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Abstract 

 

Analysis of gene expression data generated by high-throughput microarray transcript 

profiling experiments has demonstrated that genes with an overall similar expression pattern 

are often enriched for similar functions. This guilt-by-association principle can be applied to 

define modular gene programs, identify cis-regulatory elements or predict gene functions for 

unknown genes based on their coexpression neighborhood. We evaluated the potential to 

use Gene Ontology (GO) enrichment of a gene’s coexpression neighborhood as a tool to 

predicts its function but found overall low sensitivity scores (13-34%). This indicates that for 

many functional categories coexpression alone performs poorly to infer known biological 

gene functions. However, integration of cis-regulatory elements shows that 46% of the gene 

coexpression neighborhoods are enriched for one or more motif, providing a valuable 

complementary source to functionally annotate genes. Through the integration of 

coexpression data, GO annotations and a set of known cis-regulatory elements combined 

with a novel set of evolutionary conserved plant motifs, we could link many genes and motifs 

to specific biological functions. Application of our coexpression framework extended with cis-

regulatory element analysis on transcriptome data from the cell cycle-related transcription 

factor OBP1 yielded several coexpressed modules associated with specific cis-regulatory 

elements. Moreover, our analysis strongly suggests a feed forward regulatory interaction 

between OBP1 and the E2F pathway. The ATCOECIS resource 

(http://bioinformatics.psb.ugent.be/ATCOECIS/) makes it possible to query coexpression 

data, GO and cis-regulatory elements annotations, submit user-defined gene sets for motif 

analysis and provides an access point to unravel the regulatory code underlying 

transcriptional control in Arabidopsis. 
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Introduction 

 

The rapid accumulation of genome-wide data describing both genome sequences and 

functional properties of genes facilitates the development of systems biology approaches. 

Especially the application of microarray experiments for several model organisms now 

provides us with detailed catalogues of condition-dependent transcriptional activity during 

development, in different organs, cell types or in response to various endo- or exogenous 

stimuli (Birnbaum et al., 2003; Schmid et al., 2005). In plants, transcriptional regulation is 

mediated by a large number (>1500) of transcription factors (TFs) controlling the expression 

of tens or hundreds of target genes in various, sometimes intertwined, signal transduction 

cascades (Wellmer and Riechmann, 2005). Whereas the similarity in gene expression 

patterns can be used to infer modular gene programs (~regulatory networks), the integration 

of expression and sequence data makes it possible to identify cis-regulatory elements, the 

functional elements responsible for the timing and location of transcriptional activity (Haberer 

et al., 2006; Ma et al., 2007). Transcription factor binding sites (or DNA sequence motifs, 

shortly motifs) are the functional elements that determine the timing and location of 

transcriptional activity. Complementary, the identification of differentially expressed genes in 

response to a  treatment/stimulus or in a transgenic over-expression/knock-out experiment 

can identify new target genes and provide insights into the underlying regulatory interactions 

(Vandepoele et al., 2005; Zhang et al., 2005).  

Systematic computational analysis of DNA motifs illustrated the presence of TATA-

boxes as well as Y patches characterizing a large fraction of plant core promoters 

(Yamamoto et al., 2007). Other motifs have been described showing strong position- and/or 

strand-dependent localization and a subset of these correspond to known cis-regulatory 

elements (Molina and Grotewold, 2005; Obayashi et al., 2007; Yamamoto et al., 2007). 

Through the combination of motif mapping data on Arabidopsis promoters with gene 

expression patterns, Walther and co-workers found a positive correlation between multi-

stimuli response genes and cis-element density in upstream regions (Walther et al., 2007). 

Studies focusing on the combinatorial nature of transcriptional control have identified several 

examples of cooperative elements (or cis-regulatory modules) driving time-of-day-specific 

expression patterns or regulating genes involved in processes like photosynthesis or protein 

biosynthesis (Vandepoele et al., 2006; Michael et al., 2008). Interestingly, evolutionary 

analysis suggests that these regulatory modules are conserved between species belonging 

to different plant families (Kim et al., 2006).  

 The exploitation of the idea that correlated expression implies a biological relevant 

relationship resulted in the development of several meta-analysis tools that infer Arabidopsis 

gene functions using a guilt-by-association principle, such as ACT (Jen et al., 2006), ATTED-
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II (Obayashi et al., 2007) and CressExpress (Srinivasasainagendra et al., 2008). In general, 

these methods determine, for a gene of interest, a set of coexpressed genes while significant 

functional annotations in the gene’s coexpression neighborhood are used to draw new 

biological hypotheses. The Gene Ontology (GO) or AraCyc functional annotation systems in 

combination with a statistical test are mostly used to determine functional enrichment. While 

generally coexpression networks cover all correlated expression patterns between genes 

within an expression compendium, detailed analysis of the topology or node-to-node 

relationships within the network provides an overview of the organization and complexity of 

transcriptional regulation. For example, Persson et al. nicely illustrated the existence of 

several coexpression clusters corresponding to functional modules involved in primary and 

secondary cell wall formation (Persson et al., 2005). Similarly, Ma et al. identified several 

highly connected subclusters in an Arabidopsis gene network grouping genes related to 

biochemical pathways and cold stress (Ma et al., 2007). Apart from studying gene 

coexpression networks within one organism, the comparison of expression data between 

different species using orthologous genes makes it possible to identify evolutionary 

conserved regulatory programs as well as species-specific adaptations in response to 

changes in lifestyle or environmental conditions (Stuart et al., 2003).  

