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This supplementary document is organized as follows.
In Section A we present the proof of the equivalence lemma
(Lemma 4.1 from the main text). The extension of the nu-
merical experiments from the main text is given in Section
B.

A PROOF OF THE EQUIVALENCE LEMMA (LEMMA
4.1)
We first repeat the statement of the lemma for the sake
completeness.

Lemma A.1. (Equivalence lemma) Suppose we have a base
predictor P . Consider an ensemble of 2T experts, P =
{P0, P1, . . . , P2T−1}, defined as follows:

• Denote the tth bit of the binary expansion of integer i with
bi,t, and define the notation x̄ = 1− x.

• Fix the predictions and the losses of each expert Pi as follows:

ŷPi,t =

{
∅ bi,t = 0
ŷP,t bi,t = 1

and lPi,t =

{
ε bi,t = 0
lP,t bi,t = 1

.

• Set the initial weights for each expert as

wPi,1 =w
bi,1
P,1w

b̄i,1
D,1 . . .

T−1∏
t=1

α
b̄i,tbi,t+1

t ᾱ
b̄i,tb̄i,t+1

t β
bi,tbi,t+1

t β̄
bi,tb̄i,t+1

t .

Then the EWAF algorithm (Alg. 1) using the expert ensemble
P with the learning rate η is equivalent to Adaptive SafePredict
(Alg. 4) using the base predictor P , in terms of the prediction
probability

wP,t =
∑

i:bi,t=1

wPi,t.

To prove the lemma, we first need the following auxiliary
proposition.

Proposition A.2. The total weight at time t over the experts that
follow P both at time t and t+ 1 can be represented as∑

i:bi,tbi,t+1=1

wPi,t = βt
∑

i:bi,t=1

wPi,t. (1)
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Similarly, the sum of the weights over the experts that follow the
dummy at t but follow P at t+ 1 can be written as∑

i:b̄i,tbi,t+1=1

wPi,t = αt
∑

i:b̄i,t=1

wPi,t. (2)

Proof of Proposition A.2. First fix the time index t and define
a conjugate predictor Pi′ for each expert Pi in the ensemble
such that

bi′,τ =

{
b̄i,τ τ = t+ 1
bi,τ otherwise

and note that

wPi,t

wPi,1
=
wP ′i ,t

wP ′i ,1
(3)

since both Pi and Pi′ suffers the same losses in the first t
rounds.

Finally eq. (1) follows from,∑
i:bi,tbi,t+1=1

wPi,t∑
i:bi,t=1

wPi,t
=

∑
i:bi,tbi,t+1=1

wPi,t∑
i:bi,tbi,t+1=1

wPi,t + wP ′i ,t
(4)

=

∑
i:bi,tbi,t+1=1

wPi,1∑
i:bi,tbi,t+1=1

wPi,1 + wP ′i ,1
(5)

= βt (6)

where (4) is from the definition of the conjugate predictor
Pi′ , (5) follows from eq. (3), and (6) by plugging in the initial
weights and straightforward algebra. Eq. (2) also follow
from a similar argument for b̄i,t = 1.

Next, armed with this proposition, the proof of the
lemma simply follows by an induction argument over t.

Proof of Lemma A.1. The base case, t = 1, follows from a
sequence of straightforward algebraic manipulations

wP,1 =
∑

i:bi,1=1

wPi,1.

Next, assume the induction hypothesis holds for t, i.e.

wP,t =
∑

i:bi,t=1

wPi,t. (7)
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Finally the induction step is executed as follows:∑
i:bi,t+1=1

wPi,t+1 =
∑

i:bi,tbi,t+1=1

wPi,t+1 +
∑

i:b̄i,tbi,t+1=1

wPi,t+1

=

∑
i:bi,tbi,t+1=1

wPi,te
−ηlP,t +

∑
i:b̄i,t−1bi,t=1

wPi,t−1e
−ηε

∑
i
wPi,te

−ηlPi,t

(8)

=

∑
i:bi,tbi,t+1=1

wPi,te
−ηlP,t +

∑
i:b̄i,t−1bi,t=1

wPi,t−1e
−ηε

∑
i:bi,t=1

wPi,te
−ηlP,t +

∑
i:b̄i,t=1

wPi,te
−ηε

(9)

=
βtwP,te

−ηlP,t + αtwD,te
−ηε

wP,te−ηlP,t + wD,te−ηε
(10)

= αt + (βt − αt)
wP,te

−ηlP,t

wP,te−ηlP,t + wD,te−ηε
(11)

= wP,t+1. (12)

Note (8) follows from the EWAF update rule, (9) follows
from the the choice of lPi,t (see the body of the lemma), (10)
follows from Proposition A.2 and the induction hypothesis
eq. (7), (11) follows from simple algebra, and finally (12)
follows from the update rule for Adaptive SafePredict, i.e.

wP,t+1 = αt + (βt − αt)
wP,te

−ηlP,t

wP,te−ηlP,t + wD,te−ηε
.

B EXPERIMENTAL RESULTS

For the sake of reproducibility, Python scripts
used to generate our results are available at
https://tinyurl.com/yagw3xzx.

