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1 Summary

Data arriving in time order (a data stream) arises in fields ranging from physics to finance to
medicine to music, just to name a few. Often the data comes from sensors (in physics and medicine
for example) whose data rates continue to improve dramatically as sensor technology improves.
Further, the number of sensors is increasing, so correlating data between sensors becomes ever
more critical in order to distill knowlege from the data. On-line response is desirable in many ap-
plications (e.g., to aim a telescope at an activity of interest or to perform magnetic resonance-based
real-time surgery). These three factors – data size, correlation, and fast response – motivate our
proposal. Our intent is to build a foundational library of primitives to perform online or near online
correlation and burst detection on thousands or even millions of time series. Besides their direct
use, such primitives could provide a first level analysis of time series for online clustering and data
mining systems.

Methods and Intellectual Merit

The construction of these primitives will call for the development of algorithmically efficient meth-
ods, both in main and secondary memory. These include new algorithms for compressing the data in
time series and for finding interesting relationships among portions of these series. The techniques,
therefore, may be transferrable to any research area involving online compression and comparison.
To ensure concreteness, our activity will be motivated by our collaborations with physicists and
other natural and biomedical scientists.

Broader Impact

These primitives will enhance research and the national cyberinfrastructure in any application
requiring the fusion of time series information. Further, this work encompasses all kinds of time
series, including time series from music and other media. This will facilitate the inclusion of faculty
and students from K-12, both majority and minority, who may be attracted to science through
applications such as query by humming. Finally, our analytical tools can help earth, cosmological,
and medical scientists extract information from their data more effectively than at present.
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2 Results from Prior and Current NSF Support

Shasha’s most closely associated research grant has been NSF grant IIS-9988345, titled “ASES: an
approximate search engine for structure” covering the period September 2000 to September 2003
with a total budget of $282,440. Jason Wang of NJIT is a separately funded but co-equal collabo-
rator of that grant. The goal was to build engines for approximate search in collections of trees and
graphs. These have resulted in software and algorithms available to the community. The graphgrep
system [66, 34], done with doctoral student Rosalba Giugno, for searching and pattern recognition
in graphs has about 50 academic and industrial users worldwide. It allows users to search for undi-
rected graphs in large databases of graphs. The query graph can be a subset of the larger graph.
The tree searching software has been downloaded or used by more than 500 users and is the basis for
the search component of the TreeBase phylogenetic system [61, 72] accessible from GenBank and the
San Diego Supercomputer center. We also note that his earlier work with Kaizhong Zhang on pat-
tern recognition in trees [67] is the basis of IBM’s XMLDiff package. All such basic engine software
is available from Shasha’s web site http://cs.nyu.edu/cs/faculty/shasha/papers/papers.html.

Shasha also collaborates with two biological groups working on the model plant Arabidopsis. In
these collaborations, he has contributed to experimental design (the iterative use of combinatorial
design) [65], the discovery of transcription factor-binding site pairs using microarray information
[8], and the inference of the function of uncharacterized genes through the analysis of whole species
traits [54]. Most recently, he has done the bioinformatics work for the first cell sorting work on a
multicellular organism [9]. Other biological work includes [71, 73, 63].

In parallel with these efforts, Shasha has worked on core computer science topics. His ongoing
interest in database tuning has led to a second book on the subject with Philippe Bonnet [64].
Doctoral student Alberto Lerner and he have designed a database query language for ordered
data (in support of the time series work below) [52]. David Mazieres and Shasha have designed a
cryptographic file system [57]. Shasha has also worked on publish-subscribe algorithms and systems
[29, 28].

Shasha’s work on the algorithmic aspects of time series, done primarily with doctoral student
Yunyue Zhu, began with the Statstream [76] system for finding highly correlated moving windows
in thousands of data streams. This work will be reviewed in the body of this proposal. A second
effort callsed HumFinder [78, 79] attempts to match a person’s humming to recorded music and was
demonstrated in a noisy room at SIGMOD in 2003. Doctoral student Zhihua Wang has contributed
to this work. Other recent work concerns algorithms for burst detection across multiple window
sizes [77]. The starting point for the latter work is a collaboration with the Milagro group who are
trying to detect gamma ray bursts through an array of detectors placed in an artificial lake near
Los Alamos. The challenge they face is that gamma ray bursts may last from a few milliseconds
up to several days. For this reason, it is interesting to discover bursts no matter what their time
scale and to do so in one pass if possible (see the enclosed letter from Professor Allen Mincer).

His outreach efforts include being co-editor-in-chief of Information Systems, writing the “Puz-
zling Adventures” column for Scientific American, his role as science advisor to the New York Hall
of Science where he helps with exhibit design mostly aimed at K-9 students, and two recent books
[64, 62].

Cole’s research is currently supported by NSF grant CCR-0105678, titled “Algorithms for Ap-
proximation and Graph Problems,” covering the period August 2001 to July 2004 with a total
budget of $299,999. The project is concerned with devising algorithms for finding approximate
solutions to problems in string and pattern matching, to problems in graphs, and elsewhere. This
continues a ten year focus by the PI on problems in string and pattern matching. Highlights of
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the work on pattern matching include (i) the exact analysis of the Boyer-Moore string matching
algorithm [12] (a simplified version of which appears in several textbooks, e.g., [25, 39]); (ii) the
definition and solution of the subset matching problem [16] which is cental to providing efficient
algorithms for tree pattern matching; and which was subsequently applied elsewhere by others
[40, 44].

In recent work, Cole and Hariharan defined the sparse matching problem [17], a generalization
of both geometric and subset matching. The efficiency of their approach came from a new way
of encoding strings when applying convolution algorithms. This use of convolutions dates back to
Fischer and Paterson [31] who used them to give an O(n log mlogσ) algorithm for string matching
with wildcards, where σ is the alphabet size, n the text size, and m the pattern size. The technique
used in the sparse matching work also allowed this 30-year old bound to be improved to O(n log m).
Convolution plays a significant role in our planned work.