Although these examples demonstrate the potential of coexpression-based meta-

analysis, our current understanding of the relationship between regulatory elements and the 

observed expression states in different developmental stages, tissues or treatments remains 

limited. The main objectives of this study were i) to analyze the properties and the functional 

predictive power of coexpression networks in Arabidopsis ii) to extend coexpression 

frameworks with information about cis-regulatory elements to functionally annotate genes iii) 

to apply Gene Ontology and motif enrichment analysis to dissect cell cycle regulatory control 

using publicly available transcriptome data and vi) to study the organization of cis-regulatory 

elements in Arabidopsis promoters. 
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Results  

The biological significance of expression similarity 

Starting from a set of 322 Affymetrix ATH1 microarray slides retrieved from various 

publicly available sources, data normalization and averaging of replicates resulted in a non-

redundant expression data set of 129 experiments (see Material and Methods). Using a 

custom-made Chip Description File (CDF) grouping only non cross-hybridizing probes in 

probesets (Casneuf et al., 2007), the expression patterns of 19,937 genes could be 

monitored. Although it does not cover all annotated protein-coding genes in Arabidopsis, the 

CDF file has the advantage that it can reliably measure and discriminate between the 

expression of both copies of duplicated gene pairs with valid probesets (overcoming potential 

cross-hybridization caused by high sequence similarity).  

In order to verify the guilt-by-association relationship between expression similarity 

and similarity in gene function, for pre-defined functional sets of genes grouped in GO 

categories, we first quantified their level of expression similarity using the expression 

coherence (EC). EC is a measure for the amount of expression similarity within a set of 

genes, ranging between zero and one and is high for sets of genes that converge into one or 

a few tight coexpression clusters (Pilpel et al., 2001). As shown in figure 1A, for many GO 

categories the EC is higher than expected by chance. For Biological Process and Cellular 

Component approximately 41% and 74% of all categories have EC values higher than 

expected by chance, respectively, whereas for Molecular Function 36% of the GO categories 

show elevated coexpression levels. Also for genes annotated in biochemical pathways 

through AraCyc 33% of all categories show EC values higher than random (Figure 1B). The 

highest EC values for GO Biological Process cover categories involved in photosynthesis 

(EC=0.60, 124 genes), porphyrin biosynthesis (EC=0.35, 45 genes), ribosome biogenesis 

and assembly (EC= 0.44, 114 genes), tetraterpenoid biosynthesis (EC=0.31, 21 genes) and 

starch metabolism (EC=0.19, 27 genes). For the AraCyc pathways, the categories 

‘glucosinolate biosynthesis from tryptophan’, ‘photosynthesis, light reaction’, ‘carotenoid 

biosynthesis’ and ‘urea cycle’ all have EC values of more than 50%.  Nevertheless, since 

most functional categories have only low EC values (see Supplemental table 1), these results 

indicate that genes within a functional category do not completely correspond to 

transcriptional modules and suggest that several coexpression sub-groups might exist for 

genes annotated in the same functional category. Therefore, an unsupervised approach 

based on clustering of expression profiles should offer a better strategy to identify 

transcriptional modules compared to predefined functional categories. Since the AraCyc 

pathways only group a small number of genes (per pathway) and many pathways are also 
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present in the GO annotation, we only retained GO categories (containing 25 or more genes) 

for further analysis. 

 

Construction of Arabidopsis coexpression networks 

Before building a gene coexpression network, expression similarities between gene 

pairs were calculated using the Pearson correlation coefficient (PCC). To determine valid 

coexpressed genes we applied three similarity thresholds (PCC bigger than 0.63, 0.72 and 

0.83) corresponding to the 90th, 95th and 99th percentile of a background PCC distribution 

containing nearly half a million gene pairs sampled from 1,000 randomly selected genes. 

Subsequently, all gene-gene coexpression relationships with PCC values above a selected 

threshold were grouped resulting in three networks (hereafter referred to as ATH90, ATH95 

and ATH99) for which the estimated amount of false-positive coexpressed gene pairs is 10%, 

5% and 1%, respectively. These networks can be represented as undirected graphs where 

genes (~nodes) are connected by edges if they are coexpressed. Our approach to initially 

build multiple networks with different expression similarity constrains is motivated by the fact 

that it is difficult to a priori define an optimal threshold to capture biological knowledge from 

the network. Therefore, we first performed an evaluation experiment to estimate the biological 

knowledge captured in the three networks delineated used different similarity thresholds. 

