Reliable Online Prediction with Refuse Option

Ph.D. Dissertation Defense

Mustafa Anil Kocak

NYU Tandon School of Engineering

Introduction

- Machine learning and prediction algorithms are the building blocks of automation and forecasting.
- Reliability is crucial in risk-critical applications.
 - Analytics, risk assessment, credit decisions.
 - Health care, medical diagnosis.
 - Judicial decision making.
- **Basic idea:** Create a meta-algorithm that takes predictions from underlying machine learning algorithms and decides whether to pass them on to higher level applications.
- **Goal:** Achieve *robust correctness guarantees* for the predictions emitted by the meta-algorithm.

1

What Does It Mean to Refuse?

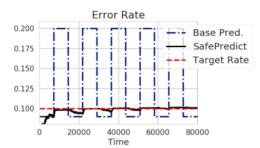
- The implications of refusing to make a prediction may vary according to the application of interest.
 - do more tests / collect more data
 - request user feedback or ask for a human expert to make the decision.
- Want to refuse seldom while still achieving the error bound.

Thesis Outline

- Part I (Covered in the Area Exam): Conjugate Prediction
 - Assumes exchangeable data stream.
 - Kocak, Mustafa Anil, Dennis E. Shasha, and Elza Erkip.
 "Conjugate Conformal Prediction for Online Binary Classification." UAI. 2016.
- Part II (Today): SafePredict
 - Adversarial data, i.e. no data assumptions.
 - Kocak, Mustafa A., David Ramirez, Elza Erkip, and Dennis E. Shasha. "SafePredict: A Meta-Algorithm for Machine Learning That Uses Refusals to Guarantee Correctness." Submitted to IEEE TPAMI. August 2017.

SafePredict: Novelty and Teaser

- SafePredict achieves a desired error bound without any assumption on the data or the base predictor.
- Tracks the changes in the error rate of the base predictor to avoid refusing too much.





Literature Review

Batch Setup

Data:
$$Z_i = (X_i, Y_i) \in \mathcal{X} \times \mathcal{Y} \sim \text{i.i.d. } \mathcal{D} \text{ for all } i = 1, \dots, m+1.$$

$$X_{m+1} \in \mathcal{X}$$
 Prediction Algorithm $\widehat{Y}_{m+1} \in \mathcal{Y} \cup \{\emptyset\}$

Training Data
 $Z_1^m = \{Z_1, \dots, Z_m\}$

Probability of Error (P_e)

$$P\left(\widehat{Y}_{m+1} \notin \{Y_{m+1}, \varnothing\} \mid Z_1^m\right)$$

Probability of Refusal (P_r)

$$P\left(\widehat{Y}_{m+1} = \varnothing \mid Z_1^m\right)$$

BATCH SETUP GOAL: Minimize $P_e + \kappa P_r$, where κ is the cost of a refusal relative to an error.

5

Related Work (Batch Setup)

- Chow, 1970: Assuming ${\cal D}$ is known, the optimal refusal mechanism is:

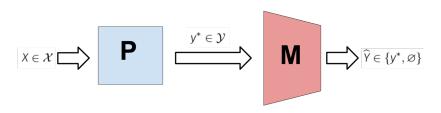
$$\widehat{Y}(X) = \begin{cases} y^* & \text{if } P(Y = y^* | X = X) \ge 1 - \kappa \\ \emptyset & \text{otherwise} \end{cases}$$

where $y^* = \arg \max_{v} P(Y = y^*|X)$ is the MAP predictor.

- For unknown \mathcal{D} , instead minimize $\widehat{P}_e + \kappa \widehat{P}_r$.
 - Wegkamp et al., 2006-2008: Rejection with hinge loss and lasso.
 - Wiener and El Yaniv, 2010-2012: Relationship with active learning and selective SVM.
 - Cortes et al., 2016-2017: Kernel based methods and boosting.

Refuse Option via Meta-Algorithms

In practice, a meta-algorithm approach is much more common.



