
Better Burst Detection

Xin Zhang Dennis Shasha
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

{xinzhang,shasha}@cs.nyu.edu

Abstract

A burst is a large number of events occurring within a
certain time window. Many data stream applications re-
quire the detection of bursts across a variety of window
sizes. For example, stock traders may be interested in bursts
having to do with institutional purchases or sales that are
spread out over minutes or hours.

In this paper, we present a better framework for elastic
burst detection: a family of data structures that generalizes
the Shifted Binary Tree, and a heuristic search algorithm to
find an efficient structure given the input. We study how dif-
ferent inputs affect the desired structures and the probabil-
ity to trigger a detailed search. Experiments on both syn-
thetic and real world data show a factor of up to 35 times
improvement compared with the Shifted Binary Tree over a
wide variety of inputs, depending on the inputs.

1. Introduction

A burst is a large number of events occurring within
a certain time window. It’s a noteworthy phenomenon in
many natural and social processes: stock traders are inter-
ested in bursts of trading volume, which are good indicator
of the price trend; astrophysicists are interested in gamma
ray bursts, which may reflect the occurrence of a super-
nova. Furthurmore, many data applications require detec-
tion of bursts across a variety of window sizes. For exam-
ple, interesting gamma ray bursts could last several seconds,
several minutes or even several days.

The elastic burst detectionproblem [7] is to simutanu-
ously detect bursts across multiple window sizes. When the
aggregate in a window exceeds the threshold for this win-
dow size, a burst occurs. A naive algorithm is to check each
window size of interest one at a time. To detect bursts over
k window sizes in a sequence of lengthN naively requires
O(kN) time. In [7], the authors show that a simple data
structure called theShifted Binary Treecan beat the naive

algorithm by several orders when the probability of bursts
is very low.

A Shifted Binary Tree includes a binary tree as the base
structure just like the Haar wavelet tree. It also includes
shifted sublevels to each base sublevel above level 0. The
shifted subleveli is still of length2i, but the correspondend-
ing window is shifted by2i−1 from the base sublevel. Fig-
ure 1.a shows an example.

The overlap between the base sublevels and the shifted
sublevels guarantees that all the windows of lengthw, w ≤
1 + 2i, are included in one of the windows at leveli + 1.
Let f(w) be the threshold for sizew. Because the aggre-
gation function is monotonically increasing, if more than
f(2+2i−1) events are found in a window of size2i+1, then
a detailed search must be performed to check if some sub-
window of sizew, 2 + 2i−1 ≤ w ≤ 1 + 2i, hasf(w)
events. All bursts are guaranteed to be reported, while many
non-burst windows are filtered away without need of a de-
tailed check when the burst probability is very low. How-
ever, when bursts are rare but not very rare, the number of
fruitless detailed searches grows, suggesting we may want
more levels than Shifted Binary Tree provides; conversely,
when bursts are exceedingly rare we may need fewer lev-
els. In other words, we want a structure that adapts to the
input.

This paper presents a family of multiresolution over-
lapping data structures, calledShifted Aggregation Trees,
which generalizes the Shifted Binary Tree and includes
many other structures. We then present a heuristic search al-
gorithm to find an efficient data structure given the sample
input series and window thresholds. We theoretically ana-
lyze and empirically study how different inputs affect the
desired structures and the probability to trigger a detailed
search. Experiments on both synthetic data and real world
data show that the Shifted Aggregation Tree outperforms
the Shifted Binary Tree over a variety of inputs, yielding
up to a factor of 35 times speedup in some cases. Due to
the space limitation, the details missed in this paper can be
found in [10].

Level 0

Level 1

Level 2

Level 3

Level 4

(a) Shifted Binary Tree

Level 0

Level 1

Level 2

Level 3

Level 4

(b) Embed a Shifted Binary Tree (SBT) in an Ag-
gregation Pyramid (AP). Each shaded cell in the
AP corresponds to a node in the SBT. The differ-
ent shadings in level 2 show the one-to-one cor-
respondence.

(c) An example of Shifted Aggregation
Tree embedded in the Aggregation Pyra-
mid

Figure 1. Shifted Binary Tree, Aggregation
Pyramid and Shifted Aggregation Tree.

