
Many Cores Reading Group

Organization Meeting
January 26, 2009

2

Explore programming languages
with high-level concurrency

● The multicore revolution
● Will happen (a new realization of Moore's Law)
● Will require extraordinarily-skilled programmers

● To avoid a massive skill shortage, try hiding
some of the complexity in the language
● Give up some potential
● Enable wider access to what is provided

3

Group facilitators

● Roy Lowrance (lowrance@cs.nyu.edu)

● Alexander Rubinsteyn (ar1738@nyu.edu)

● Dennis Shasha (shasha@courant.nyu.edu)

● Denis Zorin (dzorin@mrl.nyu.edu)

mailto:ar1738@nyu.edu
mailto:shasha@courant.nyu.edu

4

Hardware trends driving parallelism

1. Power free, transistors expensive

2. Mostly concerned about dynamic power

3. Silicon reliable, pins unreliable

4. Size of hardware design can be increased

5. Prototype chips easy to build

6. Latency and bandwidth improve in step

7. Multiply slow, load/store fast

8. Easily discovered instruction-level parallelism

9. Uniprocessor performance doubles every 18 months

10.Don't parallelize app, just wait for faster sequential
performance

11.Improve processor performance by increasing clock
frequency

12.Less than linear scaling when adding processors is
a failure

1. Transistors free, power expensive

2. Concerned about all power

3. Silicon also unreliable

4. Large designers harder to realize if <= 65 nm

5. Harder to build

6. Bandwidth improves at least as the square of
latency (in many technologies)

7. Multiply fast, load/store slow

8. Diminishing returns in search for more

9. Doubling may now take 5 years [IBM: slower]

10. The wait may be very long

11. Improve by increasing parallelism

12. Any speedup is a success

Source: [Asanovic-06: A View from Berkeley]

From: To:

5

“manycore” defined

● “thousands of processors on a chip”
 - “A View from Berkeley”, 2006

6

manycore existence proof

● In 2006, Cisco shipped a network processor
● 188 cores
● 130 nm technology
● 18 mm x 18 mm, 35W, 250 MHz clock

● Calculating assuming better technology
● At 45 nm: 725 cores
● At 30 nm: 1504 cores

Source: [Asanovic-06: A View from Berkeley]

Stop Press: “Cisco plans to release a [generalized server] product that threatens to shake up the
technology industry” - NY Times, January 20, 2009

7

Topics to prime your thinking

● Transactional memory
● Full-empty bits on memory words
● Shared memory schemes
● Message passing schemes
● Array languages
● X10, Fortress, … (recent designs)
● Non-array languages
● Courant language-use satisfaction survey

8

Potential process

● Meet every Monday
● 12:45
● Rm 1221
● 719 Broadway

● One person to present
● Discuss and volunteer to Roy or Alexander
● Present 30 minutes (<= 15 slides)
● Discuss 30 minutes
● Post presentations on web site

9

Agenda
Date Topic/Presenter

1/26 Intro: Alexander, Roy

2/2 Parallel Haskell: Alexander

2/9

2/16

2/23

3/2

3/9

3/16

3/23

3/30

4/6

4/13

4/20

4/27

5/4 Wrap up, next steps:Alexander, Roy

10

Remaining agenda for today

● Sign the interest sheet:
● Name
● Email
● Possible topic

● Volunteers?
● Spread the word
● Use the list server to sign up for

announcements:
www.cs.nyu.edu/mailman/listinfo/manycores

● Other

11

EXTRA SLIDES

12

Positive trends

● Economical to put thousands of simple
processors on a single chip

● Communications among chips to have “very low
latency and very high bandwidth”

● Software stack can evolve rapidly via open
source

Source: [Asanovic-06: A View from Berkeley]

13

Why smaller processors are better

● Parallelism is energy-efficient in achieving
performance

● Many small cores give highest performance per
unit area for parallel codes

● More smaller cores afford more opportunity to
dynamically alter voltage

● Small components are easier to shut down and
bypass when they fail

● Small elements are easier to design and verify
and model

Source: [Asanovic-06: A View from Berkeley]

14

Alternative existence proof

file:///Users/roy/Documents/00-inbox/IDFSp06-tera-scale%20headline.jpg

Source: http://techresearch.intel.com/articles/Tera-Scale/1421.htm

15

“and” not “or”

● Programmer productivity

● Execution efficiency

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