Base Predictor *P* is characterized by a scoring function *S*:

- S(X, Y): How typical/probable/likely is (X, Y)?
- $y^* = arg \max_{y \in \mathcal{Y}} S(X, y)$

Meta-algorithm M characterized by
$$\tau$$
: $\widehat{Y}(X) = \begin{cases} y^* & \text{if } S(X, y^*) \ge \tau \\ \emptyset & \text{otherwise} \end{cases}$.

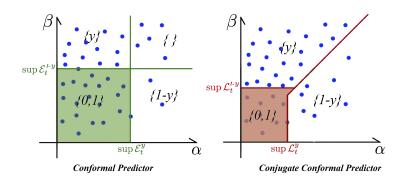
7

Conformal Prediction

Conformal Prediction (Vovk et al., 2005):

- Conformity score, S(x, y), measures how well (x, y) conforms with the training data.
 - e.g. distance to the decision boundary, out-of-bag scores, other probability estimates.
- Strong guarantees in terms of coverage, i.e. $P_e \le \epsilon + o(1)$.
 - Errors in first N points \sim Binom(N, ϵ).
- Probability of refusal is asymptotically minimized if S is consistent estimate of \mathcal{D} .

Conjugate Prediction: Reminder



Conjugate Prediction (Kocak et al., 2016):

- Multi-dimensional scoring functions.
- Fewer refusals for stable S.

Online/Adversarial Setup

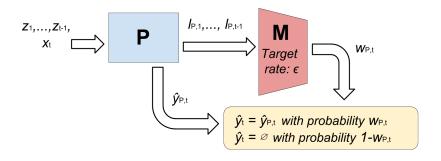
- Online: First observe x_1, \ldots, x_t and y_1, \ldots, y_{t-1} , then predict \hat{y}_t .
 - For each $t = 1, \ldots, T$:
 - i. Observe x_t.
 - ii. Predict ŷ_t.
 - *iii.* Observe y_t and suffer $l_t \in [0, 1]$.
- Adversarial: Assume nothing about the data.
 - Instead assume access to a set of predictors : P_1, P_2, \dots, P_N .

Related Work (Online/Adversarial Setup)

- i. Realizable Setup: Assume there exists a perfect predictor in the ensemble.
 - "Knows What it Knows" (Li et al., 2008): Minimize the number of refusals without allowing any errors.
 - "Trading off Mistakes and Don't-Know Predictions," (Sayedi et al, 2010): Allow up to k errors and minimize the refusals.
- ii. *l*-bias Assumption: One of the predictors makes at most *l* mistakes.
 - "Extended Littlestone Dimension" (Zhang et al., 2016): Minimize the refusals while keeping the number of errors below k.

SafePredict

Meta-Algorithms in Online Prediction Setup



- Base-algorithm P makes prediction $\hat{y}_{P,t}$ and suffer $l_{P,t} \in [0,1]$.
- Meta-algorithm M makes a (randomized) decision to refuse (\varnothing) or predict \hat{y}_t , to guarantee a target error rate ϵ .
 - M predicts at time t with probability $w_{P,t}$.

Validity and Efficiency

- We use the following * notation to denote the averages over the randomization of M, i.e.

 T^* : Expected number of (non-refused) predictions, $\sum_{t=1}^{T} w_{P,t}$.

 L_T^* : Expected cumulative loss of M, $\sum_{t=1}^{T} l_{P,t} w_{P,t}$.

Validity

M is valid if $\limsup_{T^* \to \infty} \frac{L_T^*}{T^*} \le \epsilon$.

Efficiency

M is efficient if $\lim_{T^* \to \infty} \frac{T^*}{T} = 1$.

SAFEPREDICT GOAL: M should be valid for **any** P and be efficient when P performs well.

Background: Expert Advice and EWAF

- How to combine expert opinions P_1, \ldots, P_N to perform almost as well as the best expert?

Exponentially weighted average forecasting (EWAF)

(Littlestone et al., 1989) (Vovk, 1990)

Intuition: Weight experts according to their past performances.

