Many Cores Reading Group

Organization Meeting January 26, 2009

Explore programming languages with high-level concurrency

- The multicore revolution
 - Will happen (a new realization of Moore's Law)
 - Will require extraordinarily-skilled programmers
- To avoid a massive skill shortage, try hiding some of the complexity in the language
 - Give up some potential
 - Enable wider access to what is provided

Group facilitators

- Roy Lowrance (lowrance@cs.nyu.edu)
- Alexander Rubinsteyn (ar1738@nyu.edu)
- Dennis Shasha (shasha@courant.nyu.edu)
- Denis Zorin (dzorin@mrl.nyu.edu)

Hardware trends driving parallelism

From:	To:
1. Power free, transistors expensive	1. Transistors free, power expensive
Y. Mostly concerned about dynamic power	2. Concerned about all power
 Silicon reliable, pins unreliable 	3. Silicon also unreliable
٤. Size of hardware design can be increased	 Large designers harder to realize if <= 65 nm
 Prototype chips easy to build 	5. Harder to build
 Latency and bandwidth improve in step 	Bandwidth improves at least as the square of latency (in many technologies)
Y. Multiply slow, load/store fast	7. Multiply fast, load/store slow
Λ. Easily discovered instruction-level parallelism	8. Diminishing returns in search for more
 Uniprocessor performance doubles every 18 months 	9. Doubling may now take 5 years [IBM: slower]
N · .Don't parallelize app, just wait for faster sequential performance	10. The wait may be very long
11. Improve processor performance by increasing clock frequency	11. Improve by increasing parallelism
۱۲.Less than linear scaling when adding processors is a failure	12. Any speedup is a success

"manycore" defined

"thousands of processors on a chip"
- "A View from Berkeley", 2006

manycore existence proof

- In 2006, Cisco shipped a network processor
 - 188 cores
 - 130 nm technology
 - 18 mm x 18 mm, 35W, 250 MHz clock
- Calculating assuming better technology
 - At 45 nm: 725 cores
 - At 30 nm: 1504 cores

Stop Press: "Cisco plans to release a [generalized server] product that threatens to shake up the technology industry" - NY Times, January 20, 2009

Source: [Asanovic-06: A View from Berkeley]

Topics to prime your thinking

- Transactional memory
- Full-empty bits on memory words
- Shared memory schemes
- Message passing schemes
- Array languages
- X10, Fortress, ... (recent designs)
- Non-array languages
- Courant language-use satisfaction survey

Potential process

- Meet every Monday
 - 12:45
 - Rm 1221
 - 719 Broadway
- One person to present
 - Discuss and volunteer to Roy or Alexander
 - Present 30 minutes (<= 15 slides)
 - Discuss 30 minutes
 - Post presentations on web site

Agenda

Date	Topic/Presenter
1/26	Intro: Alexander, Roy
2/2	Parallel Haskell: Alexander
2/9	
2/16	
2/23	
3/2	
3/9	
3/16	
3/23	
3/30	
4/6	
4/13	
4/20	
4/27	
5/4	Wrap up, next steps:Alexander, Roy

Remaining agenda for today

- Sign the interest sheet:
 - Name
 - Email
 - Possible topic
- Volunteers?
- Spread the word
- Use the list server to sign up for announcements: www.cs.nyu.edu/mailman/listinfo/manycores
- Other

EXTRA SLIDES

Positive trends

- Economical to put thousands of simple processors on a single chip
- Communications among chips to have "very low latency and very high bandwidth"
- Software stack can evolve rapidly via open source

Why smaller processors are better

- Parallelism is energy-efficient in achieving performance
- Many small cores give highest performance per unit area for parallel codes
- More smaller cores afford more opportunity to dynamically alter voltage
- Small components are easier to shut down and bypass when they fail
- Small elements are easier to design and verify and model

Alternative existence proof

"and" not "or"

• Programmer productivity

• Execution efficiency