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Abstract—SafePredict is a novel meta-algorithm that works with any base prediction algorithm for online data to guarantee an
arbitrarily chosen correctness rate, 1− ε, by allowing refusals. Allowing refusals means that the meta-algorithm may refuse to emit a
prediction produced by the base algorithm on occasion so that the error rate on non-refused predictions does not exceed ε. The
SafePredict error bound does not rely on any assumptions on the data distribution or the base predictor. When the base predictor
happens not to exceed the target error rate ε, SafePredict refuses only a finite number of times. When the error rate of the base
predictor changes through time SafePredict makes use of a weight-shifting heuristic that adapts to these changes without knowing
when the changes occur yet still maintains the correctness guarantee. Empirical results show that (i) SafePredict compares favorably
with state-of-the art confidence based refusal mechanisms which fail to offer robust error guarantees; and (ii) combining SafePredict
with such refusal mechanisms can in many cases further reduce the number of refusals. Our software (currently in Python) is included
in the supplementary material.
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1 INTRODUCTION

Machine learning and statistical inference are the pri-
mary building blocks for systems that predict the future
from the past. Prediction algorithms have been tailored to
fit various applications as varied as analytics [1], health
care [2], [3], and judicial decision making [4], [5]. One of
the major concerns when utilizing prediction algorithms to
automate risk-critical applications is reliability.

To guarantee an error rate for an overall prediction
system, a meta-algorithm should refuse to make a prediction
when the meta-algorithm infers that the base prediction
algorithm is likely enough to be in error. The implications
of refusing to make a prediction may vary according to the
application of interest. For example, in a medical diagnosis
system, refusing to make a prediction may result in the
collection of more information about the patient or a request
to a human expert to make a decision based on a more
thorough evaluation.

Inspired by the prediction with expert advice framework
[6], we propose SafePredict, an online meta-algorithm that
accepts or refuses predictions of a base algorithm depending
on the previous performance of the base algorithm. SafePre-
dict asymptotically bounds the error to the desired level
without any assumption on the data or the base predictor.
When the error rate of the base predictor varies over time,
SafePredict will adapt to those changes while preserving the
error guarantee.
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1.1 Prior Work

The idea of allowing meta-algorithms to refuse to make
predictions to reduce the error rate was first introduced
by Chow [7]. Chow mainly focused on the classification
problem, where data points have an object-label pair in-
dependently sampled from a fixed and known probability
distribution. Chow showed that the optimum error-refuse
trade-off is achieved by a classifier that refuses to predict
when the posterior probability of the estimated label given
the object is less than a certain threshold.

The major challenge in applying Chow’s work is the
need to know the data distribution, which is rarely available.
The mainstream assumption is that the available data points
are independently sampled from a fixed but unknown
distribution. Given these data points, the most common
approach is to estimate the underlying distribution and
to use it in the Chow framework. Estimating probability
distributions in high dimensional and complex datasets can
be harder even than classification itself, see e.g. [8]. An al-
ternative approach uses confidence-based refusals. One can
train a classification algorithm with an arbitrary confidence
score (e.g. distance to the decision boundary) and refuse to
make a prediction for points with low confidence scores.
Examples of this line of work are [9], [10], [11], [12].

Although many practical applications of the refusal
framework exist in the literature, e.g. [13], [14], [15], [16],
theoretical analyses of the suggested methods are relatively
rare. Some notable exceptions are found in Wegkamp et al.
[17], [18], [19], El-Yaniv and Wiener [20], [21] and Cortes
et al. [22] which approach the problem from a statistical
learning theory perspective and suggest minimizing a linear
combination of error and refuse probabilities. Alternatively,
reliable agnostic learning, proposed by Kalai et al. [23],
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posits an error threshold and searches for the least refusing
predictor from a family of predictors that bounds the error
to the error threshold, assuming such a predictor exists.

The related work discussed so far assumes a batch setup,
i.e. the algorithm is trained on a fixed set of data points
which are independently and identically distributed (i.i.d.).
For a more comprehensive literature review of refusal algo-
rithms in the batch setup, please see [18], [22], [24], [25] and
the references therein.

In contrast to the batch setup, a meta-algorithm in the
online learning framework observes the true outcome after
a prediction and then modifies its future behavior. In the
conformal prediction framework of Vovk et al. [26], a base
algorithm generates confidence scores for each data point.
Then the conformal predictor decides to predict or refuse
based on these scores. A bound on the error probability and
the independence between the error events are guaranteed
under the assumptions that the data points are chosen from
an exchangeable (essentially i.i.d.) distribution and the base
predictor is invariant to the order of the observed data
points. For recent developments regarding the classification
with refusal problem in the conformal prediction framework
we refer the reader to [27], [28], [29] and Chapter 3 of
[26]. Unfortunately, in an online setting the probability of
making errors on consecutive predictions may be correlated
or the data sequence may have a non-stationary or even an
adversarial distribution. Thus, any guarantees that might
hold in the independent and identically distributed setting
do not directly carry over.

Another approach in the online setting starts with the
KWIK (knows what it knows) framework [30] which re-
moves all assumptions about the data distributions. Instead,
KWIK assumes the existence of a perfect predictor (i.e.
predictor is always correct) among a set of predictors and
aims to find this perfect predictor with a minimum number
of refusals. Sayedi et al. [31] extend this framework by
allowing a fixed error budget k and characterizing the
minimum number of refusals by keeping the number of
errors below k. Finally, Zhang et al. [32] relax the perfect
predictor assumption to an l-bias assumption (i.e. predictor
makes at most l errors) and allow the algorithm to refuse in
order to achieve an optimal error-refuse trade-off.

1.2 Contributions

This paper makes the following main contributions:
1) The SafePredict online meta-algorithm can work with

any base prediction algorithm to provide an asymptotic
error guarantee on the non-refused predictions, without
making any assumption about the data or the base
algorithm.

2) All the variants of SafePredict meta-algorithm refuse at
most a finite number of times when the base predictor’s
error rate is below the target error rate ε.

3) Adaptive SafePredict meta-algorithm uses weight-
shifting and other conventional adaptive procedures to
track the error rate of the base predictor in changing
environments, thus reducing the number of refusals
while preserving the error guarantee.

4) Experiments show that the above theoretical guaran-
tees are achieved in practice and translate to better

error performance than other refusal algorithms. The
experiments also show that combining SafePredict with
previous meta-algorithms can lead to yet fewer refusals
in many cases.

The rest of the paper is organized as follows. Section
2 presents the problem and provides a brief introduction
to the exponentially weighted average forecasting (EWAF)
[33], [34] expert advice framework. Section 3 introduces
SafePredict by recasting EWAF as a randomized refusal
meta-algorithm and proves its theoretical properties. Section
4 presents Adaptive SafePredict, a weight-shifting heuristic,
to track changes in the error rate of the base algorithm and
therefore reduce the number of refusals. Section 5 presents
experiments on real and synthetic data. Section 6 concludes
our work.

1.3 Notation
A summary of the notation introduced throughout the pa-
per is given in Table 1. For each quantity, we provide the
notation, a brief description and a reference to the section it
is first introduced.

TABLE 1: Summary of the Notation

Not. Description Def. in Sec.

αt, βt Adaptivity parameters, αt ≤ wP,t+1 ≤
βt.

4

ε Target error rate. 2
η Learning rate, η > 0. 2.1

ρT Efficiency of the meta algorithm, T∗/T . 2
D Dummy predictor, always refuses,

ŷD,t = ∅ and lD,t = ε for all t.
3

lt Expected loss at time t. 2.1
LT Cumulative expected loss,

∑T
t=1 lt. 2.1

lP,t Loss of P at time t, assume lP,t ∈ [0, 1]. 2
LP,T,t0 Partial cumulative loss of P from t0 to

T ,
∑T

t=t0+1 lP,t. The third index drops
if t0 = 0

2

L∗
P,T Expected cumulative loss for the meta-

algorithm
∑T

t=1 wP,tlP,t.
2

P Base predictor. 2
Pi ith expert in the ensemble, has weight

wPi,t and loss lPi,t.
2.1

T Time horizon. 2
T ∗ Expected value of the number of (non-

refused) predictions,
∑T

t=1 wP,t.
2

V ∗ Variance of the number of (non-refused)
predictions,

∑T
t=1 wP,t(1− wP,t).