Cole has also worked on cache-oblivious algorithms [7, 5, 6]. Cache-oblivious algorithms are
meant to perform efficiently at all levels of the memory hierarchy without requiring special pa-
rameter settings such as block size [32]. Cole has worked a variety of searching problems in this
setting including point location in the plane. Searching problems across the memory hierarchy is a
significant concern in our planned work.

Finally, Cole and PhD student David Kandathil have designed a main memory partition sorting
algorithm that works in-place and runs faster than the best implementations of quicksort [22].

Cole has worked on a number of other problems during the period of his current NSF grant
[18, 14, 13, 4, 60, 19, 20, 15, 21], including an improvement to suffix trees (a central data structure
in string matching) with PhD student Lee-Ad Gottlieb.

3 Motivation

Many applications generate multiple data streams. For example,

• In mission operations for NASA’s Space Shuttle, approximately 20,000 sensors are telemetered
once per second to Mission Control at Johnson Space Center, Houston [50].

• The earth observing system data project consists of 64,000 time series covering the entire
earth [10] though the satellite covers the earth in swaths, so the time series have gaps.

• There are about 50,000 securities trading in the United States, and every second up to 100,000
quotes and trades (ticks) are generated.

These applications share the following characteristics:

• Updates come in the form of insertions of new elements rather than modifications of existing
data.

• Data arrives continuously.

• One pass algorithms to filter the data are essential because the data is vast. However, if the
filter does its job properly, there should be few enough candidates that detailed analysis can
take more time per candidate with only a modest impact on the overall running time.

Particularly significant are multi-stream statistics, because they permit the fusion of information
from multiple sources. Further we want to compute such statistics repeatedly, over closely spaced
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moving windows. For example, we might compute a standard statistical (Pearson) correlation over
a one hour moving window, but report the results for moving windows spaced every two minutes.
We call this periodic window processing.

We contrast this work with the considerable recent body of work on massive data streams
[26, 56, 36] where the assumption is that data can be read once and is not stored. In our applications,
we assume an initial filtering step must be completed in one pass, but a second pass may select
portions of data from a time-ordered historical log.

4 Problem Statement

A data stream, for our purposes, is a potentially unending sequence of data in time order. For
specificity, we consider data streams that produce one data item each time unit.

Correlation over windows of different streams has many variations. Here we discuss a few
paradigmatic problems.

• (All parameters fixed) Given Ns streams, a start time tstart, and a window size w, find, for
each time window W of size w, all pairs of streams s1 and s2 such that s1 during time window
W is highly correlated (over 0.95 typically) with s2 during the same time window. (Possible
time windows are [tstart..tstart+w−1], [tstart+1..tstart+w], ... where tstart is some start time.)

• (Lagged correlation) Allow shifts in time. That is, given Ns streams and a window size w,
find all time windows W1 and W2 where |W1| = |W2| = w and all pairs of streams s1 and
s2 such that s1 during W1 is highly correlated with s2 during W2.

• (Largest correlating window size) Find the maximum window size w for which the above
(lagged or unlagged) correlations are maximized.

• (Damping) Nearly orthogonal to the kind of correlation we seek is the question of whether
recent data counts more than older data within a window of interesting size. If more recent
data is more important, then it is appropriate to damp older values within the windows so
their values count less in the correlation. Note that damping is not completely orthogonal to
window size, because damping may allow windows to be unbounded in the past.

We characterize these variations by their parameter settings: fixed window size/find maximum
window size, lag/no-lag, damp/no-damp.

In fact, the problem space is larger still. For example, here are two other problems that we are
exploring.

• (Correlated Burst Detection) For this setting, we suppose that the data stream records events
of one or more types. The task is to identify periods of burst, namely a window W during
which the number of events of a given type exceeds some threshold value for window size
|W | [77]. We would like to be able to do this for many (thousands of) window sizes and
many (thousands of) event types. The thresholds increase monotonically (but usually sub-
linearly) with window size and may vary according to event type (e.g., lower for warnings and
higher for failures). Then we would also like to correlate the bursts among different event
types. This can be as simple as finding two time series s1 and s2 where the periods of burst
correlate strongly over time perhaps with a lag. The opportunity here is that the digests are
particularly simple because bursts can be characterized as starttime, duration pairs.
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• (Time Warped Correlation) We are interested in comparing time series produced by imperfect
sources, e.g., the time series of a Beatles song compared with the humming of the PI [49, 78].
In such an application, we may want to correlate windows of different sizes, implying that one
of the time series may need to be compressed time-wise and this compression may have some
jitter. We believe that many of the techniques developed in this proposal will contribute to
the development of scalable algorithms for this problem, particularly our ideas for improving
sketching.

4.1 Classifying the Problem

Given Ns streams and a window of size winsize, computing all pairwise correlations naively requires
O(winsize × (Ns)

2) time. However, a classification of the time series into a specialized case and a
general case leads to two general techniques, both of which enable substantial improvements over
the naive approach.

• Category 1: The time series often exhibit a fundamental degree of regularity, at least over
the short term, allowing long time series to be compressed to a few coefficients with little loss
of information using data reduction techniques such as Fast Fourier Transforms and Wavelet
Transforms. Using Fourier Transforms to compress time series data was originally proposed by
Agrawal et al. [2]. This technique has been improved and generalized by [30, 55, 59]. Wavelet
Transforms (DWT) [11, 33, 58, 74], Singular Value Decompositions (SVD) [51], and Piecewise
Constant Approximations [48, 47, 69, 75] have also been proposed for similarity search. Keogh
has pioneered many of the recent ideas in the indexing of dynamic time warping databases
[46, 70]. The performance of these techniques varies depending on the characteristics of the
datasets [68].