2. Shifted Aggregation Tree

2.1. Embed a Shifted Binary Tree in an Aggrega-
tion Pyramid

Aggregation Pyramidis anN -level isosceles triangular-
shaped data structure built over a time window of sizeN
shown in Figure 1.b and 1.c: level 0 hasN cells and is
in one-to-one correspondence with the original time series;
level 1 hasN − 1 cells, the first cell stores the aggregate
of the first two data items (say, data items 1 and 2) in the
original time series, the second cell stores the aggregate of
the second two data items (data items 2 and 3), etc; and so
on. In all, it stores the original time series and all the ag-

SBT SAT
Number of children 2 ≥ 2

Levels of children for i ≤ i
level i + 1

Shift at leveli + 1: Si+1 2 ∗ Si k ∗ Si, k ≥ 1
Overlapping window window size ≥ wi

size at leveli + 1: Oi+1 at leveli: wi

Table 1. Comparing the Shifted Aggregation
Tree (SAT) with the Shifted Binary Tree (SBT)

gregates for every window size starting at every time point
within this time window.

Since in a Shifted Binary Tree, level 0 stores the origi-
nal time series, and leveli stores the aggregates of window
size 2i. Each node in a Shifted Binary Tree has a corre-
sponding cell in the aggregation pyramid. Thus the Shifted
Binary Tree can be embedded in the aggregation pyramid
as shown in Figure 1.b.

Obviously, there are many other possible subsets of the
aggregation pyramid. By using different structures on dif-
ferent data inputs, we can achieve optimal performance by
trading off structure maintenance against filtering selectiv-
ity.

2.2. Shifted Aggregation Tree Generalizes Shifted
Binary Tree

Like a Shifted Binary Tree, aShifted Aggregation Tree
(SAT)is a hierarchical tree structure defined on a subset of
the cells of an aggregation pyramid. It has several levels,
each of which contains several nodes. The nodes at level 0
are in one-to-one correspondence with the original time se-
ries. Any node at leveli is computed by aggregating some
nodes below leveli. Two consecutive nodes at the same
level overlap in time.

A Shifted Aggregation Tree is different from a Shifted
Binary Tree in two ways:

• The parent-child structure defining the topological re-
lationship between a node and its children, i.e. how
many children it has and their placements.

• The shifting pattern defining how many time points
apart (called theshift) two neighboring nodes at the
same level are.

Table 2.2 gives a side-by-side comparison of the differ-
ence between a SAT and a SBT. Clearly, a SBT is a special
case of a SAT. Figure 1.c shows one example of Shifted Ag-
gregation Trees.

A Shifted Aggregation Tree has a similar property to a
Shifted Binary Tree:any window of sizew, w ≤ hi−si+1,

is included by a node at leveli, wherehi is the correspond-
ing window size of leveli, andsi is the shift of leveli.
This nice property gives us a similar detection algorithm
as that for a Shifted Binary Tree. When new data points
come, the nodes in a Shifted Aggregation Tree are updated
from bottom to up. After a node at leveli + 1 is updated,
if the new aggregate is more thanf(hi − si + 2), a de-
tailed search is performed on the subwindows of sizew,
hi − si + 2 ≤ w ≤ hi+1 − si+1 + 1. An efficient Shifted
Aggregation Tree should balance between the updating time
and the detailed searching time.

3. Heuristic state-space algorithm to search
an efficient Shifted Aggregation Tree

In order to find an efficient Shifted Aggregation Tree
(SAT), the classical AI state-space search algorithm is used,
given the sample input series and window thresholds. Each
SAT is seen as a state. By adding a level onto the top of SAT
B, if we can get another SATA, we say stateB can be trans-
formed to stateA. The algorithm starts from a SAT having
level 0 only, then keeps transforming the candidate set of
SATs, until a set of final SATs (i.e. those which can detect
bursts in all windows of interst) are reached. In order to find
the best SAT, the best-first strategy is used to explore the
state space. Each state is associated with a cost. The state
with the minimum cost is picked as the next state to be ex-
plored, and the final SAT with the minimum cost is picked
as the desired structure.

The cost associated with each state is used to indicate
which structure to choose in term of running time. We use
a theoretical cost model – the expected number of opera-
tions – to model the CPU running time. Our model is a sim-
ple RAM model: all operations (updates and comparisons)
take constant time. The total cost is the sum of the number
of updating operations and the expected number of compar-
ison operations, given the sample input series, the window
thresholds and the tree structure. Our experiment shows that
the theoretical cost model models the actual CPU running
time well [10].