2

wD,t Weight of the dummy, also the probabil-
ity of refusal, 1− wP,t.

3

wP,t Probability of making a prediction at
time t.

2

ŷP,t Prediction of P at time t. 2
ŷt Filtered prediction, ŷt = ŷP,t (predict)

or ŷt = ∅ (refuse) .
2

2 PROBLEM SETUP AND BACKGROUND

This section introduces the mathematical formulation of
online prediction problem with a refusing meta-algorithm
and the prediction with expert advice framework.

2.1 Problem Formulation
We assume access to a base predictor that produces a
label prediction on an observed object. We denote the base
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predictor as P and a sequence of (object, label) pairs by
(x1, y1), (x2, y2), . . . , (xT , yT ) where T is an arbitrary hori-
zon. At each time t ∈ {1, . . . , T} the base predictor does the
following

1) Observes the object xt.
2) Predicts the corresponding label ŷP,t.
3) Observes the true label yt, and suffers the loss lP,t.

In our formulation, we stay agnostic to the data sequence
(x1, y1), (x2, y2), . . . , (xT , yT ) and inner workings of the
base predictor P . We assume only that the loss values are
scaled to the unit interval, i.e. 0 ≤ lP,t ≤ 1 ∀ t.

For example, in a traditional classification task, the labels
yt are drawn from a finite set and 0-1 loss is used for the loss
function, i.e. lP,t = 0 if ŷP,t = yt and lP,t = 1 if ŷP,t 6= yt.

Once the base predictor P is chosen, our goal is to design
a meta-algorithm M which decides to either follow the
prediction made by P or refuse to make a prediction for
each data point. We characterize this meta-algorithm by the
following:
• Parameter: Target error/loss rate, ε ∈ (0, 1), is the

average loss over time we can tolerate.
• Input: In full generality, the input of M at time t

consists of xi, ŷP,i ∀ i ∈ {1, ..., t}, and yj , lP,j ∀ j ∈
{1, ..., t− 1}. Note these are all the observed quantities
before the label yt is revealed.

• Output: A randomized decision to predict (or refuse) at
time t. We represent the output of M as a probability
value wP,t ∈ [0, 1] that is used to decide the final
prediction ŷt as follows:

ŷt =

{
ŷP,t with prob. wP,t
∅ with prob. 1− wP,t

,

where ∅ denotes a refusal.
A pictorial description of this general framework is pre-
sented in Figure 1.

We note that M makes a randomized decision at each
time point and therefore the number of (non-refused) pre-
dictions is a random variable. We compute the expected
value T ∗ of this quantity as

T ∗ =
T∑
t=1

wP,t.

Because we ascribe no loss from refusing to predict, there-
fore we define the expected cumulative loss of M as

L∗P,T =
T∑
t=1

wP,tlP,t.

Finally, we define the error rate for this randomized meta al-
gorithm by normalizing the cumulative expected loss via the
expected number of non-refused predictions, i.e. L∗P,T /T

∗.
Our top priority is to guarantee that the error rate of non-

refused predictions made by the meta-algorithm does not
exceed the target error rate ε as the number of predictions
increases. Following nomenclature introduced by Tukey
[35], see also [26], we call this property the validity of the
algorithm. Our goal is to satisfy validity without making
any assumptions on the data. An asymptotic definition for
the validity is given below.

Definition 2.1. A meta-algorithm M with a given target error ε
is called valid if

lim sup
T∗→∞

L∗P,T
T ∗

≤ ε.

Next, among valid algorithms we interpret the efficiency
of an algorithm as the fraction of the predicted data points
and define it as follows.

Definition 2.2. Efficiency of a meta-algorithm M is denoted by
ρT = T ∗/T and M is called efficient if

lim inf
T→∞

ρT = 1.

Though the discussion until now has defined validity
and efficiency only asymptotically, we will derive explicit
bounds on the excess error rate, i.e. L∗P,T /T

∗ − ε. However,
any non-trivial formal statement about the efficiency of M
has to depend on the performance of the base predictor P .
To keep this dependence minimal, we analyze the efficiency
asymptotically for theoretical purposes for all predictors,
though experiments show that the efficiency is high for
reasonably good predictors.

Fig. 1: The meta-algorithm, represented by M , makes a prediction
equivalent to the recommendation of the base predictor P or refuses
to do so for data point t while guaranteeing a target rate ε.

For the sake of succinctness in the sequel, we introduce
the following notation. First, we compute the variance V ∗

of the number of non-refused predictions with respect to
the randomness of the meta-algorithm (i.e. wP,t) as

V ∗ =
T∑
t=1

wP,t (1− wP,t) .

Next, we denote the cumulative loss for any predictor P
(typically for the base predictor) as

LP,T =
T∑
t=1

lP,t.

We also introduce a third sub-index t0 for any cumulative
quantity to represent the corresponding sum is starting from
t0 + 1, e.g. for the cumulative loss of P ,

LP,T,t0 =
T∑

t=t0+1

lP,t.
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2.2 Expert Advice and Exponentially Weighted Average
Forecasting (EWAF)
The prediction with expert advice framework pertains to
an online prediction scenario in which one has access to
a fixed set of experts (predictors). The goal is to combine
these experts’ predictions such that the difference between
the cumulative losses of the combined predictor and the best
expert in the set is minimized. This difference is called regret,
and the algorithms that guarantee a regret that grows sub-
linearly with the number of predictions are defined as Han-
nan consistent. The appeal of the expert advice algorithms
is the fact that the consistency can be guaranteed even in
an adversarial setup. For a comprehensive treatment of the
expert advice algorithms, we refer the reader to [6].

Exponentially weighted average forecasting (EWAF) was
first introduced by Littlestone and Warmuth [33] and by
Vovk [34] for the expert advice prediction framework. Our
meta-algorithm builds on EWAF to provide means to meet
any target error rate. Among various expert advice algo-
rithms, we focus on EWAF due to the simplicity of its
analysis and strong theoretical guarantees.

Consider N predictors (experts) P1, P2, . . . , PN each
making a prediction ŷP1,t, . . . , ŷPN ,t and each suffering a
loss lP1,t, . . . , lPN ,t at time t. At each time t, EWAF outputs
one of these predictions as the combined prediction. To do
so, EWAF starts with an initial probability distribution over
the experts (wP1,1, . . . , wPN ,1) and a learning rate η > 0.
At each time point t, this probability distribution is used
to choose an expert and consequently, use the prediction
of that expert. The probability distribution is updated after
the true label and corresponding losses are revealed. By
denoting the probability that the predictor Pi is chosen at
time t with wPi,t, the prediction ŷt is obtained by

ŷt = ŷPi,t with prob. wPi,t, i = 1, . . . , N.

After the true label yt is revealed, we update these proba-
bilities by multiplying them by an exponential factor that is
scaled with the corresponding loss value and the learning
rate, i.e.

wPi,t+1 =
wPi,te

−ηlPi,t∑N
j=1 wPj ,te

−ηlPj,t
. (1)

The pseudo-code of the EWAF algorithm is given in Al-
gorithm 1. Given that EWAF randomly selects a predictor

Algorithm 1 Exp. Weighted Avg. Forecasting (EWAF)
Initial weights: (wP1,1, wP2,1, . . . , wPN ,1)
Learning rate: η

1: for each t = 1, 2, . . . do
2: Follow expert Pi with probability wPi,t.
3: Update the weights :

wPi,t+1 =
wPi,te

−ηlPi,t∑N
j=1 wPj ,te

−ηlPj,t

according to a known distribution, we can compute the
expected loss for the combined prediction at time t as

lt =
N∑
i=1

wPi,tlPi,t

We denote the expected cumulative loss of the EWAF as

LT =
T∑
t=1

lt

and the cumulative loss of expert i, ∀ i as

LPi,T =
T∑
t=1

lPi,t.