- 0. Initialize $(w_{P_1,1},\ldots,w_{P_N,1})$ and choose a learning rate $\eta>0$.
- 1. For each t = 1, ..., T
 - 1.1. Follow P_i with probability $w_{P_i,t}$.
 - 1.2. Update the probability $w_{P_i,t+1} \propto w_{P_i,t} e^{-\eta l_{P_i,t}}$.
- REGRET BOUND: $L_T \min_i L_{P_i,T} \le \sqrt{T \log(N)/2}$ where L_T and $L_{P_i,T}$ are the cumulative losses of EWAF and P_i .

Dummy and SafePredict

- We compare *P* with a dummy predictor (*D*) that refuses all the time.

$$l_{D,t} = \epsilon$$
, $y_{D,t} = \emptyset$.

- SafePredict is simply running EWAF over the ensemble {D, P}.
- EWAF regret bound implies $L_T^*/T^* \epsilon = O\left(\sqrt{T}/T^*\right)$.

Therefore, for validity, we need a better bound and a more careful choice of η .

Theoretical Guarantees (Validity)

Theorem (Validity) 1

Denoting the variance for the number of predictions with V^* and choosing $\eta = \Theta\left(1/\sqrt{V^*}\right)$, SafePredict is guaranteed to be valid for any P. Particularly,

$$\frac{L_T^*}{T^*} - \epsilon = O\left(\frac{\sqrt{V^*}}{T^*}\right) = O\left(\frac{1}{\sqrt{T^*}}\right),$$

where $V^* = \sum_{t=1}^{T} w_{P,t} w_{D,t}$.

¹ In practice, V* can be estimated via so called "doubling trick".

Theoretical Guarantees (Validity)

Outline of the proof:

First define $l_t = w_{P,t}l_{P,t} + w_{D,t}\epsilon$ and $e^{-\eta m_t} = w_{P,t}e^{-\eta l_{P,t}} + w_{D,t}e^{-\eta\epsilon}$.

Key Fact 1: For
$$M_T = \sum_t m_t$$
 and $L_{P,T} = \sum_t l_{P,t}$, we have
$$e^{-\eta M_T} = w_{P,1} e^{-\eta L_{P,T}} + w_{D,1} e^{-\eta \epsilon T}$$
$$e^{-\eta M_T} \ge w_{D,1} e^{-\eta \epsilon T} \Longrightarrow M_T \le \epsilon T - \frac{\log w_{D,1}}{n}.$$

Key Fact 2:
$$\sum_{t} l_{t} - m_{t} \leq \sum_{t} \eta w_{P,t} w_{D,t} (1 - \epsilon)^{2} = \eta (1 - \epsilon)^{2} V^{*}.$$

Finally, combine these two facts and choose $\eta = \Theta\left(1/\sqrt{\mathsf{V}^*}
ight)$

$$\sum_{t} l_{t} \leq \epsilon T - \frac{\log w_{D,1}}{\eta} + \eta \left(1 - \epsilon\right)^{2} V^{*} \Longrightarrow L_{T}^{*} \leq \epsilon T^{*} + O\left(\sqrt{V^{*}}\right).$$

Theoretical Guarantees (Efficiency)

SafePredict is efficient as long as P has an error rate less than ϵ and η vanishes slower than 1/T. Formally,

Theorem (Efficiency)

If $\limsup_{t\to\infty} L_{P,t}/t < \epsilon$ and $\eta T\to \infty$, then SafePredict is efficient. Furthermore, the number of refusals are finite almost surely.

Theoretical Guarantees (Efficiency)

Key Lemma:
$$W_{D,t+1} \leq \frac{W_{D,1}}{W_{P,1}} e^{\eta(L_{P,t}-\epsilon t)}$$
.

