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ABSTRACT
Motivation: An ambitious goal of proteomics is to eluci-
date the structure, interactions and functions of all proteins
within cells and organisms. The expectation is that this will
provide a fuller appreciation of cellular processes and net-
works at the protein level, ultimately leading to a better un-
derstanding of disease mechanisms and suggesting new
means for intervention. This paper addresses the ques-
tion: can protein–protein interactions be predicted directly
from primary structure and associated data? Using a di-
verse database of known protein interactions, a Support
Vector Machine (SVM) learning system was trained to rec-
ognize and predict interactions based solely on primary
structure and associated physicochemical properties.
Results: Inductive accuracy of the trained system, defined
here as the percentage of correct protein interaction
predictions for previously unseen test sets, averaged
80% for the ensemble of statistical experiments. Future
proteomics studies may benefit from this research by
proceeding directly from the automated identification of
a cell’s gene products to prediction of protein interaction
pairs.
Contact: dgough@bioeng.ucsd.edu

INTRODUCTION
The interaction between proteins is fundamental to a
broad spectrum of biological functions, including regu-
lation of metabolic pathways, immunologic recognition,
DNA replication, progression through the cell cycle,
and protein synthesis (Alberts et al., 1989). Whether
or not two proteins will bind to form a stable complex
that is prerequisite to biological function is dependent
on the three-dimensional conformations of the proteins
(Jones and Thornton, 1996). For a given conforma-
tion, the chemical reactivity of an individual protein is
defined by the type and spatial orientation of surface-
accessible amino acid side chains. Conformation therefore
determines protein–ligand binding. In biology, it is vir-
tually axiomatic that ‘sequence specifies conformation’
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(Anfinsen, 1973), suggesting an intriguing postulate:
knowledge of the amino acid sequence alone might be
sufficient to estimate the propensity for two proteins to
interact and effect useful biological function.

The science of proteomics endeavors to elucidate the
structures, interactions and functions of all of a cell’s or
organism’s proteins (Anonymous, 1999), with the objec-
tive of understanding cellular processes and networks and,
ultimately, disease processes at the protein level (Black-
stock and Weir, 1999). Current technology for cataloging
the proteins contained within a cell involves separation
via two-dimensional gel electrophoresis, followed by
identification using tandem mass spectrometry (Dove,
1999). Experimental techniques such as two-hybrid
screens (Fields and Song, 1989) are often employed to
study dynamic interactions between the identified cellular
proteins (Bartel and Fields, 1997; Uetz et al., 2000). As
such techniques are ‘tedious, labor-intensive and poten-
tially inaccurate’ (Enright et al., 1999), investigators have
recently been prompted to seek computational methods to
predict whether or not two proteins will interact. Previous
research groups have presented predictive methodologies
based on various principles, including correlated changes
in amino acid sequence between interacting protein
domains (Pazos et al., 1997); using genomic context to
infer functional protein interactions between the gene
products (Huynen et al., 2000); or inference from genome
sequences, given observed homologies in other organ-
isms, where interacting proteins have fused into a single
protein chain (Marcotte et al., 1999; Enright et al., 1999).

Earlier prediction techniques were focused on estimat-
ing the site of interaction, without reference to specific
binding partners. These methods utilized features and
properties related to interface topology, solvent Accessi-
ble Surface Area (ASA) and hydrophobicity (Jones and
Thornton, 1997), or the recognition of specific residue
or geometric motifs (Kini and Evans, 1996; Nissinka
et al., 2000). Antigenic determinant sites in proteins
were predicted using hydrophilicity profiling methods
presented in Hopp and Woods (1981) and Welling et al.
(1985).
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In contrast to the cited investigations, the methodology
reported herein takes an entirely different approach to
computational prediction of protein interactions. Given
a database of known protein–protein interaction pairs, a
machine learning system is trained to recognize interac-
tions based solely on primary structure and associated
physicochemical properties. Generalization of results
obtained by the system upon introduction of unseen
testing sequences is encouraging, given the volume of
the dataset. Future proteomics studies may benefit from
this research by proceeding directly from the automated
identification of a cell’s gene products to prediction of the
protein interaction pairs.

The success of the new methodology is based on the
automatic recognition of correlated patterns of sequence
and substructure in the interacting pairs. These patterns
typically comprise a small number of functional residues
in each protein (Casari et al., 1995).

Complete proteomic functional assignment requires
the identification and quantitation of all contributors to
dynamic multi-protein complexes. Many molecular signal
transduction processes are regulated by the intermediary
characteristics of discrete protein recognition ‘domains’,
evolutionarily-conserved modules of amino acid sequence
found in catalytic proteins, as well as on scaffold, anchor-
ing or adaptor proteins (Pawson and Scott, 1997). Protein
interactions are frequently mediated by these domains,
each of which bind to specific peptides. Such interactions
form the basis for structural and functional organization
within cells (Pawson, 1995).