The following well-known theorem establishes an upper
bound to the expected loss for EWAF, implying that the
regret of EWAF is bounded by O(

√
T logN).

Theorem 2.1. (Theorem 2.2 [6]) For any learning rate η > 0,
and the initial weights (wP1,1, . . . , wPN ,1), we get the following
bound for the expected cumulative loss of the EWAF

LT ≤ LPi,T −
logwPi,1

η
+
ηT

8
(2)

for all i = 1, . . . , N .
If we choose wPi,1 = 1/N for all i and minimize the right

hand side (RHS) of the bound above with respective to η, we get,

LT ≤ LPi,T +

√
T logN

2
(3)

which is achieved for η =
√

8 log(N)/T .

The bound given in eq. (3) is optimal in the sense that
there exists a matching lower bound in the worst case (see
Chapter 3.7 [6]). Since the bound on the total sum of the
expected loss holds for any predictor, it follows that the
bound holds for the predictor with the least cumulative loss.
Therefore, the bound in eq. (3) limits how far EWAF is from
optimality in terms of the sum of the expected loss.

Applying the bound in eq. (3) is insufficient to establish
the validity of our algorithm, since eq. (3) bounds regret only
with O

(√
T
)

while validity requires a sub-linear bound
with T ∗. In Section 3.1 we present a refined analysis with
an appropriate learning rate to establish validity.

3 RELIABLE PREDICTION WITH REFUSALS

We now introduce our meta-algorithm, SafePredict, which
uses EWAF to convert any given base predictor P into a
refusing one with a guaranteed error bound. Furthermore,
we provide a theoretical analysis to establish the asymptotic
validity and efficiency of SafePredict. Then, we employ the
well-known doubling trick (see for instance Exercise 2.8 [6]
or Theorem 7.7 [36]) to choose the learning rate and extend
our validity analysis accordingly.

In order to achieve validity, we introduce a trivial pre-
dictor which can meet the target error rate by refusing to
predict all the time. We refer to this particular predictor as
the “dummy predictor” and denote it byD, i.e. ŷD,t = ∅ ∀ t.
We also assume that the predictor D suffers a constant loss
ε for each time t, i.e. lD,t = ε and LD,t = εt ∀ t.

SafePredict is obtained by employing an instance of the
EWAF algorithm that runs on the ensemble {D,P}, to
decide either to refuse or predict. Therefore at each step,
SafePredict follows the base predictor with probability wP,t
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and computes the prediction probability for the next round
after observing the corresponding loss of P as

wP,t+1 =
wP,te

−ηlP,t

wP,te−ηlP,t + wD,te−ηε
, (4)

where wD,t = 1−wP,t stands for the dummy’s weight. The
pseudo-code for SafePredict is given in Algorithm 2.

Algorithm 2 SafePredict
Base predictor: P ; Initial weight: wP,1 ∈ (0, 1)
Learning rate: η > 0; Target error rate: ε ∈ (0, 1)

1: for each t = 1, 2, . . . do
2: Predict with probability wP,t, refuse otherwise, i.e.

ŷt =

{
ŷP,t with prob. wP,t
∅ otherwise

3: Update the prediction probability:

wP,t+1 =
wP,te

−ηlP,t

wP,te−ηlP,t + wD,te−ηε
,

Note that Algorithm 2 requires no assumptions (such as
i.i.d. assumptions) about the input data. The algorithm takes
only the loss values as input.

3.1 Validity

To bound the average loss of SafePredict one might be
inclined to simply apply the bound presented in Theorem
2.1 with N = 2, P1 = P , P2 = D, and the optimal learning
rate to minimize the RHS of eq. (2) for i = 2, which results
in

L∗P,T
T ∗

≤ ε+
1

T ∗

√
T log(1/wD,1)

2
. (5)

The problem with the bound in eq. (5) is that if the predic-
tion probability decreases too quickly (i.e. for T ∗ �

√
T )

the rightmost term can easily become vacuous, i.e. the
excess error does not vanish. In particular, the bound is
not sufficient to guarantee the validity of the algorithm
for the case in which T ∗ the number of predictions made
approaches infinity slower than

√
T where T is the number

of data points presented, i.e. T ∗ = ω (1) and T ∗ = O
(√

T
)

.
In the following theorem, we present a refined bound

for SafePredict that suggests a learning rate that decreases
with the variance of the number of predictions, i.e. V ∗, and
guarantees the validity of our algorithm.

Theorem 3.1. For any P , η > 0, ε < 1/2, and 0 < wP,1 < 1,
SafePredict satisfies

L∗P,T
T ∗

≤ ε− log (wD,1)

ηT ∗
+

(1− ε)2
ηV ∗

T ∗
. (6)

Consequently, by choosing the learning rate η to minimize the
RHS of this bound, we get

L∗P,T
T ∗

≤ ε+ (1− ε) 2
√

log (1/wD,1)V ∗

T ∗
(7)

for η∗ =

√
log(1/wD,1)/V ∗

1−ε .

Before proving the statement given in the theorem, we
define auxiliary quantities called “mix-loss” and “mixability
gap”, and present two important results from [37] about
EWAF in terms of these quantities.

In the expert advice framework of Section 2.1, the mix-
loss mt is an alternative way of averaging the expert losses
lPi,t, ∀ i using the weights wPi,t, ∀ i. Formally, mix-loss is
defined as

mt = −1

η
log

(
N∑
i=1

wPi,te
−ηlPi,t

)

or equivalently e−ηmt =
∑N
i=1 wPi,te

−ηlPi,t . Additionally,
we denote the cumulative mix-loss as MT =

∑T
t=1mt.

One can bound the cumulative mix-loss in terms of the
losses of the individual experts by the following lemma.

Lemma 3.2. ( [37], Lemma 1) For the learning rate η > 0, and
the initial weights (wP1,1, . . . , wPN ,1), the cumulative mix-loss
of the EWAF satisfies the following inequality

MT ≤ LPi,T −
logwPi,1

η
(8)

for all i = 1, . . . , N .

The bound on the cumulative mix-loss can be used
to bound the cumulative expected loss by defining the
mixability gap as the difference between these two type of
averages and bounding them with classical concentration
inequalities. In particular, the mixability gap, δt = lt −mt,
can be bounded using the following lemma.

Lemma 3.3. ( [37], Lemma 4) The difference between the expected
and mix losses obtained by EWAF algorithm is bounded by

δt = lt −mt ≤ η
∑
i

wPi,t (lt − lPi,t)
2

for all t.

Armed with these two lemmas, we can continue with
the proof of Theorem 3.1

Proof of Theorem 3.1. By definition of δt we have

LT = MT +
T∑
t=1

δt.

Then by applying Lemma 3.2. with Pi = D, we get

T∑
t=1

lt ≤ εT − log (wD,1)

η
+

T∑
t=1

δt. (9)

Next, we plug in the definition of the expected loss
lt = wP,tlP,t +wD,tε, and divide both sides by the expected
number of predictions,

T∑
t=1

wP,tlP,t ≤
T∑
t=1

(1− wD,t)ε−
log (wD,1)

η
+

T∑
t=1

δt

L∗P,T ≤ εT ∗ − log (wD,1)

η
+

T∑
t=1

δt

L∗P,T
T ∗

≤ ε− log (wD,1)

ηT ∗
+

1

T ∗

T∑
t=1

δt. (10)
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Finally, we obtain the desired result by bounding δt:

δt ≤ η
(
wP,t (lt − lP,t)2

+ wD,t (lt − ε)2
)

(11)

= η
(
wP,tw

2
D,t + wD,tw

2
P,t

)
(lP,t − ε)2 (12)

= ηwP,twD,t (lP,t − ε)2 (13)

≤ ηwP,twD,t (1− ε)2 (14)

(11) follows from Lemma 3.3, while (12) and (13) follow from
the definition of lt and wD,t + wP,t = 1, respectively.

