SafePredict: a meta-algorithm for machine learning to guarantee correctness by refusing occasionally

Mustafa Anil Kocak

NYU Tandon School of Engineering

Joint work with David Ramirez, Elza Erkip, and Dennis E. Shasha

Introduction

- Machine learning and prediction algorithms are the building blocks of automation and forecasting.
- Reliability is crucial in risk-critical applications.
 - Analytics, risk assessment, credit decisions.
 - Health care, medical diagnosis.
 - Judicial decision making.
- **Basic idea:** Create a meta-algorithm that takes predictions from underlying machine learning algorithms and decides whether to pass them on to higher level applications.
- **Goal:** Achieve *robust correctness guarantees* for the predictions emitted by the meta-algorithm.

- The implications of refusing to make a prediction may vary according to the application of interest.
 - do more tests / collect more data
 - request user feedback or ask for a human expert to make the decision.
- Want to refuse seldom while still achieving the error bound.

Novelty and Teaser

- SafePredict achieves a desired error bound without any assumption on the data or the base predictor.
- Tracks the changes in the error rate of the base predictor to avoid refusing too much.

Literature Review

Batch Setup

Data: $Z_i = (X_i, Y_i) \in \mathcal{X} \times \mathcal{Y} \sim \text{i.i.d. } \mathcal{D} \text{ for all } i = 1, \dots, m + 1.$

BATCH SETUP GOAL: Minimize $P_e + \kappa P_r$, where κ is the cost of a refusal relative to an error.

- Chow, 1970: Assuming $\ensuremath{\mathcal{D}}$ is known, the optimal refusal mechanism is:

$$\widehat{Y}(X) = \begin{cases} y^* & \text{if } P(Y = y^* | X = x) \ge 1 - \kappa \\ \varnothing & \text{otherwise} \end{cases},$$

where $y^* = \arg \max_y P(Y = y^* | X)$ is the MAP predictor.

- For unknown \mathcal{D} , instead minimize $\widehat{P}_e + \kappa \ \widehat{P}_r$.
 - Wegkamp et al., 2006-2008: Rejection with hinge loss and lasso.
 - Wiener and El Yaniv, 2010-2012: Relationship with active learning and selective SVM.
 - Cortes et al., 2016-2017: Kernel based methods and boosting.

Refuse Option via Meta-Algorithms

In practice, a meta-algorithm approach is much more common.

Base Predictor *P* is characterized by a scoring function *S*:

- S(X, Y) : How typical/probable/likely is (X, Y)?
- $y^* = \arg \max_{y \in \mathcal{V}} S(X, y)$

Meta-algorithm *M* characterized by τ : $\widehat{Y}(X) = \begin{cases} y^* & \text{if } S(X, y^*) \ge \tau \\ \emptyset & \text{otherwise} \end{cases}$.

Conformal Prediction

Conformal Prediction (Vovk et al., 2005):

- Conformity score, *S*(*x*, *y*), measures how well (*x*, *y*) conforms with the training data.
 - e.g. distance to the decision boundary, out-of-bag scores, other probability estimates.
- Strong guarantees in terms of coverage, i.e. $P_e \leq \epsilon + o(1)$.
- Probability of refusal is asymptotically minimized if *S* is consistent.

Conjugate Prediction (Kocak et al., 2016):

- Multi-dimensional scoring functions.
- Fewer refusals for stable S.

- **Online:** First observe x_1, \ldots, x_t and y_1, \ldots, y_{t-1} , then predict \hat{y}_t .
 - For each $t = 1, \ldots, T$:
 - *i*. Observe *x*_t.
 - **ii.** Predict \hat{y}_t .
 - iii. Observe y_t and suffer $l_t \in [0, 1]$.
- Adversarial: Assume nothing about the data.
 - Instead assume access to a set of predictors : P_1, P_2, \ldots, P_N .

- i. Realizable Setup: Assume there exists a perfect predictor in the ensemble.
 - *"Knows What it Knows"* (Li et al., 2008): Minimize the number of refusals without allowing any errors.
 - *"Trading off Mistakes and Don't-Know Predictions,"* (Sayedi et al, 2010): Allow up to *k* errors and minimize the refusals.
- ii. *l*-bias Assumption: One of the predictors makes at most *l* mistakes.
 - *"Extended Littlestone Dimension"* (Zhang et al., 2016): Minimize the refusals while keeping the number of errors below *k*.

SafePredict

SafePredict is a meta-algorithm for the online setup, which guarantee that the error rate on the non-refused predictions is bounded by a user-specified target rate.

Our error guarantees do not depend on any assumption about the data or the base predictor, but are asymptotic in the number of non-refused predictions.

The number of refusals depends on the quality of the base predictor and can be shown to be small if the base predictor has a low error rate.

