
AQuery: A Query Language for Order in Data
Analytics

New York University

February 14, 2016

Introduction

I Success of the relational model results from happy
combination of expressive power and simplicity

I Single data type + few operations
(select/project/join/aggregate) → simple algebra

I But ... programmers of applications that depend on ordered
events face a dilemma

I They would like to use a relational database system, but the
model makes it hard to express queries over order.

I We (and others) contend that order can be introduced without
affecting simplicity (and improving performance)[14][8][3]

Related Work

I Among the excellent work in the development of time series
databases, much has focused on developing architectures that
allow for scalability and performance for simple queries, rather
than developing a performant language supporting complex
queries

I DruidIO[18]: open source data store for analytics. Column
oriented. Query language doesn’t suport common
functionality like joins

I Influxdb[1]: Efficient. No user-defined functions limited
options for sorting.

I SciQL[3]: extends MonetDB[7] with first-class arrays for
scientific applications. Expressive

I Focuses on reliability and scalability[10][15], simple query
plans

AQuery

I introduced in [4]

I modest syntactic and semantic extension to SQL 92

I supports ordered tables, called arrables (for array tables): can
be sorted by one or more columns

I Adds one clause: assuming clause (order)

I Provides order-sensitive aggregates, and incorporates their use
into optimization strategies

AQuery: A Network Query

Assume table of the form
network(basestation, numconns, hourstamp, date, ...). The user
declares that the arrable should be sorted by date and hour stamp,
selects data relevant to a particular base station and then
calculates a moving average with window size 24.

SELECT b a s e s t a t i o n , avgs (numconns , 24)
FROM network
ASSUMING ASC date , ASC hourstamp
GROUP BY b a s e s t a t i o n

SQL-99: same network query

Assume table of the form
network(basestation, numconns, hourstamp, date, ...). All the
ordering happens in the last step. There may be missing
opportunities for optimization.

SELECT ID , Date ,
AVG(numcons) OVER (

ORDER BY date , hourstamp ROWS
BETWEEN 23 PRECEDING AND CURRENT ROW

) as nc
FROM network
GROUP BY b a s e s t a t i o n

AQuery: Moving Variance Query

Assume a table of the form prices(ID, Date, EndOfDayPrice),
calculate a 12-day moving average in returns for stock tickers
AQuery uses assuming clause, order-dependent aggregate (vars,
ratios), nested arrables

WITH
v a r i a n c e s (Date , ID , mv) AS (

SELECT Date , ID ,
v a r s (1 2 , r a t i o s (1 , EndOfDayPrice) − 1)
FROM p r i c e s
ASSUMING ASC Date
GROUP BY ID

)
SELECT ∗ FROM FLATTEN(v a r i a n c e s)

SQL-99: Moving Variance Query

Assume a table of the form prices(ID, Date, EndOfDayPrice),
calculate a 12-day moving average in returns for stock tickers

SELECT ID , Date ,
VARIANCE(r e t s) OVER (

ORDER BY Date ROWS
BETWEEN 11 PRECEDING AND CURRENT ROW

) as mv
FROM
(SELECT

c u r r . Date , c u r r . ID ,
c u r r . EndOfDayPrice /
p r e v . EndOfDayPrice − 1 as r e t s
FROM
p r i c e s c u r r LEFT JOIN p r i c e s p r e v

ON c u r r . ID = p r e v . ID
AND c u r r . Date = p r e v . Date + 1)
GROUP BY ID

AQuery: Correlation Pairs

WITH
s t o c k s G r o u p e d (ID , Ret) AS (

SELECT ID ,
r a t i o s (1 , EndOfDayPrice) − 1

FROM p r i c e s
ASSUMING ASC ID , ASC Date
WHERE Date >= max (Date) − 31 ∗ 6
GROUP BY ID)

p a i r s G r o u p e d (ID1 , ID2 , R1 , R2) AS (
SELECT s t 1 . ID , s t 2 . ID ,
s t 1 . Ret , s t 2 . Ret
FROM
s t o c k s G r o u p e d st1 , s t o c k s G r o u p e d s t 2)

SELECT ID1 , ID2 ,
c o r (R1 , R2) as c o e f
FROM FLATTEN(p a i r s G r o u p e d)
WHERE ID1 != ID2
GROUP BY ID1 , ID2

Optimizations

I Heuristic (currently rule-based)

I Eliminate unnecessary sorts (minimize sorts to relevant
columns)

I Perform selections before sorts (exceptions apply with
indices), while maintaining semantics

I Foreign-key joins replaced by pointer-based accesses

I Cross products + selection predicates → join

I More to come!