Protein domains are often observed across genomes
of multiple species (Bateman et al., 2000). While cer-
tain discrete enzymatic signaling domain families are
common to all three divisions of cellular life, many
non-enzymatic eukaryotic signaling domains with
prokaryotic homologs have been identified (Ponting et
al., 1999). Important examples include the SH3 (50
a.a) and PDZ (90 a.a) domains (Fanning and Ander-
son, 1996; Pawson and Scott, 1997). Other domains
organize into larger structural domains or families,
subsequently facilitating the assembly and interaction of
other proteins. For example: the tetratricopeptide repeat
domain (TPR; 34 a.a.) forms a superhelical structure
with an amphipathic groove for binding protein tar-
gets, and mediates protein–protein interactions (Das et
al., 1998). β-propeller superstructures are a common
motif, comprising, e.g. NHL repeat domains (45 a.a)
found on proteins involved in mediating activity of
lentiviral Tat proteins in vivo (Fridell et al., 1995), and
WD40 repeat domains (40 a.a.) on G-proteins, important
regulators of a host of cellular functions (Neer et al.,
1994).

Table 1. Organism representation by proteins found in the DIP database.
Frequency expressed as fraction of total number of occurrences of each
organism. The top 95% most frequent organisms are listed

Organism Superkingdom Frequency

S.cerevisiae Eukaryota 0.639
H.sapiens Eukaryota 0.184
Mus musculus Eukaryota 0.049
D.melanogaster Eukaryota 0.033
R.norvegicus Eukaryota 0.020
E.coli Bacteria 0.013
Bos taurus Eukaryota 0.012

SYSTEM AND METHODS
The protein–protein interaction prediction method is de-
scribed in this section.

Database of interacting proteins
Protein interaction data were obtained from the Database
of Interacting Proteins (DIP; http://www.dip.doe-mbi.
ucla.edu/). At the time of writing, the database comprises
2664 entries representing pairs of proteins known to
mutually bind, giving rise to a specific biological func-
tion. Each interaction pair contains fields representing
accession codes linking to other public protein databases,
protein name identification and references to experimental
literature underlying the interactions. Alternative fields
include protein interaction domains, superfamily identi-
fication, interacting residue ranges, and protein–protein
complex dissociation constants.

The representation of the various biological super-
kingdoms in the DIP database is heavily biased towards
the Eukaryotes. In Table 1, the top 95% most-frequently
occurring organisms and their kingdom membership are
summarized. Note that the budding yeast Saccharomyces
cerevisiae accounts for 64% of the interactions, which
are readily accessible online (Uetz et al., 2000). The
bacterium Escherichia coli constitutes the most frequent
non-eukaryote proteome, yet accounts for only 1.3% of
the proteins found in the database.

On the molecular level, the protein interaction substruc-
tural domain coverage within DIP is diverse. Submitting
the protein sequences to the Protein Families Database
(Bateman et al., 2000) of protein domains and profile hid-
den Markov models (Pfam v. 5.5; http://www.pfam.wustl.
edu/), we estimated that at least 1394 distinct domains are
represented. Table 2 lists the most frequent protein do-
mains found in DIP, using a sequence E-value cutoff level
of 1.0. A histogram portraying the distribution of all pro-
tein sequence lengths within the database is presented in
Figure 1. The mean and standard deviation of amino acid
chain lengths are 481 and 386 residues, respectively.
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Table 2. Most frequent protein domains in the interaction dataset. Frequency
expressed as fraction of total occurrences of each domain. Prediction using
the Protein Families Database (Pfam v 5.5; Bateman et al., 2000)

No. Domain Frequency

1 WD40 0.056
2 pkinase 0.030
3 TPR 0.028
4 zf-C2H2 0.018
5 Armadillo seg 0.016
6 EGF 0.016
7 HLH 0.013
8 spectrin 0.013
9 bZIP 0.011

10 ank 0.011
11 rrm 0.009
12 SH2 0.008
13 SH3 0.008
14 Sm 0.007
15 ras 0.007
16 fn3 0.007
17 PHD 0.006
18 efhand 0.006
19 myb DNA-binding 0.006
20 arf 0.006
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Fig. 1. Distribution of protein sequence lengths in database. At least
1394 distinct interacting domains are represented. µ = 481 ± 386
residues.

