser[MarketOrder] = positioned(

side ∼ volume ∼ (OF ∼> cleanIdent) ∼
3 (AT ∼> "$" ∼> floatingPointNumber) ∼ modifier ∼

(FOR ∼> cleanIdent).? ^^ {

5 case s ∼ v ∼ sym ∼ px ∼ m ∼ c => ...

}

7 | failure ("Marked orders should specify side , volume of purchase , ticker ,

price , modifier and optionally a client")

)

Figure 4: External: main parsing function in Scala

// orderly grammar as a list (we have a simple grammar :))

2 grammar :(side;vol;accept[OF;"of"];ident;accept[AT;"at"]; price;modifier;forClause

;accept [{x∼"->"};"->"];ident);

4 // wrap to avoid having errors return deeper functions (no need to worry

// user with implementation)

6 parser :{@[raze consume[grammar;] tokenize@;x;{'x}]}

Figure 5: Internal: main parsing function in q

Syntax Analysis Goals

I Generate useful parser errors (with context and/or source
location if possible)

I Let’s modify our otherwise correct sentences

Figure 6: Internal: bad date error

Figure 7: External: missing modifier keyword (if)

Semantic Analysis

I We’ve decided the input satisfies our grammar, now we
provide meaning

I Provide checks: many things can be checked before runtime,
even for simple languages

I Make sure these checks are composable and well documented

Semantic Analysis: Internal

// added 'should ' to .q, but removed after defining ;)

2 check0 :{

getVolume[x] should be ({x > 0};{"Volume should be positive"});

4 getPrice[x] should be ({x > 0};{"Price should be positive"});

x:setModifier[x;] wrapDate getModifier x;

6 getModifier[x] should be (isUnary ;{"Expected unary function"});

x

8 };

// users dont need to know underlying checks

10 check:{@[check0;x;{'x}]}

Semantic Analysis: Internal (pre-processor level)

I Validating user input is critical. For example, in a full fledged
language you might perform type checking.

I Orderly’s market orders have ”if” modifiers that are meant to
be evaluated within a context to determine if the market order
should be executed. Given this, we want the modifier to be a
monadic function (1-argument). Evaluation of an
”if-modifier” clause is then simply a call to the function with
the environment (i.e. context) as an argument.

Semantic Analysis: Internal (pre-processor level) Example

Assume we have the following Orderly code

buy $1e6 o f AAPL at $100 i f ”{ [env ; s e c] 10<exec avg c l o s e p r i c e from env where
s e c t o r=sec}” −> order book

I We must verify that the code within double-quotes
corresponds to a q monadic function

I We can use runtime to resolve type of modifier clause,
resolving identifier to function if necessary. Calling type yields
100h here.

I q’s value allows us to further explore functions (another useful
ability for metaprogramming). In this case, we can check that
value doesn’t show a partially evaluated function and
(@[;1] value) shows two formal parameters.

Semantic Analysis: Internal (pre-processor level) Example

I Given that this doesn’t satisfy our monadic requirement,
trying to pass this through the checking function will result in
an appropriate error

Figure 8: Internal: Extra parameter in modifier clause lambda causes issues

I The user can fix this by providing a partially evaluated
function (aka. projected function), which in effect makes the
call monadic.

Figure 9: Internal: Valid lambda in modifier clause

Semantic Analysis: Internal (pre-processor level)

I In general: type checks/validation, local transformations

I Validate shares and prices to be ≥ 0 (more interesting
validation: within certain standard deviation of market price,
for risk purposes)

Figure 10: Internal: Invalid share number

I Rewrite date-based modifier to lambda: uniform AST means
easier code generation in our case

Figure 11: Internal: Dates become wrapped in lambda

Semantic Analysis: External

I soft type checking (AQuery), global/local transformations
(pre-processor)

I Some of our checks cannot be performed until runtime (e.g.
checking if function is monadic)

I Need context in error messages generated at runtime

I Our approach: insert check and error message into code
generated

External: Static Rewrites

I Take advantage of global knowledge to perform global
optimizations

I Multiple passes can be done before generation. This allows
increasingly complete knowledge

I Consider if rewrites should be idempotent and composable
(most likely yes!)