Meta-Algorithms in Online Prediction Setup

- Base-algorithm *P* makes prediction $\hat{y}_{P,t}$ and suffer $l_{P,t} \in [0, 1]$.
- Meta-algorithm *M* makes a (randomized) decision to refuse (\emptyset) or predict \hat{y}_t , to guarantee a target error rate ϵ .
 - M predicts at time t with probability $W_{P,t}$.

Validity and Efficiency

- We use the following * notation to denote the averages over the randomization of *M*, i.e.
 - *T**: Expected number of (non-refused) predictions, $\sum_{t=1}^{T} w_{P,t}$.
 - L_T^* : Expected cumulative loss of M, $\sum_{t=1}^T l_{P,t} w_{P,t}$.

ValidityEfficiencyM is valid if $\lim_{T^* \to \infty} \frac{L_T^*}{T^*} \le \epsilon$.M is efficient if $\lim_{T^* \to \infty} \frac{T^*}{T} = 1$.

SAFEPREDICT GOAL: M should be valid for **any** P and be *efficient* when P performs well.

Background: Expert Advice and EWAF

- How to combine expert opinions *P*₁,..., *P*_N to perform almost as well as the best expert?

Exponentially weighted average forecasting (EWAF)

(Littlestone et al., 1989) (Vovk, 1990)

Intuition: Weight experts according to their past performances.

- 0. Initialize $(w_{P_1,1}, \ldots, w_{P_N,1})$ and choose a learning rate $\eta > 0$.
- 1. For each t = 1, ..., T

1.1. Follow P_i with probability $w_{P_i,t}$.

- 1.2. Update the probability $w_{P_i,t+1} \propto w_{P_i,t}e^{-\eta l_{P_i,t}}$.
- **REGRET BOUND**: $L_T \min_i L_{P_i,T} \le \sqrt{T \log(N)/2}$ where L_T and $L_{P_i,T}$ are the cumulative losses of EWAF and P_i .

Dummy and SafePredict

- We compare P with a dummy predictor (D) that refuses all the time.

 $l_{D,t} = \epsilon$, $y_{D,t} = \emptyset$.

- SafePredict is simply running EWAF over the ensemble {*D*, *P*}.
- EWAF regret bound implies $L_T^*/T^* \epsilon = O\left(\sqrt{T}/T^*\right).$

Therefore, for validity, we need a better bound and a more careful choice of η .

Theorem (Validity) 1

Denoting the variance for the number of predictions with V^{*} and choosing $\eta = \Theta\left(1/\sqrt{V^*}\right)$, SafePredict is guaranteed to be valid for any P. Particularly,

$$\frac{L_T^*}{T^*} - \epsilon = O\left(\frac{\sqrt{V^*}}{T^*}\right) = O\left(\frac{1}{\sqrt{T^*}}\right),$$

where $V^* = \sum_{t=1}^{T} w_{P,t} w_{D,t}$.

¹ In practice, V* can be estimated via so called "doubling trick".

SafePredict is efficient as long as P has an error rate less than ϵ and η vanishes slower than 1/T. Formally,

Theorem (Efficiency)

If $\limsup_{t\to\infty} L_{P,t}/t < \epsilon$ and $\eta T \to \infty$, then SafePredict is efficient. Furthermore, the number of refusals are finite almost surely.

- Probability of making a prediction decreases exponentially fast if the base predictor has a higher error rate than ϵ . Therefore, it is hard to recover from long sequences of mistakes.
 - Probability of refusal only depends on the cumulative loss of P.
 - e.g. cold starts, concept changes.
- Toy example:

Weight-shifting: At each step, shift α portion of the D's weight towards P, i.e.

$$W_{P,t} \leftarrow W_{P,t} + \alpha W_{D,t} = \alpha + (1 - \alpha) W_{P,t}.$$

- Guarantees that $w_{P,t}$ is always greater than α .
- Toy example:

Weight Shifting

- Preserves the validity guarantee for $\alpha = O(1/T)$.
- Probability of refusal decreases exponentially fast if *P* performs better than *D* after t₀.*

$$^{*}W_{D,t} \leq e^{\eta\left(\sum_{\tau=t_{0}}^{t-1}l_{p,\tau}-\epsilon(t-t_{0})\right)}/\alpha.$$

- SafePredict uses only the loss values while deciding to refuse or predict. Therefore, it only infers when it is safe to predict.
 - Robust validity under any conditions.
- Conformity based refusal mechanisms (CBR) use the data itself and pick out the easy predictions *assuming* all the data points are coming from (roughly) the same distribution.
 - Higher efficiency when the data is i.i.d.
- HYBRID APPROACH: Employ SafePredict on top of other refusal mechanisms for the best of the both worlds.