Support vector machine learning
The new protein–protein interaction estimator utilizes the
technique of ‘support vector’ learning, an area of statis-
tical learning theory subject to extensive recent research
(Vapnik, 1995; Schölkopf et al., 1999). A selection of re-
cent bioinformatic investigations utilizing Support Vector
Machine (SVM) learning includes Brown et al. (1999),

Jaakkola et al. (2000) and Zien et al. (1999). Useful for
function approximation, signal processing and regression,
SVM has several advantages as applied in the present con-
text:

(1) SVM generates a representation of the non-linear
mapping from residue sequence to protein fold
space (Baldi and Brunak, 1998) using relatively few
adjustable model parameters.

(2) Based on the principle of structural risk minimiza-
tion, SVM provides a principled means to estimate
generalization performance via an analytic upper
bound on the generalization error. This means
that a confidence level may be assigned to the
prediction, and alleviates problems with overfitting
inherent in neural network function approximation
(Hecht-Nielsen, 1989).

(3) Computationally efficient (Joachims, 1999), SVM is
characterized by fast training which is essential for
high-throughput screening of large protein datasets.

(4) SVM is readily adaptable to new data, allowing
for continuous model updates in parallel with the
continuing growth of biological databases.

In the present research, we train an SVM to recognize
pairs of interacting proteins culled from the DIP database.
The decision rules developed by the system are then used
to generate a discrete, binary decision (1 = interaction,
0 = no interaction) upon introduction of a new feature
set based on primary structure of the putative protein
interaction pair.

Feature representation
For each amino acid sequence of a protein–protein
complex, feature vectors were assembled from encoded
representations of tabulated residue properties including
charge, hydrophobicity, and surface tension for each
residue in sequence. This set of features was motivated
by the previous demonstration of sequential hydrophilic-
ity profiles as sensitive descriptors of local interaction
sites (Hopp and Woods, 1981). Here, this concept was
extended to integrate sequential charge and surface
tension, as water molecules influence atomic packing for
shape complementarity, and mediate polar interactions
at protein–protein recognition sites (Conte et al., 1999).
Our postulate is that since sequentially-proximal protein
secondary structure elements are often co-located in three-
dimensional conformation (Levitt and Chotia, 1976), the
sequential profile of these additional features (charge,
surface tension) must similarly ‘co-locate’ upon folding.

Let the vector of numbers {v j }i , i ∈ 1, . . . , M in L-
dimensional real space R

L denote feature i for a given
amino acid sequence of length L residues, where M
different features are considered. Lengths of the individual
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feature vectors v were normalized by mapping onto a
fixed-length interval K , via {yk}i = f ({v j }i ), where the
function f is defined by f : R

L → R
K . In this transformed

space, the arc length coordinate ξ along the peptide
sequence now varies as ξ ∈ [0, 1]. This is an essential step
for representing proteins of widely varying native length
(Figure 1). The full feature vector for a particular protein A
is constructed by concatenation of each feature sequence
y. This is written as {ϕ+

A } = {yk}1 ⊕ {yk}2 ⊕ · · · ⊕ {yk}M ,
where a ⊕ b indicates simple concatenation of vectors
a and b. Finally, a representation of an interaction pair,
{ϕ+

AB} is formed by concatenating the feature vectors for
proteins A and B, i.e. {ϕ+

AB} = {ϕ+
A } ⊕ {ϕ+

B }. The vector
{ϕ+

AB} becomes a positive training example for the SVM.
Negative examples (putative non-interacting protein

pairs) must also be presented to the SVM. In this
context, it may be insufficient to merely randomize the
residues, a practice commonly carried out to estimate the
statistical significance of biological sequence alignments
as contrasted against a random control (Needleman and
Wunsch, 1970; Fitch, 1983). Since a database of non-
interacting proteins was not readily available, we chose
to create negative controls by randomizing amino acids
sequences sampled from DIP, while preserving both (1)
amino acid composition and (2) di- and tri-peptide ‘k-
let’ frequencies (Coward, 1999; Kandel et al., 1996).
Presumably, where k > 1, this procedure provides more
native-like artificial proteins by conserving higher-order
biases. Without performing exhaustive wet experiments
to prove the biological inertness of proteins encoded
by negative exemplars {ϕ−

C D}, thereby proving that in
fact proteins C and D do not interact, this must suffice
to design and implement the numerical experiments.
Randomized amino acid sequences were generated using
Shufflet (http://www.genetique.uvsq.fr/eivind/shufflet.
html) (Coward, 1999).