Implementation

I Standard compiler tools: C[2] + flex + bison[5]

I Execution engine: q[17]

I Workflow: write AQuery code, compiler generates optimized q
code, execute using q interpreter

I Advantages: portability, transparency (user able to inspect
generated q code)

Benchmarks

I Compare: AQuery, Python’s Pandas[9], Sybase IQ[13], and
MonetDB (with imbedded Python)[11]

I Experiments: financial benchmark from Sybase[12],
MonetDB’s benchmarking operation of quantile calculation,
various Pandas benchmarking operations from Panda’s
historical performance benchmark[16]

Experimental Setup

Experiments against Pandas and MonetDB are run in a single-user
setting on a MacBook Air with a 2-Core 1 .7 GHz Intel Core i7
processor, with 8GB of memory. The Sybase IQ comparison is
performed on a multi-user linux system with 4 16-Core 2.1 GHz
AMD Opteron 6272 processors, with 256GB of memory.

I Pandas version 0.17.0

I Numpy version 1.10.1

I Python version 2.7.5

I MonetDB version 1.7, built from the pyapi branch that allows
for embedded Python

I Sybase IQ version 16.0

I q version 3.2 2014.11.01

I AQuery compiler a2q version 1.0

Finance Benchmark

I Common financial operations (e.g. adjust prices for stock
events, find crossing points of moving averages, summarize
prices across different time horizons)

I Simulated data, randomized as necessary (various parameter
values)

I data at different sizes (100K, 1M, and 10M observations)

I Present average response time

Finance Benchmark: Pandas Results

100k 1M 10M

0

20

40

0

100

200

300

400

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery Pandas

Figure 1: AQuery is faster with stock history of 100K, 1M and 10M rows
across all queries. In various of these, AQuery’s average response time is orders
of magnitude shorter.

Finance Benchmark: Pandas Results

100k 1M 10M

0

300

600

900

0

500

1000

0

500

1000

1500

0 0 0
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery Pandas

Figure 2: AQuery is faster with stock history of 100K, 1M and 10M rows
across all queries. In various of these, AQuery’s average response time is orders
of magnitude shorter.

Finance Benchmark: MonetDB Results

100k 1M 10M

0

30

60

90

0

250

500

750

1000

0

2000

4000

6000

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery MonetDB + Embedded Python/NumPy

Figure 3: AQuery is faster across the board for 100K rows of stock history.
When we increment to 1M AQuery remains faster in 8 of 10 queries, and
comparable in the remaining 2. At 10M rows, AQuery is slightly slower for
query 2, comparable for query 7, and faster in all others.

Finance Benchmark: Sybase IQ Results

100k 1M 10M

0

500

1000

1500

0

2500

5000

7500

0

5000

10000

15000

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery Sybase IQ

Figure 4: With 100K and 1M rows, AQuery outperforms Sybase IQ in all of the
queries evaluated. At 10M rows, performance is a bit more varied, with larger
standard errors, but on average AQuery is faster in 8 of the 10 benchmark
queries.

Pandas Benchmark: Data Science Operations

I Picked a subset of operations used by Pandas to track
library’s historical performance evolution[16]

I Represents common tasks in data science, for example:
subsetting, grouping, summarizing, and merging data,
amongst others.

I Various baseline data sizes: 100K elements (as used in
Panda’s benchmarking), 1M, and 10M elements

I Randomly generate data and repeat experiments

Pandas Benchmark: AQuery Results

100k 1M 3M

0

5

10

15

20

0

100

200

300

400

500

0

500

1000

0 1 2 4 5 6 0 1 2 4 5 6 0 1 2 4 5 6
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery Pandas

Figure 5: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated.