Then, by summing up both sides of eq. (14) over t, we
get

T∑
t=1

δt ≤
ηV ∗

(1− ε)2 . (15)

The desired result for the first part of the theorem, eq.
(6), follows by plugging eq. (15) into eq. (10). Finally, the
learning rate η that minimizes the RHS of eq. (6) can be
found by basic calculus, and by plugging in this optimal
learning rate we obtain eq. (7).

Note that the essential difference between the bounds
in eq. (5) and (7) lies in the choice of the learning rate η.
While the optimal learning rate for the conventional use
of EWAF is on the order of 1/

√
T , Theorem 3.1 suggests

to choose η to be on the order of 1/
√
V ∗, which decreases

much slower than 1/
√
T , and leads to a sufficient condition

for the validity of our algorithm.
Theorem 3.1 implies the excess error rate decreases with

a rate
√
V ∗/T ∗, i.e. L∗P,t/T

∗ − ε = O
(√

V ∗/T ∗
)

. Since V ∗

is always less than or equal to T ∗, this rate is bounded by

1

T ∗
≤
√
V ∗

T ∗
≤ 1√

T ∗
.

Therefore our result implies that as more predictions are
made (i.e. T ∗ increases) the bound becomes tighter and
guarantees the validity of SafePredict algorithm.

Corollary 3.3.1. For any P , ε < 1/2, 0 < wP,1 < 1,
if one choose the learning rate η in the order of 1/

√
V ∗, i.e.

η = Θ
(

1/
√
V ∗
)

, SafePredict is guaranteed to be valid.

Unfortunately, selecting a learning rate η that depends
on V ∗ is infeasible because V ∗ is unknown a priori. In
Section 3.3 we describe a practical method for choosing a
learning rate without knowledge of the expected number of
refusals while still satisfying eq. (7) up to a constant factor.
Having shown the validity of our algorithm, we now move
to the efficiency.

3.2 Efficiency

In this section, we study the efficiency of the SafePredict
meta-algorithm given in Algorithm 2. In contrast with valid-
ity which we addressed without requiring any assumptions
on the base predictor, we must characterize the efficiency
of a given algorithm with respect to the performance of
the base predictor P . We show that SafePredict leads to
efficient predictions if the base predictor P has an asymp-
totic error rate smaller than the target error rate ε, i.e.
limt→∞ LP,t/t < ε.

The following lemma lower and upper bounds the prob-
ability of making a prediction at time t + 1, i.e. wP,t+1, in
terms of the cumulative loss of the base predictor P .

Lemma 3.4. The probability of making a prediction at time t+ 1
for SafePredict, namely wP,t+1, satisfies the following

1− wD,1
wP,1

eη(LP,t−εt) ≤ wP,t+1 ≤
wP,1
wD,1

eη(εt−LP,t). (16)

Proof. To prove the upper bound in eq. (16) we first note that
the update rule given in eq. (4) can be written in terms of
the mix-loss, and by induction we can obtain the prediction
probability at time t + 1 in terms of the cumulative losses
Mt and LP,t (see (17) and (18) below), i.e.

wP,t+1 =
wP,te

−ηlP,t

e−ηmt
= wP,te

η(mt−lP,t) (17)

= wP,1e
η(Mt−LP,t) (18)

≤ wP,1e
η(LD,t−log(wD,1)/η−LP,t) (19)

≤ wP,1
wD,1

eη(εt−LP,t). (20)

Next, (19) and (20) follows by applying Lemma 3.2 with
Pi = D to bound the cumulative mix loss in terms of the
cumulative loss of the dummy, LD,t = εt.

For the lower bound, we apply the same argument for
wD,t+1 = 1− wP,t+1.

Note that Lemma 3.4 implies that the probability of
making a prediction decreases exponentially fast if the
cumulative loss of the base predictor is increasing faster
than the target error rate ε. Next, we exploit this fact to
show that if the base predictor satisfies the desired error
requirement (i.e. its average loss is already below ε), our
algorithm achieves a finite expected number of refusals.

Theorem 3.5. If LP,T /T < ε and ηT → ∞ in the limit T →
∞, then the expected number of refusals made by SafePredict is
finite, i.e.

T ∗ =
∞∑
t=1

wD,t < ∞. (21)

Proof. We first define ε′ = lim supT→∞ LP,T /T . Since ε′ < ε,
there exists a t0 <∞ such that for all t > t0:

LP,t
t

≤ ε′ +
ε− ε′

2
. (22)

Then,

∞∑
t=1

wD,t =
t0∑
t=1

wD,t +
∞∑

t=t0+1

wD,t (23)

≤ t0 +
∞∑

t=t0+1

(1− wP,t) (24)

≤ t0 +
1− wP,1
wP,1

∞∑
t=t0+1

eηt(LP,t/t−ε) (25)

≤ t0 + lim
t′→∞

wD,1
wP,1

t′∑
t=t0+1

eηt(ε
′−ε)/2 (26)

≤ t0 + lim
t′→∞

wD,1
wP,1

eη(t0+1)(ε′−ε)/2 − eηt
′(ε′−ε)/2

1− eη(ε′−ε)/2

(27)
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≤ t0 +
wD,1
wP,1

eη(t0+1)(ε′−ε)/2

1− eη(ε′−ε)/2 < ∞, (28)

where (24) follows from the fact that wD,t ≤ 1, (25)
follows from Lemma 3.4, (26) follows from eq. (22), (27)
follows from the sum of a geometric series and from the
fact eη(ε

′−ε)/2 < 1, finally (28) follows from the hypothesis
ηT →∞.

Theorem 3.5. shows that SafePredict is efficient if the
base predictor is already valid. Furthermore, the theorem
shows the expected number of refusals is finite even over
an infinite data stream. The following corollary strengthens
the operational insight from the expected value to an almost
sure statement.

Corollary 3.5.1. If LP,t/t < ε in the limit t → ∞ and η =
ω
(
T−1

)
, i.e. ηT → ∞, then SafePredict leads to an efficient

predictor for P and ε, i.e.

lim inf
T→∞

ρT = lim inf
T→∞

1−
∑T
t=1 wD,t
T

= 1.

Furthermore, there exists a finite T0, such that the number of
refusals are less than T0 almost surely.

Proof. The first part of the corollary is a direct consequence
of Theorem 3.5, and the second part follows from the Borel-
Cantelli Lemma, see e.g. Theorem 3.9 from [38].

Note that Corollary 3.5.1 depends on the assumption
that the predictor P is able to (eventually) predict accurately
enough to obtain a valid algorithm. Yet, if the predictor is
highly inaccurate, i.e. lP,t > ε with high probability, then
SafePredict meta-algorithm will refuse almost all the time,
as it should. The meta-algorithm does not need to know in
advance how well the base predictor will behave to achieve
this desirable outcome. Further, we can make SafePredict
adaptive when the base predictor sometimes is valid and
sometimes is not, as we show in Section 4.

3.3 Choosing the Learning Rate

Corollary 3.3.1 and 3.5.1 establish the validity and efficiency
of SafePredict once the learning rate η is chosen to be on
the order of 1/

√
V ∗, but V ∗ cannot be known a priori.

One classical method of addressing the issue of estimating
unknown quantities in an online scenario is known as the
doubling trick (cf. Chapter 2.3 of [6] or Theorem 7.7 of [36]). In
this subsection, we derive a validity bound using this trick.

In general, the doubling trick starts with an initial es-
timate of the unknown quantity and compares it with the
observed value of this quantity at each time step. When
the measured value exceeds the estimate, the estimate is
doubled and the algorithm is reset.

We use the doubling trick to choose η. Specifically, we
want to estimate V ∗ for a fixed horizon T . We start with an
initial estimate of Vest (typically Vest = 1) and a running
sum Vsum = 0. Then we invoke Theorem 3.1. by replacing
V ∗ with Vest = 1, i.e. η =

√
log (1/wD,1)/(1− ε) and run

Algorithm 2. At each time t we update Vsum by increment-
ing it by wP,t+1wD,t+1 and check if it exceeds the current
estimate. If it does, we do the following:

1) Double the estimated value Vest ← 2Vest.