First we present the complete numerical results for the
experiments presented in Section 5.1 in Table 2 (see the
caption and the description in the main text for the details).
Further, we performed experiments similar to the ones we
performed on the MNIST dataset on other datasets from
UCI Machine Learning repository [1]. The datasets used are
listed in Table 1 and corresponding results are shown in
Figures 1-7.

For each dataset we used T = 10000 randomly chosen
data points for our experiments. The remaining the data
points are used to choose the target error rates, shown
in the last column of Table 1. In particular, we trained a
random forest on T/4 = 2500 of these unused data points,
and measured the error rate on the rest. Note, neither this
random forest nor the data is used for the experiments other
than to choose ε.

Results for MNIST dataset from the main text are repro-
duced in Fig. 1. Results obtained in the other datasets are
presented in Fig. 2 - 9, and yield the same conclusions as
those drawn from the MNIST dataset in the main text.
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TABLE 1: Datasets from UCI ML Repository [1]

Data-Set Description Features Classes Target
(ε)

MNIST Scanned hand-written
digits

784 10 0.08

SENSIT Vehicle types from
wireless sensor nets

100 3 0.20

COD-RNA Coding/Non-coding
parts of RNA

8 2 0.07

COVER Dominant forest types
based on images

54 7 0.25

CONNECT-4 Outcome of a multi-
player game

126 2 0.22

LETTER Letter recognition
from pixel displays

16 26 0.12

MAGIC Simulated data to
register high energy
gamma particles

11 2 0.14

Fig. 1: MNIST Dataset (ε = 0.08, reproduced from Fig. 4 of the main
text): Efficiency is 1.0 for the base predictor but lower for the various
refusing meta-algorithms. Validity is measured as a fraction of the
target error rate. So the base predictor has a poor error rate (way
over ε). All the SafePredict variants rapidly approach a normalized
error rate value of 1 though the error rate increases at the change
point at time t = 5000. The confidence based competition cannot
guarantee an asymptotic validity. Two forms of adaptivity help reduce
the number of refusals: weight-shifting especially with a high α value
and amnesic adaptivity. Combining both leads to the highest efficiency
while preserving validity.
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Efficiency: T ∗/T Normalized Error Rate: L∗
P,T /T

∗/ε

numChange εlow/ε εhi/ε oracle α = 0 α = 1/T α = 5/T α = 10/T α = 0 α = 1/T α = 5/T α = 10/T
0 0.5 0.5 1.000 0.985 0.987 0.993 0.997 0.502 0.502 0.502 0.502
0 0.9 0.9 1.000 0.592 0.751 0.986 0.975 0.907 0.905 0.869 0.913
0 2.0 2.0 0.000 0.007 0.011 0.016 0.027 1.648 1.690 1.650 1.482
0 5.0 5.0 0.000 0.000 0.001 0.002 0.002 4.914 3.437 2.949 2.890
5 0.5 2.0 0.500 0.199 0.579 0.660 0.602 0.919 0.988 0.931 0.790
5 0.5 5.0 0.500 0.155 0.463 0.509 0.506 0.943 0.998 0.844 0.647
5 0.9 2.0 0.500 0.121 0.218 0.422 0.483 1.031 1.059 0.845 1.043
5 0.9 5.0 0.500 0.100 0.205 0.378 0.462 1.034 1.006 1.041 1.031
10 0.5 2.0 0.545 0.083 0.419 0.613 0.657 0.650 0.950 0.950 0.875
10 0.5 5.0 0.545 0.084 0.320 0.512 0.529 0.951 1.004 0.914 0.839
10 0.9 2.0 0.545 0.059 0.118 0.270 0.373 0.981 1.050 1.051 1.021
10 0.9 5.0 0.545 0.053 0.094 0.232 0.351 1.005 1.068 1.040 1.028

TABLE 2: Experimental results on synthetic data: The first three columns gives the characteristics of each loss sequence. The next
group of columns report on the efficiency (fraction of predictions made) for the oracle and increasing values of α. The final group
of columns report on the error rate normalized with respect to the target error rate ε = 0.05 of SafePredict with the same increasing
values of α. The same values are also represented in the figures above. One can draw two main conclusions: i.) a small α does
better when the error rate of the base predictor is high relative to the target, e.g. see the efficiency plot for the error rate 2ε or
5ε, whereas a large α adapts better when the underlying error rate at least sometimes falls below the target error rate. ii.) As the
number of change points increases, the error bound behaves more like 1/

√
T ∗ rather than 1/T ∗.
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Fig. 2: SENSIT Dataset (ε = 0.20): Note one can draw similar
conclusions as with MNIST Dataset (Fig. 1).

Fig. 3: COD-RNA Dataset (ε = 0.07): Note one can draw similar
conclusions as with MNIST Dataset (Fig. 1).

Fig. 4: COVER Dataset (ε = 0.25): Note one can draw similar
conclusions as with MNIST Dataset (Fig. 1).

Fig. 5: CONNECT-4 Dataset (ε = 0.22): Note we can draw similar
conclusions as with MNIST Dataset (Fig. 1).
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Fig. 6: LETTER Dataset (ε = 0.12): Note we can draw similar
conclusions as with MNIST Dataset (Fig. 1).

Fig. 7: MAGIC Dataset (ε = 0.14): Note we can draw similar
conclusions as with MNIST Dataset (Fig. 1).


