Abstract

Temperature-sensitive (ts) mutations are mutations that exhibit a mutant phenotype only at high or low temperatures. Because the mutation can be “switched” on or off by changing temperature, ts mutations provide a flexible means to study the importance of genes that are essential to an organism's development, or a means to alter protein behavior during time course experiments. However, finding ts mutations typically relies on generating and screening many thousands of mutations, which is an expensive and labor-intensive process. Here we describe an in silico method that uses the Rosetta relax protocol and machine learning techniques to predict a highly accurate "top 5" list of ts mutations given a protein of interest.

Introduction

[background from Dave or Kris goes here, and perhaps adds a sentence to the abstract]

The main challenge in the use of ts mutations is the difficulty of discovering or generating them. Methods for generating ts mutations fall into three general categories. Random methods make many random mutations to the genome or to a specific gene of an organism, followed by extensive screening to isolate the small number of resulting ts mutations. Procedure-based methods rely on a specific techniques, such as the fusion of a temperature-sensitive N-degron to a protein, that induce a ts phenotype. Procedure-based methods remove the need for extensive screening imposed by random methods, but they provide no recourse should that specific technique fail, and may also introduce side effects by making a larger-scale perturbation to the protein instead of a simple amino acid substitution.

Predictive techniques offer the best of both random and procedure-based techniques. By predicting a small number of high-likelihood substitutions, they avoid the need for screening thousands of mutants. The mutations are produced by making straightforward single-amino acid substitutions, and if the initial predictions fail to produce a ts phenotype, one can move farther down the ranked list of predictions, though obviously at the cost of more screening.

However, predicting temperature-sensitive mutations presents a number of challenges. The first is that a ts phenotype may manifest itself in many ways. A ts protein may exhibit a reduction in stability or solubility; it may acquire resistance to proteolysis, or be cleared more quickly because of partial unfolding; it may show reduced function; or it may not accumulate in high quantity because of poor expression, failure to fold, or aggregation. From this laundry list of potential causes, we chose to focus on reduced stability, because reducing stability affects a protein's function generally instead of perturbing single interactions. In addition, reduced stability is more tractable for computational modeling: a reduction in stability will be reflected as a lowering of ΔG, the free energy of unfolding of the protein, which should in turn be quantifiable by programs that use energy functions to quantify and evaluate protein structures. We further narrow our search by examining mutations at buried sites, which are more likely to be destabilizing and therefore more likely to result in a ts phenotype.

Quantifying the effects of mutations on protein structure presents its own challenges. Proteins vary tremendously in structure and function, and have very different starting energies. Therefore, comparing two proteins using the raw values of various terms in an energy function is uninformative. In addition, a ts phenotype caused by destabilization represents an intermediate range of change in ΔG (ΔΔG) between a neutral mutation and a loss-of-function mutation. We address the wide variation in structures and energies by 1) generating a distribution of score terms across multiple candidate structures for each mutation, and 2) comparing this mutant distribution to a similar distribution for the native structure. We then use these distribution comparisons as inputs to a machine learning algorithm, allowing us to pinpoint the intermediate range of destabilization that is most likely to yield a ts phenotype.

Methods

As stated earlier, our method produces a “top 5” list of potential temperature-sensitive mutations to a protein. The main steps of the method are:

1. Start with the known structure of a protein of interest, or a high-quality homology model.

2. Find the buried sites in the protein of interest, and create models for mutations to all possible amino acids at those sites.

3. For each model generated in step 2, run the Rosetta relax protocol multiple times to simulate accommodation of the mutation by the protein. Run the relax protocol on the starting “wild-type” (wt) structure as well. This results in an ensemble of putative structures for each mutation and for the starting structure.

4. Compare the Rosetta scores of each mutation ensemble to the scores of the wt ensemble to create a set of features that quantify the effect of each mutation on the protein structure. Add other features such as solvent accessibility and conservation of the native amino acid.

5. Use the features from step 4 to train a classifier to classify the mutations as temperature-sensitive or non-temperature sensitive using a support vector machine trained on known ts and non-ts mutations.