2) Update the learning rate according to the new Vest, i.e.
η ← η/

√
2.

3) Reset the prediction probability wP,t+1 ← wP,1.
4) Reset the running sum Vsum ← 0.

The complete pseudo-code for the modified algorithm is
given in Algorithm 3.

Algorithm 3 SafePredict with Doubling Trick
Base predictor: P ; Initial weight: wP,1 ∈ (0, 1)
Target error rate: ε ∈ (0, 1)

1: Initialize t = 1
2: for each k = 1, 2, . . . do
3: Reset wP,t = wP,1, Vsum = 0, and

η =
√

log(1/wD,1)/(1− ε)2
/2k

4: while Vsum ≤ 2k do
5: Predict with probability wP,t, refuse otherwise,

ŷt =

{
ŷP,t with prob. wP,t
∅ otherwise

6: Update the prediction probability:

wP,t+1 =
wP,te

−ηlP,t

wP,te−ηlP,t + wD,te−ηε
,

7: Compute Vsum ← Vsum + wP,t+1wD,t+1

8: Increment t by 1, i.e. t← t+ 1

In the following theorem, we show that for SafePredict
with doubling trick, given in Algorithm 3, the validity
bound presented in Theorem 3.1 increases only by a con-
stant multiplicative factor of

√
2/(
√

2− 1).

Theorem 3.6. For any P , ε < 1/2, and 0 < wP,1 < 1,
SafePredict with the doubling trick given in Algorithm 3 satisfies

L∗P,T
T ∗

≤ ε+ (1− ε) 2
√

2√
2− 1

√
log (1/wD,1)V ∗

T ∗
. (29)

Proof. Denote the time for the Kth reset of the algorithm
with TK , i.e. TK is the largest τ such that

∑τ
t=1 wP,twD,t ≤

2K . Additionally, assume T0 = 0 and K∗ is the integer that
satisfies TK∗−1 < T ≤ TK∗ .

Then, we can rewrite the sum

L∗P,T − εT ∗ =
T∑
t=1

wP,t (lP,t − ε)

≤
K∗∑
K=1

TK∑
t=TK−1+1

wP,t (lP.t − ε) . (30)

Next, we can bound each summand in the right hand-
side using eq. (7) from Theorem 3.1, i.e. for all K we plug
the estimated Vest = 2K value instead of V ∗ in the learning
rate and the corresponding bound,

TK∑
t=TK−1+1

wP,t (lP,t − ε) ≤ (1− ε) 2
√

2K log (1/wD,1).

(31)

Combining eq. (30) and (31), we obtain

L∗P,T − εT ∗ ≤ (1− ε) 2
K∗∑
K=1

√
2K log (1/wD,1)
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= (1− ε) 2
√

2K∗ log (1/wD,1)
K∗∑
K=1

√
2K−K∗

≤ (1− ε) 2
√

2√
2− 1

√
2K∗ log (1/wD,1) (32)

≤ (1− ε) 2
√

2√
2− 1

√
log (1/wD,1)V ∗ (33)

where (32) follows from the sum of a geometric series and
(33) follows from the definition of K∗.

Finally, the desired result is obtained by dividing both
sides by T ∗.

Theorem 3.5 shows that the penalty paid for not know-
ing the optimal η is a constant factor in the validity bound.
For efficiency, our results from Theorem 3.5 and Corollary
3.5.1 still apply, and only finitely many refusals occur if
the error rate of the base predictor is below ε. To see this,
first, note that we simply run SafePredict by restarting the
weights for increasingly sized blocks of data points. In each
block our estimate of the learning rate is off by at most
a constant factor of 2 from the suggested learning rate in
Theorem 3.1. Therefore, the condition on the learning rate
of Theorem 3.5 (i.e. ηT → ∞) is guaranteed to be satisfied
and thus efficiency is guaranteed.

4 ADAPTIVE SAFEPREDICT

We now consider the practical scenario in which the error
rate of the base predictor changes over time. Our meta-
algorithm should reduce the probability of making a predic-
tion when the base predictor suffers a large error and predict
more often when the base predictor does well. Inspired
by the Fixed Share algorithm [39], we introduce Adap-
tive SafePredict, a weight-shifting extension to SafePredict.
Adaptive SafePredict tracks changes in the error rate of the
base predictor while preserving validity, thus improving
efficiency even when there are periods of poor predictions.

The base predictor can have a non-constant error rate
for a variety of reasons. For example, most predictors have
a high error rate at the beginning of the prediction task
and the error rate decreases as they see more examples and
learn from the mistakes. Alternatively, the underlying data
distribution may abruptly change and thus the performance
of the base predictor degrades significantly till the predictor
learns the new data distribution. Such scenarios might lead
to long sequences of bad predictions for the base algorithm
P , and force the prediction probability to tend to zero.
To make sure the prediction probability does not decrease
too quickly due to a long sequence of bad predictions,
we shift a small portion of the dummy’s “weight” (refusal
probability) towards the base predictor. This weight shift
allows Adaptive SafePredict to quickly recover when the
base predictor performs well again.

As an example, suppose P has a constant error rate 3ε
for t ≤ T/2 and ε/2 for T/2 < t ≤ T . Ideally, we would
like wP,t = 0 for t ≤ T/2 and wP,t = 1 for t > T/2 to
achieve efficiency ρT = 1/2. However, Lemma 3.4 implies
the probability of making a prediction decreases quickly till
time T/2 and reaches ≈ e−ηεT . Even though it starts to
increase afterwards, at time T the probability of making a

prediction is still bounded by ≈ eη(εT−LP,T ) = e−ηε3T/4,
which is far below the ideal probability of 1.

In the literature, there are various ways of making the
generic EWAF adaptive against such changing environ-
ments, see e.g. Chapter 5.2 of [6]. A particularly elegant
and popular way among these techniques is called "sharing
the weights" which leads to the fixed share algorithm [39].
The fixed share algorithm simply adds a mixing step to the
weight update rule in the EWAF. In particular, following
the notation from Section 2.1, the fixed share update rule
becomes

wPi,t+1 =
α

N
+ (1− α)

wPi,te
−ηli,t∑N

j=1 wPj ,te
−ηlj,t

for some α ∈ [0, 1). The mixing step ensures that no
weight falls below a predefined value α/N , and guarantees
a sub-linear regret against roughly αT abrupt changes in
the underlying statistics (e.g. the error rate). For a detailed
analysis of the fixed share algorithm, please see [39], [40].

In this section, we apply a similar idea to our problem
and propose an adaptive version of the SafePredict. We
modify the EWAF update rule eq. (4) to guarantee that the
prediction probabilities do not get too small or too large, so
that they can track the changes in the error rate efficiently
while preserving the validity guarantees established in Sec-
tion 3.1. To constrain the prediction probability at time t+ 1
to lie within an arbitrary interval αt ≤ wP,t+1 ≤ βt, we
modify our update rule as follows

wP,t+1 = αt + (βt − αt)
wP,te

−ηlP,t

wP,te−ηlP,t + wD,te−ηε
.(34)

We call αt and βt the adaptivity parameters and let them
change with time for the sake of generality. In Algorithm
4, we give the pseudo-code for Adaptive SafePredict with
adaptivity parameters αt and βt.

Algorithm 4 Adaptive SafePredict
Base predictor: P ; Initial weight: wP,1 ∈ (0, 1)
Learning rate: η > 0; Target error rate: ε ∈ (0, 1)
Min. prediction prob.: α1, . . . , αT ∈ [0, 1)
Max. prediction prob.: β1, . . . , βT ∈ (0, 1]

1: for each t = 1, 2, . . . do
2: Predict with probability wP,t, refuse otherwise, i.e.