• Category 2: In the general case, such regularities are absent. However, sketch-based ap-
proaches [1, 41] can still give a substantial data reduction. These are based on the idea of
taking the inner product of each time series window, considered as a vector, with a set of
random vectors (or equivalently, this can be regarded as a collection of projections of the
time series windows onto the random vectors). Thus, the guarantees given by the Johnson-
Lindenstrauss lemma [45], hold. In time series data mining, sketch-based approaches have
been used to identify representative trends [24, 42] and to compute approximate wavelet
coefficients [33], for example.

5 Previous Work

In previous work [76], we showed how to solve the first correlation problem above online or almost
online when high quality digests could be obtained using Fourier analysis (Category 1 above).

To be concrete, consider a setting in which each stream produces a data item every second. We
want to compute the most highly correlated pairs (without lags or damping) over windows of length
one hour and want to compute these every two minutes. On a Pentium 4 PC, the naive method
(of comparing every stream with every other using a dot product) permits the identification of
high correlations among 700 streams, whereas the method outlined here permits the computation
of correlations for 10,000 streams. When more streams are present, the advantage will increase
because the complexity of our algorithm increases linearly (in the number of streams) whereas the
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Figure 1: Sliding windows and basic windows

naive algorithm’s complexity increases quadratically. Analogous speedups were previously obtained
by [2] in a non-online setting.

Our approach begins by distinguishing among three time periods from smallest to largest.

• timepoint – the smallest unit of time over which the system collects data, e.g., a second.

• basic window – a consecutive subsequence of timepoints over which the system maintains a
digest (i.e., a compressed representation) e.g., two minutes.

• sliding window – a user-defined consecutive subsequence of basic windows over which the user
wants statistics, e.g., an hour. The user might ask, “which pairs of streams were correlated
with a value of over 0.9 for the last hour?”

Figure 1 shows the relationship between sliding windows and basic windows.
The use of the intermediate time interval that we call the basic window yields two advantages:

1. (Near online response rates) Results of user queries need not be delayed more than the basic
window time. In our example, the user will be told about correlations for the 2PM to 3PM
window by 3:02 PM and correlations for the 2:02 PM - 3:02 PM window by 3:04 PM.1

2. (Free choice of window size) Maintaining stream digests based on the basic window allows
the computation of correlations over windows of arbitrary size (chosen up front) with high
accuracy.

The general strategy is just this: after a basic window ends, compute a digest comprising the
first few coefficients of the Fourier Transform of the vector (0, ..., 0, b) of length a sliding window,
where b denotes the basic window contents. An entire sliding window consisting of k basic windows
can be described by a vector of coefficients formed from a linear combination of the digests for the
k basic windows. So, after computing the needed Fourier Transform of the latest basic window, it
is simple to update the 4 to 8 coefficients for the entire sliding window. This takes constant time
per coefficient.

Fourier Transforms do a good job of describing many time series, as pointed out by [2] and
subsequently used in [30, 35, 55, 59]. Our empirical studies [76] using both random walk and
stock market data show that the cost savings compared to a naive approach are significant and the

1One may wonder whether the basic window and therefore the delay can be reduced. The tradeoff is with com-
putation time. Reducing the size of the basic window reduces the compression achieved and increases the frequency
and hence expense of correlation calculations.
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Figure 2: Comparison of the number of streams that the DFT Estimator and Exact methods can
handle. The DFT results are checked for false positives in a post-processing step.

accuracy is excellent (no false negatives and few false positives). For speed, we were concerned with
the following two questions:

1. How many streams can the system track continuously?

2. How long is the delay until the result is known?

Unsurprisingly, the net result is that the answers to questions (1) and (2) are related. We
can increase the number of streams at the cost of increasing the delay in reporting correlations as
illustrated in Figure 2. In both cases, we can ensure there are no false negatives by insisting that
a slightly smaller correlation is sought on the DFT to account for the loss of information due to
compression.

6 Preliminary Results

In our previous work, we explored the online correlation problem in the setting no-lag, no-damping,
and fixed window size. To illustrate our approach to the several problem variants we mentioned,
we discuss our ideas on the identification of lagged correlations. When a few Fourier (or Wavelet)
coefficients effectively capture the data in the time series windows, we propose to develop methods
using digests based on these coefficients. When these representations are not effective, we plan to
attack the problem using digests based on sketches. For both approaches, we face two main issues:

1. How to compute the digests sufficiently quickly.

2. How to organize these digests so that they require less space than the original series.

Our preliminary work has focussed primarily on issue (1). We plan to build on other work in the
literature for issue (2), as we discuss below.
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6.1 Representing Data Compactly

We review the essence of the approaches to representing a sliding window x=x1,x2,...xm of real
valued data. x can be thought of as a point in an m-dimensional space, Rm. The goal is to map
x to a point f(x) ∈ Rd, a space of much smaller dimension, such that interpoint distances2 are
approximately preserved, i.e., with high probability, for the set of points at hand, for any pair of
points x, y, ‖ x − y ‖2 ≈ ‖ f(x) − f(y) ‖2 (more precisely, for a given ǫ>0, (1 − ǫ)‖ x− y ‖2 ≤‖
f(x) − f(y) ‖2≤ (1 + ǫ)‖ x− y ‖2 ).

Function f(x) might be the first k coefficients of the Discrete Fourier Transform (DFT), each
coefficient being a complex number, or of the Discrete Wavelet Transform (DWT), or d values
computed by a sketching method. (Recall that fi = fm−i

∗, for Fourier coefficients f0, f1, ..., fm−1

where z∗ is the complex conjugate of z.)
Let g(x) denote the n-vector comprising the full DFT or DWT. It is well known that ‖ g(x) ‖2 =

‖ x ‖2 and further there is a complementary transform g−1 such that g−1g(x) = x. Clearly, if f(x)
comprises the first few terms of g(x) then ‖ f(x) ‖2 ≤ ‖ g(x) ‖2. This leads to the well-known
notions of the power of f on x.