Solvent Accessibility and Stability

Solvent-accessible surface area (abbreviated ASA or ACC) refers to the surface area of a molecule that is accessible to a solvent [Lee & Richards ref]. In our case, accessibility is calculated for each amino acid in a protein, and expressed as the fraction or percent of the side chain that is accessible. We restrict our method to sites that are buried, which we define as native amino acids that are below an accessibility cutoff, because a) mutations at buried sites are correlated with reduced stability (decreased ΔG) and a ts phenotype [Sandberg ref], and b) surface mutations might be at an interface, and therefore cause a ts phenotype by perturbing a specific interaction of the target protein with another protein. Restricting candidate mutation sites to buried sites is a feature of other predictive methods as well [Varadarajan, Chakshusmathi].

Training Set

Building a training set could have been “step 0” in our procedure outlined above: in order to train the classifier used in step 5 of our method, we needed a training set of known ts and non-ts examples (or “samples” in the parlance of machine learning). We gathered a set of mutations to worm (C. elegans), yeast (S. cerevisiae) and fly (D. melanogaster) proteins using a combination of database combing and literature searches. Worm mutants were culled from WormBase [ref] and WorTS [ref?]; yeast mutants were derived from the Saccharomyces Genome Database, Textpresso [ref] searches, and the Histone Systematic Mutation Database; and fly mutants were collected from FlyBase [ref]. Collecting the training set presented significant challenges: database annotations for a temperature-sensitive phenotype are generally not well standardized, and explicit annotations of “not temperature-sensitive” are essentially non-existent. However, by screening out lower confidence ts examples and using conservative heuristics for finding non-ts examples, we compiled a set of roughly 1300 ts and non-ts mutations. After selecting for samples that a) had known structures or homology models with at least 70% identity, and b) were at least 90% buried, we arrived at a final training set with 205 samples (75 ts, 130 non-ts) (Figure 1).

Starting Structures

The first formal step in the prediction process is to find a structure for the protein of interest. We used MODELLER [ref] to make homology models for the frequent training set cases for which we had no experimentally determined structure. After determining a starting structure, either an experimentally established or a homology modeled structure, we find buried sites – sites with 10% or less side chain accessibility – using Probe [ref]. For a typical protein, 30-50% of its sites will meet this cutoff. At each of these buried sites, we generate in silico models for each possible mutation.

Model Relaxation

The models of mutated proteins generated above are not physically accurate: they may contain steric clashes or other issues after substitution of one residue for another in the structure. Each mutated model must be allowed to accommodate the mutation before being evaluated as a potential temperature-sensitive mutation. The heart of our method is the use of Rosetta to simulate accommodation and evaluate the results. Rosetta is a collection of protocols for predicting and manipulating protein structures: there are protocols for do novo structure prediction from sequence, protein design, and protein-protein docking, among others. Each of these protocols relies on Rosetta's energy function, which evaluates structures by calculating and combining roughly 30 different quantities based either on models of physical properties (e.g., solvation, electrostatics, van der Waals forces) or statistics of known models (e.g., φ, ψ, and ω bond angles). The protocol we use in our method is the “relax” protocol, which starts with a protein structure and searches for a lower-energy conformation of that structure as evaluated by the Rosetta energy function. The search procedure uses simulated annealing to find a candidate global minimum by making conformation changes such as constrained backbone movements and rotamer optimization.

The relax protocol does not find a single “best” low-energy conformation; rather, it reports the lowest-energy conformation seen during the Monte Carlo sampling process, which may or may not represent the actual global minimum. Over multiple applications of the protocol to a single starting structure we produce a collection of such lowest-energy conformations (“decoys”) that we call an “ensemble” [CRISPY: Is this a correct characterization of how you form this ensemble?]; within each ensemble, we look at the distributions of the various energy terms to develop a picture of what the protein would do as it seeks a lower-energy state. By comparing the distributions of the score terms of the native structure ensemble to those of the mutated structure ensemble, we can begin to quantify the effects of different mutations on protein structure.