ŷt =

{
ŷP,t with prob. wP,t
∅ otherwise

3: Update the prediction probability:

wP,t+1 = αt + (βt − αt)
wP,te

−ηlP,t

wP,te−ηlP,t + wD,te−ηε

In the rest of this section, we find a good setting for
the adaptivity parameters that provides resilience against
changes while preserving validity. In particular, we first ex-
tend our analysis from Section 3.1 and observe that validity
is preserved as long as αt is on the order of 1/T , irrespective
of the choice of βt. By notingwP,t+1 is an increasing function
of βt, we choose βt = 1 to maximize the efficiency of this
adaptive algorithm (Alg. 4) under this restriction on αt. In
particular, we derive an upper bound to the probability of
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refusal that depends only on the loss sequence of P starting
from an arbitrary time point t0, i.e. LP,t,t0 instead of LP,t,
that implies a boost in efficiency if P starts to make better
predictions after t0.

4.1 Validity
To quantify the effect of the adaptivity parameters αt, βt
on our validity guarantees, we first show that Adaptive
SafePredict is equivalent to the usual EWAF with a larger
set of experts. In particular, we consider a virtual ensemble,
where each expert in the ensemble chooses to follow either
the dummy predictor D, or the base predictor P . In the
following lemma, we show that for an appropriately chosen
set of initial weights, the EWAF on this virtual ensemble (i.e.
Algorithm 1) becomes equivalent to Adaptive SafePredict as
outlined in Algorithm 4. Next, we use this equivalence to
extend our analysis from Section 3.

Lemma 4.1. (Equivalence lemma) Suppose we have a base
predictor P . Consider an ensemble of 2T experts, P =
{P0, P1, . . . , P2T−1}, defined as follows:
• Denote the tth bit of the binary expansion of integer i with
bi,t, and define the notation x̄ = 1− x.

• Fix the predictions and the losses of each expert Pi as follows:

ŷPi,t =

{
∅ bi,t = 0
ŷP,t bi,t = 1

and lPi,t =

{
ε bi,t = 0
lP,t bi,t = 1

.

• Set the initial weights for each expert as

wPi,1 =w
bi,1
P,1w

b̄i,1
D,1 . . .

T−1∏
t=1

α
b̄i,tbi,t+1

t ᾱ
b̄i,tb̄i,t+1

t β
bi,tbi,t+1

t β̄
bi,tb̄i,t+1

t .

Then the EWAF algorithm (Alg. 1) using the expert ensemble
P with the learning rate η is equivalent to Adaptive SafePredict
(Alg. 4) using the base predictor P , in terms of the prediction
probability

wP,t =
∑

i:bi,t=1

wPi,t.

Proof. The proof is in Supplementary Material.

Because Lemma 4.1 reduces the adaptive algorithm to
an instance of EWAF, we can obtain the following validity
guarantee by modifying the proof of Theorem 3.1.

Corollary 4.1.1. For any P , η > 0, ε < 1/2, 0 < wP,1 < 1,
and 0 ≤ αt, βt,≤ 1, ∀t Adaptive SafePredict meta-algorithm
given in Algorithm 4 satisfies

L∗P,T
T ∗

≤ ε− log (wD,1∆T )

ηT ∗
+

(1− ε)2
ηV ∗

T ∗
, (35)

where ∆T is defined as
∏T−1
t=1 (1− αt).

By choosing the learning rate η to minimize the RHS of this
bound, we get

L∗P,T
T ∗

≤ ε+ (1− ε) 2
√

log (1/(wD,1∆T ))V ∗

T ∗
(36)

for η∗ =

√
log(1/(wD,1∆T ))/V ∗

1−ε .

Proof. The proof of the corollary follows from exactly the
same steps given in the proof of Theorem 3.1, except instead

of choosing Pi = D while applying Lemma 3.2 in eq. (9), we
choose Pi = P0 from the equivalent virtual ensemble given
in Lemma 4.1. Note that P0 always refuses and essentially
identical to D, except its initial weight is

wP0,1 = wD,1

T−1∏
t=1

(1− αt) = wD,1∆T .

Corollary 4.1.2. For αt = α < 1/2 ∀t, the validity bound given
in eq. (36) becomes

L∗P,T
T ∗

≤ ε+ (1− ε) 2
√
V ∗ (log (1/wD,1) + Tα+ Tα2)

T ∗
.

Thus setting α = O (1/T ) is a sufficient condition to
guarantee the validity of Adaptive SafePredict given in Alg. 4.

Proof. Proof directly follows from setting αt = α in eq. (36)
and using Taylor series expansion of ∆T ,

log (∆T ) = (T − 1) log(1− α) ≥ − T
(
α+ α2

)
.

Corollary 4.1.2 implies that by choosing αt = α =
O (1/T ), we can preserve the same convergence rate for
the excess error rate from Theorem 3.1, i.e. L∗P,T /T

∗ − ε =

O
(√

V ∗/T ∗
)

. In other words, as long as α is small, the
whole effect of the weight shifting on our validity bound
can be interpreted as starting with a smaller initial refusal
probability, by reducing wD,1 by a multiplicative factor of
∆T ≈ eαT which is essentially a constant for α = O (1/T ).

Furthermore, note that the bound given in eq. (36) de-
pends only on αt and is totally agnostic to the choice of
βt. Therefore, once αt values are chosen to preserve the
validity, i.e. on the order of 1/T , we are free to choose
βt to maximize the prediction probability, and therefore
efficiency, by choosing βt = 1 at all time points t. In the
next subsection, we analyze the efficiency of this special case
and argue it provides resilience against changes in the data
distribution.

4.2 Weight-Shifting SafePredict
In Section 3.2, we showed that the prediction probability
of SafePredict increases or decreases exponentially quickly
depending on the cumulative loss of the base predictor
P . As mentioned in the beginning of Section 4, this may
cause a high refusal rate when the performance of the base
predictor deteriorates abruptly. In this section, we exploit a
special case of Adaptive SafePredict to show that it provides
resilience against changes in the data distribution while
preserving the validity of the algorithm. This special case,
obtained for αt = α = Θ (1/T ) and βt = 1, is called Weight-
Shifting SafePredict.

As motivated by Corollary 4.1.2, we first set αt for
all t equal to some constant α, where α is on the order
of 1/T . This will guarantee validity. Next, we choose to
maximize wP,t+1 over βt in order to maximize the efficiency.
Therefore, from eq. (34) we obtain βt = 1, ∀ t. Note that
this particular choice of adaptivity parameters simplifies the
update rule given in eq. (34) to

wP,t+1 = α+ (1− α)
wP,te

−ηlP,t

wP,te−ηlP,t + wD,te−ηε
. (37)

An intuitive way of looking at this rule is that at each time
point we use the EWAF rule first and then shift an α portion
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of the weight of the dummy to towards the base predictor
P , thus performing “weight shifting”.

The following result implies an exponentially diminish-
ing refusal probability in terms of the partial cumulative loss
LP,t,t0 , for an arbitrary t0 < t, which implies that Weight-
Shifting SafePredict can quickly recover to make predictions
if the base predictor performs well starting time t0.

Lemma 4.2. The probability of refusing to predict at time t+ 1,
wD,t+1, by the using the Weight-Shifting SafePredict (Algorithm
4 with βt = 1 and αt = α, ∀ t) satisfies the following inequality

wD,t+1 ≤
1− α
α

eη(LP,t,t0−ε
′(t−t0)) (38)

for ε′ = ε+ α/η.

Proof. First, write the update rule eq. (37) in terms of the
probability of refusal by noting wD,t = 1− wP,t

wD,t+1 = wD,t (1− α)
e−ηε

wP,te−ηlP,t + wD,te−ηε

= wD,t (1− α) eη(mt−ε) (39)

= wD,t0+1 (1− α)
t−t0 eη(

∑t
τ=t0+1mτ−ε(t−t0)) (40)

≤ wD,t0+1e
η(

∑t
τ=t0+1mτ−ε

′(t−t0)). (41)

Where (39) follows by replacing the denominator with the
definition of mix-loss from Section 3.1, (40) follows by
recursing this update rule t − t0 time, and the final step
follows from the inequality 1− α ≤ e−α for 0 ≤ α ≤ 1 and
ε′ = ε+ α/η.