Outline of the proof:

$$\lim_{T \to \infty} \frac{T - T^*}{T} = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} w_{D,t}$$

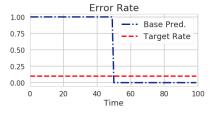
$$\leq \lim_{T \to \infty} \frac{1}{T} \left(w_{D,1} + \frac{w_{D,1}}{w_{P,1}} \sum_{t=1}^{T-1} e^{\eta(L_{P,t} - \epsilon t)} \right)$$

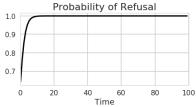
$$< \frac{\text{constant}}{\infty} = 0. \implies \lim_{T \to \infty} \frac{T^*}{T} = 1.$$

The last part directly follows from $\sum_t w_{D,t} < \infty$ and the Borel-Cantelli Lemma.

Making SafePredict Adaptive

- Probability of making a prediction decreases exponentially fast if the base predictor has a higher error rate than ϵ . Therefore, it is hard to recover from long sequences of mistakes.
 - Probability of refusal only depends on the cumulative loss of P.
 - e.g. cold starts, concept changes.
- Toy example:



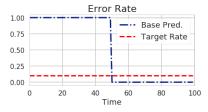


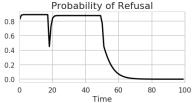
Making SafePredict Adaptive: Weight Shifting

Weight-shifting: At each step, shift α portion of the *D*'s weight towards *P*, i.e.

$$W_{P,t} \leftarrow W_{P,t} + \alpha W_{D,t} = \alpha + (1 - \alpha)W_{P,t}.$$

- Guarantees that $w_{P,t}$ is always greater than α .
- Inspired by Fixed Share algorithm (Herbster et al., 1998).
- Toy example:





Weight Shifting Guarantees

Validity Corollary:

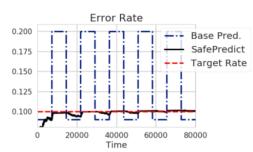
The validity guarantee is preserved for $\alpha = O(1/T)$,

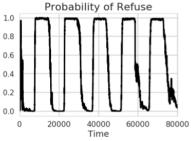
$$\frac{L_T^*}{T^*} - \epsilon = O\left(\frac{\sqrt{V^*}}{T^*}\right).$$

Efficiency Lemma:

Refuse probability decreases exponentially, if P performs better than D after t_0 ,

$$W_{D,t} \leq e^{\eta\left(\sum_{\tau=t_0}^{t-1} l_{P,\tau} - \epsilon(t-t_0)\right)}/\alpha.$$





SafePredict: Implementation

Weight-Shifting SafePredict with Doub. Trick

Base predictor: P; Initial weight: $w_{P,1} \in (0,1)$

Target error rate: $\epsilon \in (0,1)$; Adaptivitiy Parameter: $\alpha \in [0,1)$

- 1: Initialize t=1
- 2: **for** each k = 1, 2, ... **do**
- 3: Reset $w_{P,t} = w_{P,1}$, $V_{sum} = 0$, and

$$\eta = \sqrt{-\log\left(w_{D,1}(1-\alpha)^{T-1}\right)/(1-\epsilon)^2/2^k}$$

- 4: while $V_{sum} \leq 2^k$ do
- 5: Predict with probability $w_{P,t}$, refuse otherwise,

$$\hat{y}_t = \begin{cases} \hat{y}_{P,t} & \text{with prob. } w_{P,t} \\ \varnothing & \text{otherwise} \end{cases}$$

6: Update the prediction probability:

$$w_{P,t+1} = \alpha + (1 - \alpha) \frac{w_{P,t} e^{-\eta l_{P,t}}}{w_{P,t} e^{-\eta l_{P,t}} + w_{D,t} e^{-\eta \epsilon}}$$

- 7: Compute $V_{sum} \leftarrow V_{sum} + w_{P,t+1}w_{D,t+1}$
- 8: Increment t by 1, i.e. $t \leftarrow t + 1$

Choose the learning rate to minimize the excess error bound $\eta = K/\sqrt{V^*}$.