Definition
‖f(x)‖

2

‖x‖
2

is the power of f on x.

Fact: If
‖f(x)‖

2

‖x‖
2

,
‖f(y)‖

2

‖y‖
2

≥ 1 − δ then ‖ x − y ‖2 − δ(‖ x ‖2 + ‖ y ‖2) ≤ ‖ f(x) − f(y) ‖2 ≤

‖ x − y ‖2 + δ(‖ x ‖2 + ‖ y ‖2).
Thus to obtain good distance estimate it suffices to have a transform that captures much of the

power in a few coefficients. For slowly varying data, the DFT is known to be quite effective on time
series data [2, 30, 68].

A transform closely related to the DFT is the Discrete Cosine Transform (DCT): on an m term
series x0,x1,...,xm−1 it is the DFT of the series x0,x1,...,xm−1,xm−2,...,x1, or similar mirror image
series. The DCT is widely used in image and audio compression (JPEG and MP3), as it avoids the
power losses using the DFT due to the mismatch between the values at the start and end of the
series. Our preliminary experiments on stock price time series show that using 10 real coefficients
there is only a 1.5% power loss, making it much more effective than the DFT (power loss of 14%)
for these applications.

6.2 Time Lagged Correlations

The difficulty we face, both in using the DFT (or DCT or DWT) and in the sketch approach, is that
while the basic approach is well understood, the obvious implementations of these ideas remain too
expensive to be feasible. Overcoming this requires a mix of new algorithmic ideas and engineering.
We discuss the transform and sketch approaches in turn.

6.2.1 Invertible Transforms

The basic method is the following. For each stream, for each possible position of the sliding window,
(i) its digest is computed, (ii) the digest is stored in a near-neighbor data structure ND for points
in Rd, (iii) its near neighbors in ND are reported along with the precise correlations to those
neighbors. There are a number of issues to face.

2Algorithmically, distances can be treated interchangeably with correlations, because correlations are just normal-
ized distances.
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1. After each timepoint, we need to compute a digest for each sliding window ending at that
timepoint.

2. To enable an efficient search in ND, the dimension Rd of the space for the digest points must
be small.

3. We would like to guarantee no false negatives and relatively few false positives emerging from
ND.

As noted in our prior work, to update the k leading coefficients of the DFT requires O(k) time.
This is also true for the Harr wavelet form of the DWT, and the DCT. Other instances of the DWT
have to be considered on a case by case basis but in any event take no more than O(k2) time to
update ([23], in preparation).

To address (2) we need to ensure that a few coefficients, say 5-10 real terms, capture most of
the power. The DCT does an excellent job on certain kinds of series. But not all: for example, for
series of stock price returns (the difference between a price of a share and the previous price of the
share normalized by the average share price), 200 coefficients capture only 60% of the energy. For
such series we will use sketches.

The reason we want a small dimension for the space Rd stored in ND is that near neighbor
data structures quickly become less effective as the numbers of dimensions increase. In our prior
work, a simple grid-based structure sufficed, but our research will include the evaluation of several
multi-dimensional data structures to support nearest neighbor searching.

We note that if we are searching for points within distance δ(‖ x ‖)2 of x (e.g., δ=5%) to
avoid false negatives, we will need to retrieve points up to some distance (δ + ǫ)‖ f(x) ‖2 from f(x),
where the ǫ accounts for the power loss in f(x) and each of the candidate neighbors in ND (for a
power loss of c%, ǫ = 200c

100−c% ≈ 2c% suffices.) However, to avoid being swamped with candidate
false positives, there must be few points between distance δ‖ f(x) ‖2 and (δ + ǫ)‖ f(x) ‖2 of f(x).
Clearly this depends largely on the distribution of points x (i.e. the sliding window contents viewed
as points in Rm), but our preliminary experiments on physics data suggest this holds for many
applications. Formally, we capture the above by the following assumption.

Assumption: (Bounded Expansion [38]) Let Br(p) denote the ball of radius r around point p.
We say a pont set S has expansion c if for all pǫS and all r > 0, there is an n0 such that:
‖ Br(p) ‖≥ n0 implies that ‖ B2r(p) ‖≤ c ‖ Br(p) ‖.
Typically, c is a constant and n0 is a small value such as log ‖ S ‖. This is exactly what is needed
to keep the cost of handling false positives moderate.

For some of our applications the number of points stored in ND is very large (e.g. the physics
observational data comprises some 64,000 streams, and each stream yields from 10,000 to 1,000,000
sliding window positions per stream, which is more than one billion points). Clearly, reducing the
number of points that need to be stored will have a substantial effect on performance.

To this end, we observe that for plausible data streams the following assumption holds.
Assumption: (Stream continuity) Let p be the correlation of data streams s1 and s2 over a

window of length w starting at times t1 and t2 respectively. Similarly, let p′ be the correlation
starting at times t1+1 and t2+1, respectively. Then | p − p′ |= O(1/| w |).

The practical consequence is that if a high correlation pair of windows is found over streams
s1 and s2 then the high correlation will continue for some interval of time △ (possibly chosen
adaptively as in the trails of [2]) and consequently correlations do not need to be sought at every
timepoint. But recall our primary goal was to reduce the size of ND. Instead of storing a point
for every position of the sliding window over each stream, it suffices to store points corresponding
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to positionings of the sliding window at separations of △. (The actual value of △ depends on the
various sources of error, but a value in the range 10-100 appears plausible.) We note, however, that
there will be a need to perform a query for a point corresponding to each possible position of the
sliding window, and not merely those at separations of △.