Training Data Generation

The score terms and score term distributions derived from the relax runs, while useful in themselves, undergo two transformations before they can be used in the machine learning algorithm that ultimately predicts which mutations will result in a ts phenotype. We need a metric for comparing distributions, and we need to convert these measurements into features that can be used to train our classifier. We also add several non-Rosetta features to our training data. These steps are described below.

Rosetta terms and the quartile method

Comparing native and mutant distributions in a way that is applicable across our whole set of proteins is challenging for the same reasons we mentioned earlier: the tremendous range of protein structure, function, and starting energies, and the protein-dependent change in ΔG that may result in a ts phenotype. We chose a quartile-based approach that allows us to compare distributions without making assumptions about the underlying distribution of the data (Figure 2). The procedure is to calculate quartiles 1-3 in the mutant ensemble, then express those values as percentiles within the native ensemble [CRISPY: say how you compute the native ensemble]. Specifically, for a given ensemble E and set of values S for a single score component of E, we found the first, second, and third quartiles (Q1, Q2, and Q3) of S. We then found the percentiles of those Q1, Q2, and Q3 values within the set of values SWT of the same score term in the wt ensemble. Percentiles were represented as fractions between 0 and 1, and values lying outside those ranges were clamped to 0 or 1 as appropriate.

As an example, the analysis of omega score terms shown in Figure 2 proceeds as follows. The omega score values from the mutant ensemble are analyzed, and found to have (Q1,Q2,Q3) = (31.35,34.48,36.55). These three values are then located within the wt ensemble, and each is given a number corresponding to its percentile with respect to the omega term distribution in the wt ensemble. The result is (0.150,0.499,0.672). The collection of omega scores from the individual runs in the ensemble is now represented by these three percentile values. Applying the quartile method yielded three input features for each Rosetta score term in the mutant ensemble, for a total of 93 features from 31 score terms.

Additional features and training file assembly

The final score file contains three types of features: score term-based features, additional structure-based features, and sequence-based features. The score term-based features were described above. The additional structure-based features include the raw ACC value (percent side chain accessible) and three features denoting whether the native residue participates in an α-helix, a β-sheet, or a loop region.

Sequence-based features were derived using only protein sequences. We first created two categorizations of amino acids into groups (large hydrophobic, polar, charged, etc.), one with four categories and another with seven. From these we derived two features, one for each group, denoting whether the amino acid at the site in question remained the same (no mutation; native), was mutated to a residue in the same category (e.g., one polar residue to another), or changed categories completely (e.g., polar to charged). We derived another pair of features by calculating, for both categorization schemes, the log odds that a change from one category to another would be ts vs. non-ts. Finally, we calculated a set of features using BLAST [ref] and PSI-BLAST [ref]. For each protein, we ran one iteration of BLAST on the NCBI non-redundant protein sequences (nr) database [ref], then performed one iteration of PSI-BLAST to generate the position-specific scoring matrix (PSSM) for the protein. From the PSSM and other PSI-BLAST statistics, we derived seven features based on information content and native and mutated residue log odds and frequencies.

The resulting training file contained 113 features: the class label (ts or non-ts), 4 text description features that are ignored by the classifier, and the 108 numeric features described above. The features set proved too large, and some redundant or uninformative features were removed later as described below.

Training and Validation

The data generation steps above produce an input file with one line per run ensemble, where each line has values for each of the features described above (conceptually this is equivalent to a matrix where each row represents a run ensemble and each column represents one input feature). This file provides the input for training our machine learning algorithms.

We used the Weka [ref] suite of machine learning tools for all of our classifier training and testing. After several rounds of training and evaluating different types of classifiers, we settled on the traditional support vector machine (SVM) as the most accurate and stable for this task. In the simplest case, an SVM performs linear classification on its input samples: for two-dimensional data, this amounts to finding the line that provides optimal separation between samples belonging to two classes. For higher-dimensional data, the line generalizes to a hyperplane, and input samples can also be efficiently transformed to a higher-dimensional space. This is the approach used in the second of our SVM variants (SVM-RBF), and has the advantage that complicated, non-linear class boundaries have linear representations in the transformed space.
Classifier Selection and Evaluation