Hybrid Approach and Amnesic Adaptivity

- If Confidence Based Refusal (CBR) mechanism predicts but SafePredict refuses, interpret this as violation of *i.i.d.* assumption.
 - Amnesic adaptation: if 50% of the last 100 predicted data points are refused by SafePredict, forget the history and reset the *P*'.

Numerical Experiments

Numerical Experiment (MNIST)

11543 75353 55906 35200

- T = 10,000.
- $\alpha = 10/T = 0.01$.
- *P*: Random forest retrained at every 100 data points.
- Change Point at t = 5000 (random permutation of labels).

Numerical Experiment (COD-RNA)

- Detection of non-coding RNAs (Uzilov, 2006)
- T = 10,000.
- $\alpha = 10/T = 0.01$.
- *P*: Random forest retrained at every 100 data points.
- Change Point at t = 5000 (random permutation of labels).

Conclusion

- We recast the exponentially weighted average forecasting algorithm to be used as a method to manage refusals.
- SafePredict works with any base prediction algorithm and asymptotically guarantees an upper bound on the error rate for non-refused predictions.
- The error guarantees do not depend on any assumption on the data or the base prediction algorithm.
- In changing environments, weight-shifting and amnesic adaptation heuristics boost efficiency while preserving the validity.
- Paper : https://arxiv.org/abs/1708.06425
 I-Python Notebooks : https://tinyurl.com/yagw3xzx

Questions?

Back-up Slides

Conformity Based Refusals

- 1. Split the training set as **core training**, Z_1^n , and **calibration**, Z_{n+1}^{n+l} , sets where n + l = m.
- 2. Train the base classifier P on the core training set.
- 3. Choose the smallest threshold that gives an empirical error probability on the **calibration set** less than ϵ , i.e.

$$\tau^* = \inf \left\{ \tau : \Sigma_{{}^{i=m+1}}^{m+l} \operatorname{1}_{\widehat{\mathbf{Y}}_i \notin \{\mathbf{Y}_i, \varnothing\}} / \sum_{{}^{i=m+1}}^{m+l} \operatorname{1}_{\widehat{\mathbf{Y}}_i \neq \varnothing} \leq \epsilon \right\}.$$

- This operation takes O(l) computational time.

Then we have the following guarantee:

Theorem

We have
$$P_e \leq \epsilon + \frac{1}{1 - P_r} \sqrt{\frac{\log(l/\delta)}{2l}}$$
 with probability at least $1 - \delta$.

CBR: Experiments

SafePredict: Choosing the learning rate?

- Optimal learning rate: $\eta^* = K/\sqrt{V^*}$ for some constant K > 0.
- Use the "doubling trick" to estimate V*.
- The validity guarantee is loosened by only a constant multiplicative factor of $\sqrt{2}/(\sqrt{2}-1)$.

Weight-Shifting SafePredict with Doub. Trick Base predictor: P; Initial weight: $w_{P,1} \in (0,1)$ Target error rate: $\epsilon \in (0,1)$; Adaptivitiy Parameter: $\alpha \in [0,1)$

1: Initialize t = 1

4: 5:

6:

2: **for** each k = 1, 2, ... **do**

3: Reset
$$w_{P,t} = w_{P,1}$$
, $V_{sum} = 0$, and

$$\eta = \sqrt{-\log\left(w_{D,1} \left(1 - \alpha\right)^{T-1}\right) / (1 - \epsilon)^2 / 2^k}$$

while $V_{sum} \leq 2^k$ do Predict with probability $w_{P,t}$, refuse otherwise,

$$\hat{y}_t = \begin{cases} \hat{y}_{P,t} & \text{ with prob. } w_{P,t} \\ \varnothing & \text{ otherwise} \end{cases}$$

Update the prediction probability:

$$w_{P,t+1} = \alpha + (1-\alpha) \frac{w_{P,t}e^{-\eta l_{P,t}}}{w_{P,t}e^{-\eta l_{P,t}} + w_{D,t}e^{-\eta \epsilon}}$$

7: Compute
$$V_{sum} \leftarrow V_{sum} + w_{P,t+1}w_{D,t+1}$$

8: Increment t by 1, i.e. $t \leftarrow t+1$

Weight-shifting: At each step, shift α portion of the *D*'s weight towards *P*, i.e.

$$W_{P,t} \leftarrow W_{P,t} + \alpha W_{D,t}.$$

- Guarantees that $w_{P,t}$ is always greater than α .
- Preserves the validity guarantee for $\alpha = O(1/T)$.
- Probability of refusal decreases exponentially fast if P performs better than D after t_0 , i.e.

$$W_{D,t_1+1} \leq e^{\eta \left(L_{P,t_0,t_1} - \epsilon(t_1 - t_0)\right)} / \alpha.$$

where $L_{P,t_0,t_1} = \sum_{t=t_0+1}^{t_1} l_{P,t}$ for any $t_0 < t_1$.