6.2.2 Further Gains Using The DFT

When using the DFT it may be possible to both store only every △th point and query every △th
point for each stream. This would have to be offset against the need for more coefficients in the
DFT compared with the DCT to obtain a given bound on the power loss.

The key observation is that the DFT f0, ...fn−1 for the series x0, x1, ...xm−1 and the DFT
g0, g1, ...gn−1 for the series xh, xh+1, ..., xm−1, x0, ..., xh−1 are related as follows: gi = e−2πih/nfi. In
addition, for small h, the series xh, ..., xm−1, x0, ..., xh−1 is a good approximation to xh, ..., xm−1, xm, ..., xm+h−1.

Let x denote the series x0, x1, ..., xm−1 and xh denote xh, ..., xm−1, x0, ..., xh−1. The search
problem becomes the following: on a query y find those x such that y and xh are nearly the same
for small values of h (dependent on x). Given x and y, the value of h of a small bounded size
that minimizes ‖ y − xh ‖2 can be found easily: one uses the power series expansion of f(xh) as a
function of h and solves for the minimum h.

Thus the remaining issue is to create a data structure supporting the retrieval of such points
x. One approach is to impose a canonical orientation on the Fourier coefficients, so that, say, the
largest coordinate has a zero imaginary part.

An open question is whether something similar can be devised for the potentially better DCT.

6.2.3 The Sketch Approach

The sketch approach, as developed by Alon et al. [3], Indyk et al. [41, 43], and Achlioptus [1],
provides a very nice guarantee: with high probability a random mapping taking points in Rm

to points in (Rd)2b+1 (the (2b+1)-fold cross-product of Rd with itself) approximately preserves
distances.

Specifically, given a point x ∈ Rm, we compute its dot product with d random vectors ri ∈
{1,−1}m. The first random projection of x is given by y1 = (x ∗ r1,x ∗ r2, ...,x ∗ rd). We compute
2b more such random projections y1, ...,y2b+1. If w is another point in Rm and z1, ..., z2b+1 are its
projections using dot products with the same random vectors then the median of ‖y1 − z1‖, ‖y2 −
z2‖, ...‖y2b+1 − z2b+1‖ is a good estimate of ‖x − w‖. It lies within a θ(1/d) factor of ‖x − w‖
with probability 1 − (1/2)b.

For our application, this leads to 2b + 1 near-neighbor search structures over d-dimensional
points. The retrieval method for finding all points within distance α‖p‖ of some query point p is
to first retrieve all points within distance 2α‖p‖ of p in each of the 2b + 1 search structures, but
only to report those that appear at least b + 1 times.

We need to limit the value of d needed to generate a chosen error bound ǫ in the equation
ǫ = θ(1/d). To ensure no false negatives, we require that distances of value α‖p‖ are reported as
no more than 2α‖p‖, i.e. ǫ ≤ 1. To bound the false positives, we require that distances of value
more than 4α‖p‖ are reported as more than 2α‖p‖, i.e. ǫ ≤ 1/2. d = 8/(ǫ − (ǫ2/2)) suffices. We
believe that better bounds hold in practice and will test this experimentally.3

3It is known that the vectors (±(1/
√

d))n are the worst case for this type of projection, so we can simply test the
effect of projections on these vectors. This will yield bounds on the performance of these methods on all vectors.
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Computing the Sketches

For each random vector r of length equal to the sliding window length kw, we compute the
dot product with each successive length kw portion of the stream (successive portions being one
timepoint apart and w being the length of a basic window). As noted by Indyk [42], convolutions
(computed via DFTs) can perform this efficiently off-line. The difficulty is how to do this efficiently
online. One approach is to compute a series of dot products (using convolutions) for windows of
doubling length (1,2,4,...,kw/2). This will yield the sought dot products online using O(log2n) work
for each new item in each stream per dot product (i.e., per random vector).

If results can be delayed the length of a basic window, then the above computation need be
done only for window lengths (w, 2w, 4w, ..., |sliding window| /2). This entails O(log2 kw− log2 2w)
work per random vector per data item in each stream. Working out the constants, one arrives at
roughly 750 floating point multiplies versus 3,600 integer additions in the naive method.

A further possible improvement is to use a “structured” random vector if you’ll excuse the
apparent oxymoron. The idea is to form each structured random vector r from the concatenation
of k random vectors: r = s1, ..., sk where each si has length w. Further each si is either u or −u, and
u is a random vector in {1,−1}w . This choice is determined by a random binary k-vector b: if bi=1,
si=u and if bi=0, si=−u. The structured approach leads to an asymptotic performance of O(k)
integer additions and O(log w) floating point operations per datum and per random vector. For the
example problem size this amounts to 30 integer additions, 84 floating point multiplications, and
42 floating point additions. Overall, this is a 30 to 40 factor improvement over the naive method.

In order to compute the dot products with structured random vectors, we first compute dot
products with the random vector u. We perform this computation by convolution once every w
timesteps. Then each dot product with r is simply a sum of k already computed dot products.

Structured random vectors may influence the probability of an unduly inaccurate length esti-
mate. We have ideas about how to bound that inaccuracy, but they are incomplete.

7 Other Challenges

Our discussion up to here has been to show that there are several avenues to explore that look
very promising. In fact, however, they only begin to attack a large collection of interrelated prob-
lems. What follows are brief discussions of a sample of other challenging issues with only limited
indications of approach.

7.1 Time Decay

A parameter that may be helpful in analyzing time series is to weight recent data more heavily
than older ones. Recently, Cohen and Strauss [27] considered a variety of decay functions and how
to maintain the time decayed sum and average of a series online. Analogously, we are interested in
maintaining time-decayed distances both for digests and sketches.

