Proof that $n / 2+n / 4-1$ is optimal for a special case

- Some Definitions first.
- Fix A at position 0. This is an arbitrarily chosen convention.
- We classify into two types:
- Fixed: Hints that reference A
- Floating: Hints that do not reference A
- Fixed hints fully determine positions of other nodes. Eg: if hint is " C is 4 places to right of $A^{\prime \prime}$ nails C to seat \#4.
- Floating hints are less obvious. A full seating assignment may be needed to resolve them.
- See figure on right for $\mathrm{n}=16$, blue hints are fixed, red ones are floating.
- Observe that:
- B, C, D, E, F and G are determined easily.
- H through O are not determined until all floating hints have been "solved".

Our Special Case

- We consider the special case wherein:
- All fixed hints are clustered together.
- See picture for an example.
- We use this picture as running example of proof.
- We show that if fixed hints are clustered together, then $\mathrm{n} / 2+\mathrm{n} / 4-1$ is tight. Can not do better.
- By "cluster" we mean that the fixed hints point to vertices that are clock-wise or anti-clockwise neighbors of A. Like in the example.
- Thus, the hints in the example do not define a unique seating.
- $n / 2+n / 4-1=11$ hints ($\mathrm{n}=16$)
- We have only 10 hints in this.
- We show by constructing an alternate solution for the floating hints whenever the hints given are not tight (ie, less than $n / 2+n / 4-1$)

Main Idea

- Basic idea of developing an alternate solution that satisfies all the floating constraints uses two transformations:
- One. A rotation of the floating hints
- Two. Reflection of the hints
- We describe these on the example.

Rotation of floating hints

- General construction.
- Assume k fixed hints. They determine first ($k+1$) positions ('A' included)
- In example, $k=6$, so 7 vertices are determined.
- Ignore these fixed hints.
- Rotate floating hints by k
 positions. See next slide.

Rotation Example

Before Rotation

After Rotation
(by 6 positions clockwise)

Now Reflect this around the vertical axis running through A

Before Reflection

After Reflection

Add the fixed hints back in

We have demonstrated a new solution! $\boldsymbol{\rightarrow}$ Not Unique

What did we do?

- Under the given assumptions:
- Clustered fixed hints
$-\mathrm{k}<\mathrm{n} / 2-1$ fixed hints (in the example $\mathrm{k}=6$ whereas n /21=7)
- Start with one solution
- By rotation by k positions followed by a reflection, we revealed a new solution that satisfies all floating hints
- Thus we showed solution is not unique. \rightarrow means $k+$ $\mathrm{n} / 4$ hints not enough where $\mathrm{k}<\mathrm{n} / 2-1$

What happens when $k=n / 2-1$

- When we have $k=n / 2-1$ fixed hints
- Then if rotation + reflection generates a different solution then one of the below has to hold:
- Two or more hints are pairwise identical in terms of hint distances \rightarrow indistinguishable and thus not unique
- Or must look like this example:
- This solution is a "fixed point"
- When rotated + reflected, it
gives rise to itself
- This "fixed point" set of hints need
$\mathrm{n} / 4$ of them.
(because their hint distances go in
Steps of 2.)
In example, they go: 2 (k,I)
$4(\mathrm{j}, \mathrm{m}), 6(\mathrm{I}, \mathrm{n})$ and $8(\mathrm{~h}, \mathrm{o})$
- Any fewer floating hints (<n/4) will not be unique.
- Any more floating hints (>n/4) will lead to duplicate hint distances (due to steps-of-2 hint distances) and thus no unique solution.

Conclusion

- Classify hints as fixed and floating
- Assume k fixed hints that are clustered
- Show by rotation and reflection of floating hints that a new solution can be obtained if $k<n / 2-1$
- When $k=n / 2-1$ then only unique solution is the one which is invariant under rotation + reflection
- This invariant requires exactly $\mathrm{n} / 4$ hints
- Thus $\mathrm{n} / 2-1+\mathrm{n} / 4$ is tight when the fixed hints are clustered.

Appendix-1

- >n/4 floating hints in fixed-point configuration lead to duplicate hint distances
- Example: here five floating hint distances (1, 3, 5, 7, 9)
- 9 is indistinguishable from 7 (7 going other way around on the circle is 9 away)

Appendix-2

- <n/4 floating hints in fixed-point configuration are too few hints
- Example: here 3 floating hint distances $(3,5,7)$
- 3 vertices completely free - can not resolve uniquely

