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Introduction

I Success of the relational model results from happy
combination of expressive power and simplicity

I Single data type + few operations
(select/project/join/aggregate) → simple algebra

I But ... programmers of applications that depend on ordered
events face a dilemma

I They would like to use a relational database system, but the
model makes it hard to express queries over order.

I We (and others) contend that order can be introduced without
affecting simplicity (and improving performance)[14][8][3]



Related Work

I Among the excellent work in the development of time series
databases, much has focused on developing architectures that
allow for scalability and performance for simple queries, rather
than developing a performant language supporting complex
queries

I DruidIO[18]: open source data store for analytics. Column
oriented. Query language doesn’t suport common
functionality like joins

I Influxdb[1]: Efficient. No user-defined functions limited
options for sorting.

I SciQL[3]: extends MonetDB[7] with first-class arrays for
scientific applications. Expressive

I Focuses on reliability and scalability[10][15], simple query
plans



AQuery

I introduced in [4]

I modest syntactic and semantic extension to SQL 92

I supports ordered tables, called arrables (for array tables): can
be sorted by one or more columns

I Adds one clause: assuming clause (order)

I Provides order-sensitive aggregates, and incorporates their use
into optimization strategies



AQuery: A Network Query

Assume table of the form
network(basestation, numconns, hourstamp, date, ...). The user
declares that the arrable should be sorted by date and hour stamp,
selects data relevant to a particular base station and then
calculates a moving average with window size 24.

SELECT b a s e s t a t i o n , avgs ( numconns , 24)
FROM network
ASSUMING ASC date , ASC hourstamp
GROUP BY b a s e s t a t i o n



SQL-99: same network query

Assume table of the form
network(basestation, numconns, hourstamp, date, ...). All the
ordering happens in the last step. There may be missing
opportunities for optimization.

SELECT ID , Date ,
AVG( numcons ) OVER (

ORDER BY date , hourstamp ROWS
BETWEEN 23 PRECEDING AND CURRENT ROW

) as nc
FROM network
GROUP BY b a s e s t a t i o n



AQuery: Moving Variance Query

Assume a table of the form prices(ID, Date, EndOfDayPrice),
calculate a 12-day moving average in returns for stock tickers
AQuery uses assuming clause, order-dependent aggregate (vars,
ratios), nested arrables

WITH
v a r i a n c e s ( Date , ID , mv) AS (

SELECT Date , ID ,
v a r s ( 1 2 , r a t i o s ( 1 , EndOfDayPrice ) − 1)
FROM p r i c e s
ASSUMING ASC Date
GROUP BY ID

)
SELECT ∗ FROM FLATTEN( v a r i a n c e s )



SQL-99: Moving Variance Query

Assume a table of the form prices(ID, Date, EndOfDayPrice),
calculate a 12-day moving average in returns for stock tickers

SELECT ID , Date ,
VARIANCE( r e t s ) OVER (

ORDER BY Date ROWS
BETWEEN 11 PRECEDING AND CURRENT ROW

) as mv
FROM
(SELECT

c u r r . Date , c u r r . ID ,
c u r r . EndOfDayPrice /
p r e v . EndOfDayPrice − 1 as r e t s
FROM
p r i c e s c u r r LEFT JOIN p r i c e s p r e v

ON c u r r . ID = p r e v . ID
AND c u r r . Date = p r e v . Date + 1)
GROUP BY ID



AQuery: Correlation Pairs

WITH
s t o c k s G r o u p e d ( ID , Ret ) AS (

SELECT ID ,
r a t i o s ( 1 , EndOfDayPrice ) − 1

FROM p r i c e s
ASSUMING ASC ID , ASC Date
WHERE Date >= max ( Date ) − 31 ∗ 6
GROUP BY ID )

p a i r s G r o u p e d ( ID1 , ID2 , R1 , R2 ) AS (
SELECT s t 1 . ID , s t 2 . ID ,
s t 1 . Ret , s t 2 . Ret
FROM
s t o c k s G r o u p e d st1 , s t o c k s G r o u p e d s t 2 )

SELECT ID1 , ID2 ,
c o r (R1 , R2 ) as c o e f
FROM FLATTEN( p a i r s G r o u p e d )
WHERE ID1 != ID2
GROUP BY ID1 , ID2



Optimizations

I Heuristic (currently rule-based)

I Eliminate unnecessary sorts (minimize sorts to relevant
columns)

I Perform selections before sorts (exceptions apply with
indices), while maintaining semantics

I Foreign-key joins replaced by pointer-based accesses

I Cross products + selection predicates → join

I More to come!