A decay function simply multiplies the terms of time series to produce a new time series on
which the same statistics as before are computed. Thus given a decay function d, and a time series
x1, x2.... xm, one obtains the new series, x1d(m − 1), x2d(m − 2),...xm−1d(2), xmd(1). The classic
decay function is exponential decay, d(x) = c−x for some constant c > 1. This is generalized to
PolyExp decay [27], d(x) = poly(x)c−x. Cohen and Strauss also introduced Polynomial Decay,
d(x) = 1/xα for α ≥ 2.
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Maintaining a sketch in this setting requires performing the dot product of a time-decayed series
and a random vector r. We note that applying the decay function to r instead of the time series
would yield the same result. So it seems likely that the sketching approaches outlined earlier in this
proposal (as well as other sketching approaches) will carry over to the present setting.

Computing digests of time-decayed series is not quite as simple. For exponential and poly-
exponential decay, digests can still be maintained in O(k) time per new datum in the series. For
polynomial decay, our only result to date is a solution requiring O(k log n) time per new datum
(using a bucketing approach along the lines of Cohen and Strauss). This adds a new source of
approximation error (beyond that inherent in the digest): the bucketing error. It remains an open
question whether there is a more efficient and accurate solution.

Finally, note that time decay functions permit unbounded length windows, so long as
∑

k≥1 d(i)
is bounded. This introduces new challenges. Fortunately, as a practical matter, the windows are
effectively bounded, since there is some bound b such that for i ≥ b, d(i) is negligible.

7.2 Finding Longest High Correlation Windows

As already noted in the stream continuity assumption of Section 6.2.1, it is quite likely that if the
windows of length l starting at times t1 and t2 over streams s1 and s2 respectively have a high
correlation, then so do the windows of length l starting at time t1+1 and t2+1 respectively. For
this reason, reporting sequences of such successive high correlation window pairs would often be
useless. It might be better to report a maximal such pair.

Let W1 and W2 be windows over streams s1 and s2 starting at times t1 and t2, respectively with
|W1| = |W2|. We define the h-extension of w to be the window W1

h = (t1, ..., t1 + |W1|− 1+h) over
s1; W2

h is defined analogously.
Definition: W1

k and W2
k are maximal correlation-c windows if W1

h and W2
h have correlation

at least c for all 0 ≤ h ≤ k, but W1
k+1 and W2

k+1 have correlation less than c.
By this definition, high correlation windows must maintain their high correlation at every time-

point starting with window size ‖ W1 ‖. Such highly correlated maximal pairs can be computed
by tracking the extensions of high correlation windows which start at length the size of a sliding
window.

We note that there can still be overlapping pairs of high correlation windows under this def-
inition, and indeed a window pair wholly contained in a larger window pair. Which to report is
application dependent. Keeping track of all of them efficiently is a subject for future work.

A related open question comes from the fact that somewhat lower correlations would be inter-
esting for larger windows. Would different correlations for different length windows simply require
separate computations, or is it possible to reuse portions of the computation? In the case of sketches,
the structured random vector approach again appears promising.

7.3 Secondary Memory

In our proposed solution scheme the near neighbor search structure ND can grow very fast. For
example, using the sketches for a hundred million points in Rm (Just 1000 streams for 3 hours
with a new datum each second), requires storing some 1010 points. As we seek further order of
magnitude increases in the number and length of streams we can handle, it is evident ND will be
kept in secondary storage.

Because we can reduce our searches to fairly small dimensionality, we will start with standard
multidimensional structures (e.g. R-trees with STR packing [53]). In addition, new data structures
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Sliding window size = 0.1 second
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Figure 3: A 0.1 second window size and the number of events per window at moments of burst

giving low-distortion embeddings of high dimensional structures may turn out to be very useful
[37, 38].

One natural question is whether it could be helpful to batch queries to ND; after all, we have
already proposed computing correlations only every basic time window interval, so why not batch
the ensuing queries?

Another useful technique may be to store only representative points in ND. If there are several
nearby points, it would seem to be sufficient to store just one of them in ND. If need be, the
others can be retrieved from a simple (say, hash) structure whose key is the representative point
in ND. One would expect this situation to be increasingly common as the data size increases.
The alternative, of course, is that the target correlation we seek would increase. This would further
increase storage needs, as more accurate approximations in the digests or sketches would be required.

7.4 Labeled Time Series

Time series, such as those associated with specific locations (e.g., climate statistics), can be viewed
as being labeled (e.g. by longitude and latitude). Those labels may influence the use of correlation,
either to forbid reporting nearby correlates or focusing only on those.

7.5 Bursts

In our prior work on detection of gamma ray bursts, the goal was to detect events having a 10−6

probability, assuming background radiation occurred according to a Poisson distribution. We gave
a highly efficient method that works simultaneously over a wide range of window lengths. Figures
3 and Figure 4 show records of burst at two window sizes that differ by a factor of 100. Windows
of such different sizes may uncover bursts at different times.

Now we ask whether we can detect similarities among bursts occurring in different data streams.
The problem is rather different here, for at this point it may be best to consider the bursts as forming
a collection of very sparse data streams.
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Sliding window size = 10 seconds
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Figure 4: A 10 second window size and the number of events per window at moments of burst

We imagine that a single stream would have relatively few bursts so there is little difficulty
in finding even the best lagged correlations among a pair of streams. However, if there are many
streams, it remains open how to find stream pairs (or portions of stream pairs) with lagged correla-
tions efficiently. The sketching approach appears promising, but we would need to avoid considering
all possible positions for the random vectors, for otherwise the efficiency gains due to sparsity would
be lost.

We also need to determine suitable definitions for a correlation. Is it simply a normalized sum
of the overlap lengths of the bursts? Or would it be better to weight each burst by the number of
burst events per time step? (Note that a large burst will need to have fewer such events per time
step.)