We used two types of support vector machine: SVM-LIN, a straightforward SVM using a linear kernel, and SVM-RBF, which uses a (non-linear) radial basis function kernel. These two variants are intended to provide a mix of complexity, interpretability, and accuracy: SVM-LIN is simpler and provides a direct connection between features and classification, while SVM-RBF is more accurate but less robust to small changes in the training set. [CRISPY: relate the fact that ts mutants are in between wt and lethal mutants to the fact that RBF is a good technique]
Ideally we would have made separate training and testing sets to eliminate any feedback between the training and testing processes. However, we have a small training set given the complexity of the problem and the number of input features. Instead of setting aside samples in a test set and further restricting the size of our training set, we use cross-validation (CV). We used several different cross-validation schemes in this work, but the basics of each are the same. For example, 10-fold CV makes 10 splits of the starting set into 90% training, 10% testing. By training and testing on each 90/10 split in turn, we obtain predictions for each sample in the set. Except for some special cases that will be noted, we perform ten iterations of the cross-validation with different random seeds so that we obtain a mean and variance on the precision. We refer to this as 10x 10-fold CV.

Parameter and Feature Selection

Now that we have a means of training and evaluating our classifiers, we can take several steps to improve their performance. Both SVM implementations have hyper-parameters that can be tuned to achieve optimal predictive accuracy. SVM-LIN and SVM-RBF have a complexity parameter C that specifies the penalty for non-separable samples. Higher values of C lead to more support vectors and a decision boundary that is more complex and potentially more accurate, but at the risk of over-training (i.e., the classifier learns the noise in the training set, and does not generalize well to novel samples). SVM-RBF also has a γ parameter that affects the area of influence of the radial basis functions. As with the complexity parameter, higher values lead to more convoluted decision boundaries by making basis function influence more local.

We performed a simple line search in parameter space, testing performance at set intervals in log-transformed parameter space (e.g.., log2 C=2.0, 2.5, 3.0, etc.), using the following variation of the cross-validation approach. We first made five 80/20 splits of the data where the 20% sets are disjoint and cover the entire data set. On each split, we did 10x 10-fold cross-validation on the 80% split, testing different parameter values as described above and retaining the one that produced the highest accuracy. We then did a separate run where we trained on the full 80% and tested on the remaining 20%. This gave us a distribution of parameter values. What we found was that the choice of sample in the training and testing sets made much more of a difference than the parameter values, and that there was generally a wide range of parameter values with roughly equivalent performance (Figure 3). Our final parameter values were simply the median values across the five 80/20splits. This same method also yielded our final precision figures as described in Results.

Another way to improve both performance and interpretability is to remove features that are either confounding or redundant from the training set. Given the nature of the Rosetta scoring function, some features are likely to be highly correlated. We examined the correlation of all features across all samples in our training set, and identified features that appeared redundant. To test the effects of removing these features, we performed 10x 10-fold CV on two versions of the training set, one with and one without the putative redundant features, using five different variants of our SVM classifiers. We found 22 features (4 sequence-based features and 18 structure-based features that were derived from 6 score terms) whose removal resulted in an increase in precision across a majority of the classifiers, and removed these features from further consideration. Using the same remove-and-test methodology, we also removed 5 non-Rosetta based features whose inclusion degraded performance. After removing the features as described above, the final training set consisted of 86 features.

Detailed Protocol

[insert master script here, make called scripts available online]

Results

Our primary means of evaluating our method was examining the ts predictions from our cross-validation runs. We evaluated these CV runs using four metrics: precision, significance, correlation, and area under the ROC curve (AUROC).

The method outlined above to choose parameter values with 80/20 splits of the training data also yielded conservative figures for precision. By tallying the number of correct and incorrect predictions on each of the 20% splits of the data, we calculated precision across the entire set (Figure 4). Precision for both classifiers is significantly better than random, with SVM-RBF outperforming SVM-LIN.