Implementation

I Standard compiler tools: C[2] + flex + bison[5]

I Execution engine: q[17]

I Workflow: write AQuery code, compiler generates optimized q
code, execute using q interpreter

I Advantages: portability, transparency (user able to inspect
generated q code)



Benchmarks

I Compare: AQuery, Python’s Pandas[9], Sybase IQ[13], and
MonetDB (with imbedded Python)[11]

I Experiments: financial benchmark from Sybase[12],
MonetDB’s benchmarking operation of quantile calculation,
various Pandas benchmarking operations from Panda’s
historical performance benchmark[16]



Experimental Setup

Experiments against Pandas and MonetDB are run in a single-user
setting on a MacBook Air with a 2-Core 1 .7 GHz Intel Core i7
processor, with 8GB of memory. The Sybase IQ comparison is
performed on a multi-user linux system with 4 16-Core 2.1 GHz
AMD Opteron 6272 processors, with 256GB of memory.

I Pandas version 0.17.0

I Numpy version 1.10.1

I Python version 2.7.5

I MonetDB version 1.7, built from the pyapi branch that allows
for embedded Python

I Sybase IQ version 16.0

I q version 3.2 2014.11.01

I AQuery compiler a2q version 1.0



Finance Benchmark

I Common financial operations (e.g. adjust prices for stock
events, find crossing points of moving averages, summarize
prices across different time horizons)

I Simulated data, randomized as necessary (various parameter
values)

I data at different sizes (100K, 1M, and 10M observations)

I Present average response time



Finance Benchmark: Pandas Results
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Figure 1: AQuery is faster with stock history of 100K, 1M and 10M rows
across all queries. In various of these, AQuery’s average response time is orders
of magnitude shorter.



Finance Benchmark: Pandas Results
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Figure 2: AQuery is faster with stock history of 100K, 1M and 10M rows
across all queries. In various of these, AQuery’s average response time is orders
of magnitude shorter.



Finance Benchmark: MonetDB Results
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Figure 3: AQuery is faster across the board for 100K rows of stock history.
When we increment to 1M AQuery remains faster in 8 of 10 queries, and
comparable in the remaining 2. At 10M rows, AQuery is slightly slower for
query 2, comparable for query 7, and faster in all others.



Finance Benchmark: Sybase IQ Results
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Figure 4: With 100K and 1M rows, AQuery outperforms Sybase IQ in all of the
queries evaluated. At 10M rows, performance is a bit more varied, with larger
standard errors, but on average AQuery is faster in 8 of the 10 benchmark
queries.



Pandas Benchmark: Data Science Operations

I Picked a subset of operations used by Pandas to track
library’s historical performance evolution[16]

I Represents common tasks in data science, for example:
subsetting, grouping, summarizing, and merging data,
amongst others.

I Various baseline data sizes: 100K elements (as used in
Panda’s benchmarking), 1M, and 10M elements

I Randomly generate data and repeat experiments



Pandas Benchmark: AQuery Results
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Figure 5: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated.



Pandas Benchmark: AQuery Results
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Figure 6: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated. The first set
of graphs excludes query 3, for ease of reading, given the vastly different
response time.



MonetDB Benchmark: Quantiles

I MonetDB’s ability to embed R[6], and more recently,
Python/NumPy [11], directly into a query makes it a very
flexible and appealing approach for data scientists and
developers looking to integrate their data storage/query and
analysis tools.

I AQuery’s performance in quantile calculation compared to
MonetDB’s performance using a performant NumPy function.
On the AQuery side, we implement a naive quantile function

I 100K, 1M, 10M, and 25M values

I Repeatedly generate random data sets



MonetDB Benchmark: AQuery Results
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Figure 7: AQuery outperforms in all the dataset sizes evaluated. While the
advantage narrows with larger data, we highlight AQuery’s implementation is
currently using a naive quantile calculation that involves sorting the entire array.



Demo

Video submitted as part of demonstration proposal (SIGMOD
2016), under review. We explore a series of simple financial trading
strategies with real world data in AQuery.

https://www.youtube.com/watch?v=aospaAYmfF0


Future work

I Explore further transformations

I Scalability

I Cost-based optimization

I Improved error reporting at compile time
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