By Lemma 4.1, the mix-loss suffered by Algorithm 4 is
equal to the one suffered by the EWAF over the virtual
ensemble described in the the lemma. Note that we can
consider all the virtual experts that follow P from time t0+1
to t as a single super-expert since they suffer the same loss
sequence, namely lP,t0+1, . . . , lP,t, within this interval. By
denoting this super expert as Q, we can compute its total
weight at time t0 + 1 as

wQ,t0+1 =
∑

i:bi,t0+1=1

wPi,t0+1 = wP,t0+1,

where equality to wP,t0+1 again follows from the Lemma
4.1. Then we can bound the sum in the eq. (41) using Lemma
3.2 for virtual expert Q,

t∑
τ=t0+1

mτ ≤ LQ,t,t0 −
log(wQ,t0+1)

η

= LP,t,t0 −
log(wP,t0+1)

η
. (42)

Finally, we conclude the proof by employing eq. (42) in eq.
(41) and noting wP,t0+1 ≥ α and wD,t0+1 ≤ 1− α, i.e.

wD,t+1 ≤ wD,t0+1e
η(LP,t,t0−ε

′(t−t0))−log(wP,t0+1)

=
wD,t0+1

wP,t0+1
eη(LP,t,t0−ε

′(t−t0))

≤ 1− α
α

eη(LP,t,t0−ε
′(t−t0)).

We note that the dominant term of the RHS of eq. (38)
is the exponential term since the preceding term (1 − α)/α

for α = Θ (1/T ) increases only linearly with T . Therefore,
Lemma 4.2 implies that if P starts to do well at time t0,
i.e. if its error rate starting from t0 becomes less than the
target rate ε, the prediction probability will increase to 1
exponentially fast.

Algorithm 5 Weight-Shifting SafePredict with Doub. Trick
Base predictor: P ; Initial weight: wP,1 ∈ (0, 1)
Target error rate: ε ∈ (0, 1); Adaptivitiy Parameter: α ∈ [0, 1)

1: Initialize t = 1
2: for each k = 1, 2, . . . do
3: Reset wP,t = wP,1, Vsum = 0, and

η =

√
− log

(
wD,1 (1− α)

T−1
)
/(1− ε)2

/2k

4: while Vsum ≤ 2k do
5: Predict with probability wP,t, refuse otherwise,

ŷt =

{
ŷP,t with prob. wP,t
∅ otherwise

6: Update the prediction probability:

wP,t+1 = α+ (1− α)
wP,te

−ηlP,t

wP,te−ηlP,t + wD,te−ηε

7: Compute Vsum ← Vsum + wP,t+1wD,t+1

8: Increment t by 1, i.e. t← t+ 1

As in Section 3, the proposed learning rates for Adaptive
SafePredict and therefore the Weight-Shifting SafePredict
depend on V ∗, and can be estimated using the doubling
trick as described in Section 3.3. For the sake of com-
pleteness, pseudo-code for the Weight-Shifting SafePredict
with the doubling trick is given in Algorithm 5. We can
also extend the validity bound given in Corollary 4.1.2 by
following the same steps we used in the proof of Theorem
3.6.

Corollary 4.2.1. For any P , ε < 1/2, 0 < wP,1 < 1, and
0 ≤ α < 1 Weight-Shifting SafePredict with the doubling trick
given in Algorithm 5 satisfies

L∗P,T
T ∗

≤ ε+ (1− ε) 2
√

2V ∗√
2− 1

√
log (1/wD,1) + Tα+ Tα2

T ∗
.

Note that for α = 0, Algorithm 5 reduces to the original
SafePredict (Alg. 3). As we increase α, i.e. the adaptivity,
the efficiency increases, since we increase the likelihood to
make a prediction at each step. Furthermore, validity is
guaranteed as long as α is on the order of 1/T . In the next
section, the impact of α is numerically evaluated.

5 EXPERIMENTS

In this section, we investigate the performance of the pro-
posed meta-algorithms on both synthetic and real data.1

In Section 5.1, we randomly generate loss sequences and
verify the validity of our algorithms empirically for various
loss statistics and various degrees of adaptivity. The ex-
periments show that the Weight-Shifting SafePredict boosts

1. For the sake of reproducibility, Python scripts used to generate our
results, tabulated results on the synthetic data, and the experiments on
other data sets are provided in the supplementary material.
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the number of predictions in changing environments while
preserving the validity of the algorithm.

In Section 5.2, we compare SafePredict with popu-
lar confidence-based refusal methods on the well-known
MNIST digit recognition dataset [41]. SafePredict increases
the efficiency relative to other refusal mechanisms while
guaranteeing validity.

In the following, for the sake of brevity, we refer Weight-
Shifting SafePredict (Alg. 5) as simply SafePredict by noting
that α = 0 corresponds to the original SafePredict (Alg. 3).

5.1 Synthetic Data

In this subsection, we generate a binary sequence of loss-
values with varying error probabilities. The subsection ex-
amines the validity and efficiency of SafePredict. In particu-
lar, we restrict the adaptivity parameter of the SafePredict to
have the form α = k/T , in accordance with Corollary 4.1.2,
and observe the trade-off in choosing the parameter k.

Fig. 2: Efficiency Experiments on Synthetic Data: The efficiency
(T ∗/T ) of SafePredict with respect to increasing choices of α. (top) If
the base predictor has a constant error rate which is higher than the
target, SafePredict almost always refuses. The number of predictions
in this case increases with α. (bottom) On the other hand, when
the error rate of the base predictor fluctuates around the target, the
efficiency of SafePredict increases as α increases and achieves nearly
the same efficiency as the oracle, which predicts if only if εt ≤ ε. No
matter what, asymptotic validity is preserved.

Parameters: We fix the time horizon T = 50000, initial
weight wP,1 = 0.5 and the target error rate ε = 0.05. Then
we evaluate our results for α ∈ {0, 1/T, 5/T, 10/T}.

Data Generation: To evaluate the performance of the
meta-algorithm, we assume the existence of a base predictor

P with a time varying error rate, and generate the loss se-
quence corresponding to its predictions randomly. To model
the changes in the error-rate we employ a simple change-
point model. The statistical properties of the generated loss
sequence lP,1, . . . , lP,T are characterized by the following
three parameters: low error level (εlow), high error level
(εhi), and the number of change points (numChange). To
generate a particular loss sequence, we first split the time
horizon into numChange+1 non-overlapping, consecutive,
equal length blocks. Then we assume the error rate of P to
be constant within each block and alternates between εlow
and εhi for consecutive blocks. Formally, we generate each
lP,t as an independent Bernoulli random variable as follows:

lP,t =

{
1 with prob. εt
0 with prob. 1− εt

,

where

εt =

{
εlow if dt(numChange+ 1)/T e is even
εhi otherwise .

Results: We generate 12 distinct loss sequences with
different numChange, εlow and εhi values and evaluate the
error rate and efficiency of Algorithm 5 for various values
of α. The complete numerical results are presented in the
supplementary material, but the key observations about the
efficiency of SafePredict are summarized in Figures 2 and 3.

As a baseline for comparison, the results of an idealized
oracle are also included. We assume the oracle has access to
the true error rate of P , i.e. εt, at each time point and decides
to predict if and only if εt ≤ ε. In other words, its prediction
probability is equal to

wP,t =

{
1 if εt ≤ ε
0 otherwise .

By contrast, in all our experiments, SafePredict does not
know the number or location in time of the change points.
So the oracle enjoys a significant advantage.

These simulations reveal two main issues:
1) Bound on Validity: Following Corollary 4.1.2, for all

α = O (1/T ), the excess error rate is O
(√

V ∗/T ∗
)

. How-
ever, the constants hidden by the big-oh notation increase
with α, and become significant when T ∗ is small. This
effect can be observed most prominently in experiments
where the error rate of the base algorithm is consistently
higher than the target rate. In these cases, the oracle always
refuses as it should whereas SafePredict refuses often but
not always. Asymptotically, SafePredict is still valid, but for
finite sequences its error rate may exceed the target. On the
other hand, in the experiments where the base predictor
achieves the target for significant periods of time, the excess
error rate of SafePredict stays within 7% of the target error
rate (below 0.0035 for ε = 0.05) and the efficiency increases
with α, see Table 1 in Supplementary Material.