We also looked at per-species and multi-species effects. Breaking down the above results by species showed lower precision for C. elegans, where we only had 5 ts samples, and perfect prediction for D. melanogaster, which entirely lacks non-ts samples. While this demonstrates strong species-specific effects, there was also a species-independent bonus gained by training on multiple species. Accuracy for both C. elegans and S. Cerevisiae was significantly lower when training only on that species' samples as opposed to the full multi-species training set, with C. elegans precision dropping to nearly zero using single-species training. While some of this improvement is certainly due to the increase in training set size in the multi-species setting, the marked improvement in C. elegans performance strongly suggests that our technique is also extracting species-independent rules.

SVM-LIN and SVM-RBF are both clearly better than random. To quantify this improvement over random, we developed a heuristic method to estimate p-values for each method and species (Figure 5). Again, C. elegans had the weakest results, due again to the small number of ts samples; and fly predictions alone were not significant as there were no non-ts samples. However, yeast prediction was significantly better than random, and overall prediction maxed out at [CRISPY: it’s not clear whether you mean the p value was never higher than this or never lower; please just say] p < 1.0e-6.

SVM-LIN and SVM-RBF both assign a confidence or estimated probability to each prediction that we can use to rank the predictions. Since our goal is to use the top few (generally 5) predictions when sorted by confidence, we used the point-biserial correlation to calculate how well this confidence metric correlated with actual correctness of prediction (Figure 6). Both methods show reasonable correlation, indicating that correct predictions are more likely to be ranked higher, increasing the likelihood of finding correct predictions at the top of the list. SVM-RBF, despite having higher precision, has lower correlation, which may indicate slight over-fitting.
Finally, we further quantified our improvement over random by examining the receiver operating characteristic (ROC) curve and the area under the ROC curve (abbreviated AUC). { figure pending }

Per-protein analysis

Whole-set per-protein LOO results (from thesis)

Individual LOO examples (from thesis)

New: most important features from SVM-LIN. Top ten features from the five 80/20 splits are nearly identical across training/test sets. Top features are aminochange (+), repack_stdev (-), repack_average (+), p_aa_pp (-), fa_rep (-), and gdtmm2_2 (+). Story: intermediate destabilization is described as: change in amino acid class that increases energy but that is relatively stable (not too much fluctuation in energy during relax, no clashes, not too much movement of atoms) and obeys residue bond angle probabilities.

Improved: bring over analysis of sequence-only from thesis. Structure addition provides much better stability and many more predictions per 80/20 runs; refer to figures as well.

In Vivo Results

[insert DG method and results here]

Server

Describe server, or server-to-be

Figures

[image: image1.emf]#prot #pos non-ts ts

0

20

40

60

80

100

120

140

30

43

38

5

17

112

92

48

19

22

0

22

final data set statistics

66 prot, 177 pos, 130 non-ts, 75 ts, 205 total

Cele

Scer

Dmel

of samples

[image: image2.png]175

log, €

225

25

SYM fine ts (0614 - 0.831)

275

log; s

[image: image3.png]precision

08

08

07

06

05

04

03

02

01

Comparison: Sequence Only Precision

(1745

0735

[EX
[5\iv-REF
I s-seq

g

0,356

[image: image4.png]Final Significance

[image: image5.png]correlation

035

03

025

02

015

01

005

Final Correlation

0323

Figure � SEQ "Figure" *Arabic �1�: Data set statistics broken down by species. Left to right: number of proteins, number of positions mutated, number of non-ts samples, number of ts samples.� EMBED opendocument.ChartDocument.1 ���

Figure � SEQ "Figure" *Arabic �2�: The quartile method

�Figure � SEQ "Figure" *Arabic �3�: SVM-RBF parameter space. Note the wide "valley" from upper right to lower left, and the drop-off in the lower right.

�Figure � SEQ "Figure" *Arabic �4�: Comparison of classifier precision. SVM-seq is the version of SVM-RBF trained on sequence terms only. { todo: merge figs 4-6 into fig. 4a-c }

�Figure � SEQ "Figure" *Arabic �5�: Comparison of classifier p-values. SVM-seq is the version of SVM-RBF trained on sequence terms only.

�Figure � SEQ "Figure" *Arabic �6�: Comparison of classifier correlation. SVM-seq is the version of SVM-RBF trained on sequence terms only.

_-461729048.unknown