Data partitioning
In the experiments reported here, the DIP database entries
were sampled at random, and data were partitioned into
training and testing sets, at approximately a 1 : 1
ratio. Feature vectors constructed as described in the
previous section were used as examples for training and
testing the prediction system. Testing examples were
not exposed to the system during SVM learning. The
database is robust in the sense that it represents a
compendium of protein interaction data collected from
diverse experiments. As noted above, 1394 different
protein domains are represented. There is a negligible
probability that the learning system will ‘learn its own
input’ (see Baldi et al., 2000) on a narrow, highly
self-similar set of data examples. This enhances the
generalization potential of the trained SVM.

IMPLEMENTATION
Software methods for parsing the DIP database, control
of randomization and sampling of records and sequences,
and feature vector creation were developed in Java. A
new database was constructed by augmenting the original
DIP records. Additional fields added included amino acid
sequence data and associated residue features, generated
as described in the section Feature representation.

SVM learning was implemented using SVMlight

(Joachims, 1999), available at the following URL:
http://www-ai.cs.uni-dortmund.de/SOFTWARE/
SVM LIGHT/svm light.eng.html.

Training and testing exemplar data files were developed
using a prescribed k-let frequency (k ∈ [1, 2, 3]) and
ensemble sampling size as input parameters to the data
preparation software. Each member of the statistical
ensemble involved a random sampling of the DIP inter-
acting proteins and newly-created ‘shuffled’ amino acid
sequences. A different SVM was trained for each k-let
correlation frequency and experimental trial. The results
of these trials were averaged to eliminate potential biases
due to chance sampling of the dataset.

The performance of each SVM was evaluated using the
inductive accuracy on the previously unseen test examples
as the performance metric. ‘Inductive accuracy’ is defined
here as the percentage of correct protein interaction
predictions on the test set, consisting of nearly equal
numbers of positive and negative interaction examples.

The main results of the protein–protein interaction
predictions are summarized in Table 3. Each row in the
table corresponds to a constant k-let frequency used to
generate the negative training and testing examples. Data
in the column headed ‘# Examples’ indicate the average
total number of each type of examples for each case. These
data have been averaged over an ensemble of N = 10
trials, a sufficient sample as indicated by the low variance
shown in Column 3.

DISCUSSION AND CONCLUSION
The inductive accuracy of the learning machines as sum-
marized in Table 3 is encouraging, given the depth of the
DIP database. For each statistical background comprising
k-let orders 1–3, about four out of five potential protein in-
teractions are correctly estimated by the system. It bears
reiteration here that only primary structure data have been
used to train the SVM. We submit that some implicit infor-
mation regarding structural, chemical and biological affin-
ity has been represented and learned by virtue of the affir-
mative labeling of protein interaction pairs. The implica-
tions of the results shown in Table 3 for future proteomics
research are intriguing.

While the methodology presented here is generally
applicable, the proteins in the interaction database
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Table 3. System generalization accuracy summary. ‘Inductive accuracy’ is
the percentage of correct protein interaction predictions on test data not
previously seen by the system. N = 10 trials

k-let # Examples Inductive
frequency (Train, Test) accuracy

(%)

1 (2190, 2189) 80.96 ± 1.42
2 (2192, 2192) 80.19 ± 0.86
3 (2203, 2195) 80.13 ± 0.89

predominantly represent eukaryotes, as summarized
in Table 1. This bias may also be manifested in the
trained SVM, which may not immediately generalize
to bacteria or archea, although prokaryotic homologues
of many non-enzymatic eukaryotic signaling domains
associated with protein–protein interactions have been
identified (Ponting et al., 1999). To identify conserved
interactions across species, additional training based on
more kingdom-diverse proteomes may be required.

With reference to the first row of Table 3, we observe
that good predictive accuracy is achieved when amino acid
composition alone is preserved during randomization (k =
1). System performance is not degraded relative to cases
k = 2, 3. If the results indicated a predictive performance
deficit where k = 1, one might have conjectured that
the SVM had merely learned to discriminate native
interactions from random, non-native proteins here. It
is unclear whether this observation is an artifact of the
particular bias toward S.cerevisiae in the database. This
question should be addressed in future research.

In conclusion, the prediction methodology reported in
this paper generates a binary decision about potential
protein–protein interactions, based only on primary
structure and associated physicochemical properties. This
suggests the possibility of proceeding directly from the
automated identification of a cell’s gene products to infer-
ence of the protein interaction pairs, facilitating protein
function and cellular signaling pathway identification.

This research represents only an initial step in the au-
tomated prediction of protein interactions. The discovery
of patterns within respective primary structures of known
protein interaction pairs may be subsequently enhanced
by using other features (secondary and tertiary structure,
binding affinities, etc.) in the learning machine.

With experimental validation, further development
along these lines may produce a robust computational
screening technique that narrows the range of putative
candidate proteins to those exceeding a prescribed
threshold probability of interaction.
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