4. Empirical Results

4.1. Synthetic Data

Two classes of probabilistic distributions widely used to
model many real world applications were chosen to gener-
ate the synthetic data: the Poisson distribution and the expo-
nential distribution. For each distribution, we synthesized a
set of data with different parameters in a broad range. We
want to see how different distributions and thresholds af-
fect the desired Shifted Aggregation Trees.

Assume that each point in the input time series has a
meanµ and a standard deviationσ. Assume that for each
window size, the probability to exceed the threshold be
some valuep. We can infer [10] that the alarm probabil-
ity Pa for an aggregate of window sizeW to exceed the
thresold for window sizew is

Φ((
√

T − 1√
T

)
√

w
µ

σ
+

Φ−1(p)√
T

)

whereT = W/w, denoted thebounding ratio, andΦ(x) is
the normal cumulative distribution function.

SoPa is determined by the distribution parametersµ and
σ, the threshold parameterp, the bounding ratioT and the
levelw in the underlying aggregation pyramid. The experi-
ments on both Poisson data and exponential data also show
the following:

• The larger the ratioµ
σ

is, the larger the alarm probabil-
ity Pa. To mitigate this, the Shifted Aggregation Tree
becomes denser in order to bring downPa. When µ

σ

becomes very large,Pa is close to 1. So the structure
turns sparser again to reduce the updating time, but is
essentially useless.

• The smaller the burst probabilityp, the larger the
threshold, the smallerPa, so the structure becomes
sparser since there are less bursts to worry about.

• As the bounding ratioT decreases, so doesPa. In a
Shifted Aggregation Tree,T could be very close to 1,
e.g.W = w + 1, whereasT in a Shifted Binary Tree
is designed to be about 4. Thus a SAT is able to ad-
just its structure to reduce the alarm probability.

• As the sizew increases, so doesPa, while the bound-
ing ratio T becomes smaller in the Shifted Aggrega-
tion Tree to try to reducePa.

In summary, because the Shifted Aggregation Tree can
adjust its structure to reduce the alarm probability, it can
achieve far better running time than the Shifted Binary Tree.

4.2. Real World Data

We have used two real world data sets to test the pro-
posed framework: the Sloan Digital Sky Survey (SDSS)
Website traffic data which records all the traffic to the SDSS
website in 2003, and the NYSE TAQ stock data which in-
cludes tick-by-tick trading activities of the IBM stock be-
tween Jan. 1st, 2001 to May 31st, 2004. All the events
within the same second are aggregated as a single datum.
The statistics show that the SDSS data follows the Poisson
distribution while the IBM data is close to the exponential
distribution.

We are interested in comparing the Shifted Aggregation
Tree (SAT) with the Shifted Binary Tree (SBT) under dif-
ferent settings.

CPU time for different thresholds

0

20000

40000

60000

80000

100000

120000

2 3 4 5 6 7 8 9
Burst Probability p=10

-k

C
lo

ck
 T

ic
k

SDSS_SAT

SDSS_SBT

IBM_SAT

IBM_SBT

(a) Thresholds

CPU time for different max window sizes of

interest

0

100000

200000
300000

400000

500000

600000

10 30 60 120 300 600 1800

Max window sizes of interest

C
lo

ck
 t

ic
k
s

SDSS_SAT

SDSS_SBT

IBM_SAT

IBM_SBT

(b) Maximum window size of interest

CPU time for different window sets

0

200000

400000

600000

800000

1000000

1 5 10 30 60 120
Window Steps

C
lo

ck
 t

ic
k

s

SDSS_SAT

SDSS_SBT

IBM_SAT

IBM_SBT

(c) Different set of window sizes of interest

Figure 2. Performance test: CPU time comparison on the Sloan Digital Sky Survey (SDSS) weblog
data and the IBM stock data

• Different thresholds
The thresholds are set to reflect a burst probability
ranging from10−2 to 10−9. Figure 2.a shows the re-
sults for both data sets. As the burst probability de-
creases, the CPU time for the SAT decreases quickly.

• Different maximum window sizes of interest
The maximum window sizes are set from 10 seconds
up to 1800 seconds. Figure 2.b shows as the maximum
window size increases, there are more possible levels
to adjust the bounding ratio, thus the speedup for the
SAT over the SBT increases.