I In AQuery: Scala partial functions combined with pattern
matching allow us to capture specific rewrites, while ignoring
all other cases

I In Orderly: transformations return new datatype, guaranteeing
that transformation is called at appropriate time

External: Static Rewrites

I In Orderly: single inserts become bulk inserts (significant
speedup)

I We group SingleInsert nodes in AST by the table they will be
inserted into. We wrap these orders in a new datatype:
BulkInsert

I Code generation treats SingleInsert as a simple single upsert,
while BulkInsert creates a table and upserts multiple records
at once

Figure 12: Upserting multiple records as a table can generate significant speed
ups

External: Static Rewrites

I Pick an implementation language that allows nice rewrites
(e.g. Scala’s pattern matching makes life easier)

I Be explicit about any assumptions in the resulting code (e.g.
in Orderly, we assume writes to different tables can be moved
around, as long as the intra-table ordering remains constant)

// reorders inter -table insertions , keeps order intra -table

2 def collectInserts(s: Seq[SingleInsert]): Seq[BulkInsert] =

s.groupBy(_.t).map {

4 case (t, os) => BulkInsert(t, os.map(_.order))

}. toList

6

External: Static Rewrites

I Don’t rely on later stages to perform rewrite-aware
transformations/code-generation without any kind of checks.
Leverage new AST node, along with common missing-case
functionality in implementation languages to guarantee
completeness of translation (e.g. BulkInsert datatype)

Internal: Execution

I We have a simple interpret function that provides meaning to
our AST. Note that in general this function doesn’t necessarily
need to act as an interpreter, but can also generated code etc.
Avoid performing drastic transformations of the AST at this
point (i.e. move deeper analysis to earlier stages)

I Orderly simply inserts the order details into the specified order
book

I We don’t generate code here, but rather use q directly to
interpret the AST

toTable :{flip `side `volume `units `ticker `px `cond `client !() ,/:x}
2 add :{[ast] (last ast) upsert toTable 7#(-1 _ ast),`self}

interpret:add

4 // orderly mode

.o.e:interpret check parser@

Internal: Execution

I Consider providing additional functions that might be relevant
to your domain but don’t necessarily merit embedding in
representation.

I Users can leverage functions to manipulate the results
produced through DSL (since embedded in same language)

1 satisfies :{[t;env] select from t where first each @[;env;0b] each cond }

Figure 13: Internal: Users can use satisfies to extract orders that fit certain
criteria

External: Code Generation

I Generate intelligible code (i.e. comment what is generated,
indent etc to make human readable)

I Include any helper functions as a prelude in your generated
code. This creates easily movable files

Figure 14: External: Use helper functions and include in generated code

External: Code Generation

I Write code that takes advantage of constructs like string
interpolation to create a clean and maintainable generator

def genValues(m: MarketOrder): String = {

2 val side = m.side match {

case Buy => kdbSym("buy")

4 case Sell => kdbSym("sell")

}

6 val (volume , units) = m.volume match {

case NumShares(n) => (n, kdbSym("shares"))

8 case USDAmount(d) => (d, kdbSym("usd"))

}

10 val ticker = kdbSym(m.sym)

val px = m.px.v

12 val cond = m.when match {

case Left(Verbatim(q)) => q

14 case _ => throw new Exception("when conditions should be translated to q

code for generation")

}

16 val client = kdbSym(m.client.getOrElse("self"))

s"($side;$volume;$units;$ticker;$px;$cond;$client)"
18 }

External: Code Generation

I Provide explicit means of turning on/off rewrites. Can help
user become familiar with transformations and increases
transparency of DSL.

Figure 15: External: Compare non-optimized vs optimized orderly. Activation
clearly indicated as command line argument

References I

[]

Cyrille Artho, Klaus Havelund, Rahul Kumar, and Yoriyuki
Yamagata.
Domain-specific languages with scala.
In International Conference on Formal Engineering Methods,
pages 1–16. Springer, 2015.

Jeremy Gibbons and Nicolas Wu.
Folding domain-specific languages: deep and shallow
embeddings (functional pearl).
In ACM SIGPLAN Notices, volume 49, pages 339–347. ACM,
2014.

Alberto Lerner.
Querying Ordered Databases with Aquery.
PhD thesis, Ph.D. Thesis, Ecole Nationale Superieure de
Telecommunications, ENST-Paris, 2003.

References II

Alberto Lerner and Dennis Shasha.
Aquery: Query language for ordered data, optimization
techniques, and experiments.
In Proceedings of the 29th international conference on Very
large data bases-Volume 29, pages 345–356. VLDB
Endowment, 2003.

Martin Odersky, Lex Spoon, and Bill Venners.
Programming in scala.
Artima Inc, 2008.

Arthur Whitney.
Abridged Q Language Manual, 2009 (accessed November 6,
2015).

	Introduction