8 Roadmap

While our approaches promise to improve performance by two orders of magnitude, the job is far
from done. To find the highest correlating pairs among millions of time series will require significant
further breakthroughs in data structures and approximations. In particular we believe that a
synthesis of sketches and digests will prove helpful, perhaps by dynamically measuring the accuracy
of the Fourier or Wavelet approximation. In addition, our current algorithms are highly and simply
(“embarassingly”) parallelizable because both the digest and sketch formation and comparison can
be done independently for each stream. We will want to ensure that any algorithmic improvements
retain the parallelizability.

• Year 1

Algorithmic: Find effective algorithms for lagged correlation using both linear digests and
sketches. Identify the best multidimensional data structures for the batch query mode that
our application requires. This may require some data structure enhancements.
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Implementation: Enhance our currently downloadable software beyond the no-lag, fixed
window size, no-damp case to allow lags.

Collaboration: Complete integration and testing of our burst detection software in the Mila-
gro project.

• Year 2

Algorithmic: Study the best methods for the no-lag, no-damp case to extend correlations
to the maximum possible window size. This will entail both the use of approaches such as
hierarchical random vectors and methods for extending short term matches to longer term
matches.

Implementation: Study and implement cleaning and preparation algorithms for the data
from the Jet Propulsion Laboratory (see letter). Establish a parallel platform.

Collaboration: Find long time course data in biology.

• Year 3

Algorithmic: Study the correlation problem in the no-lag, fixed window case with a view
to extending the scale to up to millions of time series. This will entail careful management
of secondary memory and it is here that enhancements on existing multidimensional data
structures may be required.

Implementation: Implement algorithms for the online correlation analysis of NASA and other
massive online data sets, but starting with smaller data sets.

Collaboration: Set up a web site that provides scientists who require our services easy access
to all of our tools. Gather feedback to improve both our algorithms and software.

• Year 4

Algorithmic: Study the correlation problem for bursts in all its variants. Study the basic
correlation problem in full generality and at maximum scale again for millions of time series.

Implementation: Implement algorithms for the simpler correlation problem on massive online
data sets.

Collaboration: Form an active user’s group.

9 Management Plan

PI Shasha will perform project management and reporting to NSF, liaisons with application areas,
system architecture, and will be a co-participant in algorithmic development. Co-PI Cole will serve
as an algorithmic inventor and advisor to the implementors.

Our collaborations with domain scientists will give us both related problems to solve and test
cases of utility.

10 Human Resources

Projects related to this proposal have already led to one doctorate, several well-received papers,
and a book. Currently, there are four students (one PhD and three masters) working on Query by
Humming and Burst Detection. This coming summer, high school students will join us. We believe
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that the appeal of working with scientists and musicians will draw undergraduates (one will start
next semester)and high school students into learning the mathematics of our techniques.
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1. ”A gene expression map of the Arabidopsis root” Kenneth Birnbaum, Dennis E. Shasha, Jean
Y. Wang, Jee W. Jung, Georgina M. Lambert, David W. Galbraith, and Philip N. Benfey
Science, Dec 12 2003: 1956-1960

2. “Trait-To-Gene: A Computational Method for Predicting the Function of Uncharacterized
Genes,” Mitchell Levesque, Dennis Shasha, Wook Kim, Michael G. Surette, and Philip N.
Benfey, Current Biology 2003, vol. 13, pp. 129-133.
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3. “Using Combinatorial Design to Study Regulation by Multiple Input Signals. A Tool for
Parsimony in the Post-Genomics Era,” Dennis Shasha, Andrei Kouranov, Laurence Lejay,
Michael Chou, and Gloria Coruzzi, Plant Physiology, Dec. 2001 127(4):1590-1594.

4. “Building secure file systems out of Byzantine storage,” David Mazieres and Dennis Shasha,
Principles of Distributed Computing, 2002, pp. 108-117.

5. Database Tuning: principles, experiments, and troubleshooting techniques, Dennis Shasha and
Philippe Bonnet, Morgan Kaufmann Publishers, June 2002, ISBN 1-55860-753-6, Paper, 464
Pages.

Synergistic Activities

Much of my work has to do with providing software for tree matching and searching, graph searching,
and time series analysis. The software is available from http://www.cs.nyu.edu/cs/faculty/shasha/papers/papers.html.
Other synergistic activities have mostly to do with conveying the ways in which computer scientists
think. (i) Write monthly puzzle column for Scientifc American as well as a three puzzle books
detailing the adventures of Dr. Ecco, the latest of which is called Dr. Ecco’s Cyberpuzzles: 36
puzzles for hackers and other mathematical detectives. (ii) Wrote book: Out of Their Minds: The
Lives and Discoveries of 15 Great Computer Scientists, (with C. Lazere) to interest people in the
thought patterns of our field. (iii) Advise the New York Hall of Science on exhibits.

List of Collaborators or Potential Collaborators

I have collaborated with the following people during the last 48 months (or may collaborate with
them due to my series editorship at Oxford for Genomics and Bioinformatics and Information Sys-
tems) in addition to those listed in the publications list: Michael Rabin, Charles Cantor, David Bot-
stein, Lee Hood, Raju Kucherlapati, Michael Ashburner, Minoru Kanehisa, Nicole Bidoit-Tollu, Ri-
cardo Baeza-Yates, Klaus R. Dittrich, Yannis Ioannidis, Matthias Jarke, Gottfried Vossen, Maurizio
Lenzerini, Peri Loucopoulos, Patrick O’Neil, Felipe Carino Jr., Nick Koudas, Masatoshi Yoshikawa,
Kenneth A. Ross, Bettina Kemme, and Amr El Abbadi.