• Different sets of window sizes
Instead of detecting bursts at every window size, we
want to detect bursts for a set of window sizesn, 2 ∗
n, 3∗n,, wheren is set to be 1, 5, 10, 30, 60, 120 re-
spectively. Figure 2.c shows that as the set of window
sizes becomes sparser, there are fewer bursts to worry
about, thus both the SBT and the SAT take less time.

We also studied how sensitive the desired Shifted Aggre-
gation Tree is to the training data and how the search param-
eters in the state-space algorithm affect the desired struc-
ture. The results can be found in [10].

5. Related Work

As an interesting and important phenomenon, monitor-
ing and mining bursty behaviors are attracting more and
more interests recently.

Wang et al. [9] models the bursty behavior in self-similar
time series, such as Ethernet, disk traffic, etc. Kleinberg [3]
studies the bursty and hierarchical structure in temporal text
stream to discover how high frequency words change over
time. Their work focus on modeling the bursty behaviors,
while our focus is a high-performance algorithm to detect
bursts, thus complements their work. Vlachos et al. [8] mine

the bursty behavior in the query logs of the MSN search en-
gine. We share the view that burst detection should be a pre-
liminary primitive for further knowledge mining process.

Neill et al. [5, 6, 4] study the problem of detecting signif-
icant spatial clusters in multidimensional space. They con-
sider a general non-monotonic density function and use the
overlap-kd tree with a fixed overlapping structure indepen-
dent of the input data. Our technique can adapt to different
characteristics of the input data and be applied to their ap-
plication to achieve better performance.

Datar et al. and Gibbons et al. [1, 2] study a related prob-
lem: estimating the number of 1’s in a 0-1 stream and the
sum of bounded integers in an integer stream in the lastN
elements. They use synopsis structures called Exponential
Histograms and Waves respectively. Like our Shifted Ag-
gregation Tree, these are multiresolution aggregation struc-
tures, though with coarser aggregation levels for the past
and finer aggregation levels for recent data.

6. Conclusion

In this paper, we propose a framework for adaptive and
therefore better elastic burst detection. It includes a family
of data structures and a heuristic search algorithm to find an
efficient structure given the input. Experiments show an im-
provement factor of up to 35 times depending on the input.

References

[1] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining
stream statistics over sliding windows.SIAM, 31(6), Septem-
ber 2002.

[2] P.B. Gibbons and S. Tirthapura. Distributed stream algo-
rithms for sliding windows. InProceedings of the fourteenth
annual ACM symposium on Parallel algorithms and archi-
tectures, pages 63–72, 2002.

[3] J. Kleinberg. Bursty and hierarchical structure in streams. In
KDD ’02: Proceedings of the Eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, pages 91–101, New York, NY, USA, 2002. ACM Press.

[4] D.B. Neill and A. Moore. Rapid detection of significant spa-
tial clusters. Proceedings of the 10th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, 2004.

[5] D.B. Neill and A.W. Moore. A fast multi-resolution method
for detection of significant spatial disease clusters. In Se-
bastian Thrun, Lawrence Saul, and Bernhard Schölkopf, edi-
tors,Advances in Neural Information Processing Systems 16,
Cambridge, MA, 2004. MIT Press.

[6] D.B. Neill, A.W. Moore, F. Pereira, and T. Mitchell. De-
tecting significant multidimensional spatial clusters. In
Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors,Ad-
vances in Neural Information Processing Systems 17, pages
969–976, Cambridge, MA, 2005. MIT Press.

[7] D. Shasha and Y. Zhu.High Performance Discovery in Time
Series: Techniques and Case Studies. Springer, 2003.

[8] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Iden-
tifying similarities, periodicities and bursts for onlinesearch
queries. InSIGMOD ’04: Proceedings of the 2004 ACM
SIGMOD international conference on Management of data,
pages 131–142, New York, NY, USA, 2004. ACM Press.

[9] M. Wang, T. Madhyastha, N.H. Chan, S. Papadimitriou, and
C. Faloutos. Data mining meets performance evaluation: Fast
algorithms for modeling bursty traffic. InICDE ’02: Pro-
ceedings of the 18th International Conference on Data Engi-
neering (ICDE’02), pages 507–516, Washington, DC, USA,
2002. IEEE Computer Society.

[10] X. Zhang and D. Shasha. High performance burst detection.
Technical Report, New York University, 2005.