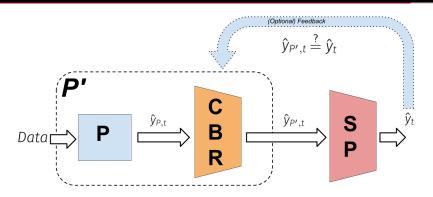
Use the "Doubling trick" to estimate V^* .

The validity guarantee is loosened by only a constant multiplicative factor of $\sqrt{2}/(\sqrt{2}-1)$.

Hybrid Approach and Amnesic Adaptivity

- SafePredict uses only the loss values while deciding to refuse or predict. Therefore, it only infers when it is safe to predict.
 - Robust validity under any conditions.
- Conformity based refusal mechanisms (CBR) use the data itself and pick out the easy predictions assuming all the data points are coming from (roughly) the same distribution.
 - Higher efficiency when the data is i.i.d.
- **Hybrid Approach:** Employ SafePredict on top of other refusal mechanisms for the best of the both worlds.

Hybrid Approach and Amnesic Adaptivity



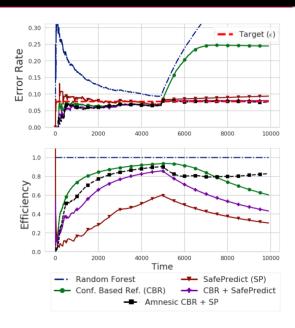
- If Confidence Based Refusal (CBR) mechanism predicts but SafePredict refuses, interpret this as violation of *i.i.d.* assumption.
 - Amnesic adaptation: if 50% of the last 100 predicted data points are refused by SafePredict, forget the history and reset the *P'*.

Numerical Experiments

Numerical Experiment (MNIST)

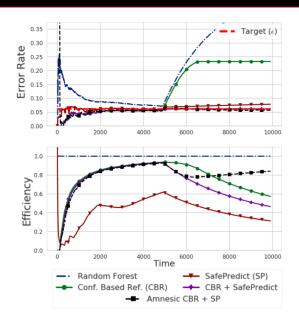


- T = 10,000.
- $\alpha = 10/T = 0.01$.
- P: Random forest retrained at every 100 data points.
- Change Point at t = 5000 (random permutation of labels).



Numerical Experiment (COD-RNA)

- Detection of non-coding RNAs (*Uzilov*, 2006)
- T = 10,000.
- $\alpha = 10/T = 0.01$.
- P: Random forest retrained at every 100 data points.
- Change Point at t = 5000 (random permutation of labels).



Conclusion

- We recast the exponentially weighted average forecasting algorithm to be used as a method to manage refusals.
- SafePredict works with any base prediction algorithm and asymptotically guarantees an upper bound on the error rate for non-refused predictions.
- The error guarantees do not depend on any assumption on the data or the base prediction algorithm.
- In changing environments, weight-shifting and amnesic adaptation heuristics boost efficiency while preserving the validity.
- Paper: https://arxiv.org/abs/1708.06425I-Python Notebooks: https://tinyurl.com/yagw3xzx

Questions?

Conformity Based Refusals

- 1. Split the training set as **core training**, Z_1^n , and **calibration**, Z_{n+1}^{n+l} , sets where n+l=m.
- 2. Train the base classifier P on the core training set.
- 3. Choose the smallest threshold that gives an empirical error probability on the calibration set less than ϵ , i.e.

$$\tau^* = \inf \left\{ \tau : \sum_{i=m+1}^{m+l} \mathbf{1}_{\hat{\mathbf{Y}}_i \notin \{\mathbf{Y}_i,\varnothing\}} / \sum_{i=m+1}^{m+l} \mathbf{1}_{\hat{\mathbf{Y}}_i \neq \varnothing} \le \epsilon \right\}.$$

- This operation takes O(l) computational time.

Then we have the following guarantee:

Theorem

We have
$$P_e \le \epsilon + \frac{1}{1 - P_e} \sqrt{\frac{\log(l/\delta)}{2l}}$$
 with probability at least $1 - \delta$.

CBR: Experiments