Names of Graduate and Post-Graduate Advisors and Advisees

Nathan Goodman was my dissertation advisor. The following lists my advisees (their gradua-
tion year, doctoral dissertation title, and current affiliation are in parentheses): Kaizhong Zhang
(1989, The Editing Distance Between Trees: Algorithms and Applications, Full Professor at the
University of Western Ontario, Canada), Theodore Johnson (1990, The Performance of Concur-
rent Data Structure Algorithms, Research scientist at AT&T Laboratories in Florham Park), Jose
Perez-Carballo (1990, Design and Implementation of HyTeK: A Knowledge-Based Hypertext Sys-
tem, Assistant Professor at Rutgers, New Brunswick), Jason Tsong-Li Wang (1991, Query Opti-
mization in Database and Information Retrieval Systems, Full Professor at the New Jersey Institute
of Technology, Newark), Vladimir Lanin (1991, Semantically-Based Concurrent Data Structure Al-
gorithms, Member of Technical Staff at a startup company), Brian Anderson (1991, Persistent
LINDA: Design and Implementation of a System to Add Transactions to LINDA, Technical lead at
a startup company in California), John Turek (1991, Algorithms for Robust Parallel Computation,
Manager at IBM Research, Hawthorne), Steve Rozen (1993, Automating Physical Database De-
sign: An Extensible Approach, Research Scientist at the Whitehead Institute, MIT), Gilad Koren
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(1993, Competitive On-Line Scheduling for Overloaded Real-Time Systems, Professor at Natanyu
College, Israel), Karpjoo Jeong (1995, PLinda 2.0: Fault Tolerant Parallel Computation on Idle
Workstations, Professor at Konkuk University, Korea), Bin Li (1998, Free Parallel Data Mining,
Vice President at Citibank, New York), Peter Wyckoff (1998, Fault Tolerant Parallel Computing
on Networks of Non-Dedicated Workstations, Research Scientist at Yahoo), Peter Piatko (1998,
Thinksheet: A Tool for Information Navigation, Research Scientist at SAIC ), David Tanzer (2000,
Queryable Expert Systems, Current Position: start-up. Rosalba Giugno (2003, Graphgrep) Search-
ing Algorithms and Data Structures for Combinatorial, Temporal and Probabilistic Databases Cur-
rent position: Post-doc, University of Catania. Alberto Lerner (2003) Querying Ordered Data with
AQuery Current position: Researcher, IBM T. J. Watson Research Center. Yunyue Zhu (2003)
High Performance Discovery in Time Series: techniques and case studies

Mailing Address

Professor Dennis Shasha, Department of Computer Science, Courant Institute of Mathematical
Sciences, New York University, 251 Mercer Street, New York, NY 10012 (shasha@cs.nyu.edu).

Richard John Cole – biographical sketch

Education

1978 B.A. Oxford University, Mathematics
1980 M.S. Cornell University, Computer Science
1982 Ph.D. Cornell University, Computer Science

University Positions

1982– Assistant Professor, Associate Professor, and Full Professor of Computer Science
Courant Institute of Mathematical Sciences
New York University

1994–2000 Chair, Computer Science Department, NYU

1998 ACM Fellow

2002 Member of editorial board: SIAM Journal of Computing

Publications Most Closely Related to the Proposed Project

1. “Verifying candidate matches in sparse and wildcard matching,” Richard Cole and Ramesh
Hariharan, STOC 2002: 592-601

2. “Dictionary matching and indexing with errors and don’t cares,” Richard Cole, Lee-Ad Got-
tlieb, and Moshe Lewenstein, Submitted for publication
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3. “Exponential Structures for Efficient Cache-Oblivious Algorithms,” Michael A. Bender, Richard
Cole, Rajeev Raman, ICALP 2002: 195-207

4. “The Average Case Analysis of Partition Sorts” Richard Cole and David Kandathil Submitted
for publication.

5. “Approximate String Matching: A Simpler Faster Algorithm.” Richard Cole, Ramesh Hari-
haran, SIAM J. Comput. 31(6): 1761-1782 (2002)

Other Significant Publications

1. “Tight bounds on the complexity of the Boyer–Moore string matching algorithm,” Richard
Cole, SIAM Journal on Computing, 23(1994), 1075–1091

2. “Parallel merge sort” Richard Cole, SIAM Journal on Computing, 17(1988), 770-785

3. “On the dynamic finger conjecture for splay trees. Part II: the proof.” Richard Cole, SIAM
Journal on Computing, 29(2000), 44-85.

4. “Pricing network edges for heterogeneous selfish users” Richard Cole, Yevgeniy Dodis, Tim
Roughgarden STOC 2003: 521-530

5. “A fast algorithm for computing Steiner edge connectivity” Richard Cole, Ramesh Hariharan
STOC 2003: 167-176

Synergistic Activities

Educational material: description plus animation of binary search trees and splay trees. See
www.cs.nyu.edu/algvis.
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Co-editors at Siam Journal on Computing: Bernard M. Chazelle, David A. Eppstein, Steven
Fortune, Michael L. Fredman, Harold N. Gabow, Oded Goldreich, R.L. Graham, Vassos Hadzilacos,
Neil Immerman, A. Karlin, Ker I. Ko, S. Rao Kosaraju, Ming Li, John C. Mitchell, Rajeev Mot-
wani, Prabhakar Raghavan, Vijaya Ramachandran, Michael Saks, David B. Shmoys, Peter Shor,
Igor Shparlinksi, Janos Simon, Madhu Sudan, Eva Tardos, Eli Upfal, Moshe Y. Vardi, Umesh V.
Vazirani, David P. Williamson, and Mihalis Yannakakis

Mailing Address

Professor Richard Cole, Department of Computer Science, Courant Institute of Mathematical Sci-
ences, New York University, 251 Mercer Street, New York, NY 10012 (shasha@cs.nyu.edu).

26