2) Efficiency via adaptivity: As expected from the theoreti-
cal analysis in Section 4 and empirically observed in Figure
2, the efficiency of SafePredict increases with α. SafePredict
performs nearly as well as the oracle, even though the oracle
knows the true error probabilities and SafePredict does
not. However, as the number of change points increases,
SafePredict must refuse more to be able to adapt to the
changes, and therefore suffers a drop in efficiency. As can
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Fig. 3: Synthetic Data, Evolution of Efficiency: Note α = 0 corre-
sponds to the original SafePredict (Alg. 3) and has no adaptivity. For
α > 0, SafePredict can track the change points and boost efficiency.
Larger α implies better tracking. As the number of change points
increases, SafePredict does a poorer job tracking the performance of
the base predictor (relative to the oracle that knows the error rate),
thus the efficiency drops. All the predictors in the figures are valid.

be seen in Figure 3, the efficiency of SafePredict decreases
with the number of change points while the tracking ability
of SafePredict increases with α, sometimes approaching the
efficiency achieved by the oracle.

5.2 Real Data: MNIST Dataset
We now explore the validity and efficiency of SafePre-
dict on the MNIST digit recognition dataset [41] with a
random forest classifier as the base predictor. Results on
other datasets from UCI repository [42] are presented in
Supplementary material. We also compare SafePredict with
a natural confidence-based refusal mechanism. This method
is widely used in practice, e.g. [11], [43], [44], and similar
methods are used as baselines in the literature, see e.g.
[17], [45]. Furthermore, one can conveniently make a fair
comparison with SafePredict since both are meta-algorithms
that can be used on top of (almost) any predictor. Finally, we
investigate a smart way of combining SafePredict with the
confidence-based mechanism to improve the efficiency.

The MNIST dataset consists of 70000 samples of hand-
written digits where each sample is represented by a 784
dimensional integer vector and labeled with a digit from 0 to
9. We randomly permute the data and choose the first 10000
data points to use in our experiments. An artificial change-
point is introduced at t = 5000. We then choose a random
label permutation and apply this permutation function to
the last 5000 data points, i.e. the second half of the data

points are effectively chosen from another distribution. We
fix the target error rate as ε = 0.08 in our experiments.

Random forests are chosen due to their outstanding per-
formance on a very broad set of tasks [46] and robustness to
the choice of parameters. We used a Python implementation
of Random Forests from the Scikit-learn package [47] with
default parameters. In the scope of this experiment, we
retrain the random forest once every 100 new data points
in order to mitigate the computational burden.

The confidence-based refusal method we consider in this
paper starts with a base predictor that outputs a confidence
score for each prediction, and a refusal threshold. The meta-
algorithm decides to refuse if the confidence score does
not exceed the threshold value. In our experiments, we
computed confidence scores via predict_proba method for
each prediction. Implementation details are available in the
documentation of scikit-learn. As in the case of retraining
the base predictors, we update the refusal threshold once
every 100 data points. In particular, to update the threshold
at time t we use cross-validation over the points up to and
including t − 1 and choose the smallest threshold (i.e. the
one refuses the least) that gives an error rate smaller than ε
over the non-refused predictions in the validation sets.

We show the results with SafePredict meta-algorithm
(Alg. 5) with fixed parameters α = 1/1000 (10/T ) and
wP,1 = 0.5. SafePredict is used on top of random forests ei-
ther by itself or in conjunction with the confidence-based re-
fusal meta-algorithm. In the latter multi-meta-algorithm sce-
nario, SafePredict use the losses suffered by the confidence-
based algorithm as an input. When the confidence-based
meta-algorithm refuses to make a prediction for data point
at time t, SafePredict also refuses to predict and does not
update the weights, i.e. ignores the data point at time t.

Finally, we include an “amnesic adaptive" version of the
combined meta-algorithm and base predictor that considers
excessive refusals of SafePredict as a sign that adaptation is
needed. To do so, the amnesic adaptive version monitors the
fraction of the predictions made by the base predictor that
are refused by SafePredict within the last epoch (i.e. 100 data
points). If the fraction is larger than 0.5 the amnesic adaptive
version ignores all data points from before the current epoch
while both (i) training the base predictor (e.g. random forest)
and (ii) any underlying confidence-based meta-algorithm.
The evaluation of efficiency (T ∗/T ) and error rate (L∗P,T /T

∗)
versus time is plotted for each of these predictors in Fig. 4.

Experimental results lead to the following observations:
1) Validity: As seen from the top subplot of Figure

4, the confidence-based refusal mechanism fails to satisfy
the validity requirement of keeping the error rate below ε
after the change point, i.e., t > 5000. The reason is that
confidence-base refusal requires data points to be (at least
approximately) exchangeable to deliver the required error
guarantee and this assumption fails after the change point.
On the other hand, SafePredict establishes validity because
it makes no assumptions about data points.

2) Efficiency: The robust validity of SafePredict relative
to changes in the environment comes at a cost to effi-
ciency. Generally, the confidence-based refusal method has
a higher efficiency than SafePredict due to the nature of
the refusal strategies (which follow from the stronger as-
sumptions of the confidence-based methods). However, the
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Fig. 4: MNIST Dataset: Efficiency is 1.0 for the base predictor but
lower for the various refusing meta-algorithms. Validity is measured
as a fraction of the target error rate. So the base predictor has a poor
error rate (way over ε). All the SafePredict variants rapidly approach
a normalized error rate value of 1 though the error rate increases at
the change point at time t = 5000. The confidence based competition
cannot guarantee asymptotic validity. Two forms of adaptivity help
reduce the number of refusals: weight-shifting especially with a high
α value and amnesic adaptivity. Combining both leads to the highest
efficiency while preserving validity.

discrepancy in the efficiency can be mitigated by employ-
ing the confidence-based mechanism as the base algorithm
for SafePredict. This method implies a two-layered refusal
mechanism, but as we discussed in Section 3.2 and 4.2, the
second layer (SafePredict) will refuse seldom as long as
the first layer (confidence-based algorithm) stays valid. As
can be seen from Figure 4, this method (CBR+SafePredict)
combines the best of confidence-based refusals and SafePre-
dict by performing almost as efficiently as confidence-based
refusals before the change point and preserving validity
throughout.

3) Amnesic Adaptivity: SafePredict on top of the
confidence-based predictor remains valid throughout,
but refusals increase after the change point, since the
confidence-based mechanism is not valid anymore and thus
causes excessive errors. In the amnesic adaptive variant,
we use the excessive refusals to trigger an update of the
base algorithm. Specifically, if the number of data points
predicted by confidence-based predictor but refused by
SafePredict is large, the amnesic approach concludes that
the confidence-based algorithm is no longer well-calibrated,
so earlier data points should be ignored. We denote this
adaptive method as “Amnesic CBR+SP”. As seen in the
plots, Amnesic CBR+SP gives the most favorable perfor-
mance in our experiments by preserving validity thanks to
SafePredict and achieving better efficiency after the change
point by forcing the confidence-based algorithm to forget

the previous data points.

6 CONCLUSION

We have introduced a meta-algorithm, SafePredict, that
works with any base prediction algorithm and asymptot-
ically guarantees an upper bound on the error rate for
non-refused predictions. The error guarantee achieved by
SafePredict does not depend on any assumption on the
data or the base prediction algorithm. To achieve this, we
refined the regret notion from the expert advice framework
and recast the exponentially weighted average forecasting
algorithm to be used as a method to manage refusals.

To avoid too many refusals in changing environments,
we introduced a weight-shifting heuristic that encourages
predictions when the quality of the base predictor improves.
We have also used an amnesic adaptation mechanism to
further improve versatility in the face of occasional change
points. Our experiments show that these methods establish
validity even in challenging environments while refusing
seldom when the base predictor does well.
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