Pandas Benchmark: AQuery Results

100k 1M 3M

0

25

50

75

0

1000

2000

3000

4000

5000

0

5000

10000

15000

20000

3 3 3
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery Pandas

Figure 6: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated. The first set
of graphs excludes query 3, for ease of reading, given the vastly different
response time.

MonetDB Benchmark: Quantiles

I MonetDB’s ability to embed R[6], and more recently,
Python/NumPy [11], directly into a query makes it a very
flexible and appealing approach for data scientists and
developers looking to integrate their data storage/query and
analysis tools.

I AQuery’s performance in quantile calculation compared to
MonetDB’s performance using a performant NumPy function.
On the AQuery side, we implement a naive quantile function

I 100K, 1M, 10M, and 25M values

I Repeatedly generate random data sets

MonetDB Benchmark: AQuery Results

100k 1M

10M 25M

0

10

20

30

0

100

200

0

1000

2000

3000

0

2500

5000

7500

0 1 0 1
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery MonetDB + Embedded Python/NumPy

Figure 7: AQuery outperforms in all the dataset sizes evaluated. While the
advantage narrows with larger data, we highlight AQuery’s implementation is
currently using a naive quantile calculation that involves sorting the entire array.

Demo

Video submitted as part of demonstration proposal (SIGMOD
2016), under review. We explore a series of simple financial trading
strategies with real world data in AQuery.

https://www.youtube.com/watch?v=aospaAYmfF0

Future work

I Explore further transformations

I Scalability

I Cost-based optimization

I Improved error reporting at compile time

References I

Influxdb.
InfluxDB: Overview, 2015 (accessed November 6, 2015).

Brian W Kernighan, Dennis M Ritchie, and Per Ejeklint.
The C programming language, volume 2.
prentice-Hall Englewood Cliffs, 1988.

M Kersten, Ying Zhang, Milena Ivanova, and Niels Nes.
Sciql, a query language for science applications.
In Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases, pages 1–12. ACM, 2011.

Alberto Lerner and Dennis Shasha.
Aquery: Query language for ordered data, optimization
techniques, and experiments.
In Proceedings of the 29th international conference on Very
large data bases-Volume 29, pages 345–356. VLDB
Endowment, 2003.

References II

John Levine.
Flex & Bison: Text Processing Tools.
” O’Reilly Media, Inc.”, 2009.

MonetDB.
Embedded R in MonetDB, 2014 (accessed November 18,
2015).

Stratos Idreos Fabian Groffen Niels Nes and Stefan Manegold
Sjoerd Mullender Martin Kersten.
Monetdb: Two decades of research in column-oriented
database architectures.
Data Engineering, page 40, 2012.

References III

Wilfred Ng.
An extension of the relational data model to incorporate
ordered domains.
ACM Transactions on Database Systems (TODS),
26(3):344–383, 2001.

pandas development team.
pandas: powerful python data analysis toolkit (version 0.17.0),
2015 (accessed November 7, 2015).

Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro,
Qi Huang, Justin Meza, and Kaushik Veeraraghavan.
Gorilla: a fast, scalable, in-memory time series database.
Proceedings of the VLDB Endowment, 8(12):1816–1827,
2015.

References IV

Mark Raasveldt.
Embedded Python/NumPy in MonetDB.
MonetDB, 2015 (accessed November 06, 2015).

SAP.
Sybase IQ 15.3: Understanding User-Defined Functions, 2008
(accessed November 8, 2015).

SAP.
Introduction to SAP Sybase IQ: SAP Sybase IQ 16.0, 2013
(accessed November 8, 2015).

Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan.
SEQ: Design and implementation of a sequence database
system.
Citeseer, 1996.

StumpleUpon.
FAQ, 2015 (accessed November 6, 2015).

References V

the pandas development team.
Vbench performance benchmarks for pandas, 2011 (accessed
November 18, 2015).

Arthur Whitney.
Abridged Q Language Manual, 2009 (accessed November 6,
2015).

Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian
Merlino, and Deep Ganguli.
Druid: a real-time analytical data store.
In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 157–168. ACM,
2014.

	AQuery Introduction
	AQuery Examples
	Optimizations
	Implementation
	Performance
	User Experience: A Demo
	Future work