We applied a guide gene clustering method to group genes with similar expression 

patterns followed by gene set enrichment analysis (Wolfe et al., 2005; Aoki et al., 2007). 

Guide gene clusters group for each query gene all coexpressed genes resulting, on a 

genome-wide scale, in potentially overlapping clusters. Gene Ontology enrichment analysis 

was then applied to functionally annotate coexpression clusters (Figure 2) and to assess the 

predictive power of the three networks to recover known functional annotations.  For each 

gene belonging to a GO category i, we determined if the functional GO enrichment in its 

coexpression guide cluster (~neighborhood) could predict the correct function. Likewise, 

using sets of randomly selected genes not annotated with GO category i, we estimated the 

number of false positive predictions.  The assessment of the prediction power using this 

approach aims to estimate the optimal size of a gene’s coexpression neighborhood to 

retrieve relevant GO enrichments and to associate unknown genes to specific biological 

processes. Although GO function predictions for some negative genes might correspond to 

false negatives (i.e. a correctly predicted functional gene association not yet described in the 

current GO annotations), application of an iterative random sampling procedure makes it 

possible to compare the false positive rates between different GO categories and for different 

similarity thresholds (see Material and Methods). Based on a subset of 50 different GO 

categories (18 Biological Process, 16 Molecular Function and 16 Cellular Components 
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categories; covering in total 11,838 genes) we observe that the positive predictive value (PPV 

or precision rate), referring to the proportion of genes with a functional prediction being 

correctly predicted, is highest for the ATH90 and the ATH95 network (0.93 and 0.92, 

respectively; Table1 and Figure 3). Complementary to the PPV, the sensitivity (SN or recall) 

measures the proportion of actual positives (i.e. known functional annotations) that are 

correctly identified as such. Although for GO Biological Process the ATH90 and ATH95 

networks again have the highest average sensitivity (Figure 3), their actual values (SN=0.39, 

see Table 1) indicate that many known biological annotations cannot be inferred from a 

gene’s coexpression neighborhood. Assessing the functional predictive power of a recently 

published Arabidopsis gene network (Ma et al., 2007) based on a graphical Gaussian model 

(called ATHGGM in Table 1) reveals that the limited number of genes in this network together 

with the sparse nature of this network – the median number of coexpressed genes is 4 – is 

responsible for low PPV and sensitivity values. Since the ATHGGM network aims to discover 

regulatory interactions, the low prediction scores are not surprisingly and suggest that it 

captures complementary information compared to coexpression networks. Although for some 

Arabidopsis coexpression platforms like ATTED-II genome-wide data about coexpressed 

genes is available (Obayashi et al., 2007), the absence of a predefined coexpression 

neighborhood for each gene makes it practically impossible to systematically evaluate and 

compare the predictive power of other meta-analysis tools. 

Comparing the sensitivity scores over the different ontologies in this benchmark 

experiment shows that, when requiring that at least half of the known annotations are 

recovered, approximately 22%, 25% and 56% of the GO Biological Process, Molecular 

function and Cellular Component categories are retained, respectively (see series ATH95 in 

Figure 3A-C). Whereas the PPV and SN values both confirm that the ATH90 and ATH95 

coexpression networks are better able to infer gene functions than the ATH99 network, we 

selected the ATH95 expression similarity threshold for further analysis since the functional 

enrichment folds are higher than those from the ATH90 network (median enrichment fold of 

3.97 and 3.24, respectively). 

 

Properties of the Arabidopsis coexpression network 

After reconstructing the ATH95 network using all 19,937 measurable genes present 

on the ATH1 microarray, the final network covers 19,064 genes with a median number of 548 

coexpressed genes. When comparing the average connectivity per GO category, we 

observed that genes involved in processes like rRNA metabolism, histone modification, 

amino acid activation, photosynthesis or DNA repair all have >1500 coexpression partners 

(top 5% of connectivity distribution). In contrast, several categories involved in ‘response to’ 
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(response to water, reactive oxygen species, brassinosteroid stimulus, extracellular stimulus, 

high light intensity and hyperosmotic salinity response) show low average connectivity values 

(lowest 10% of distribution; Supplemental table 2). This finding does not indicate that 

response-to genes are less coexpressed than the general house-keeping functions described 

above. Rather, it suggests that the latter form large coexpression modules compared to the 

stress-related coexpression modules.  

Whereas the average sensitivity (covering all GO categories) of functional predictive 

power for the complete coexpression network is low (SN = 0.19 with average PPV of 0.92), 

several examples of GO categories with good sensitivity scores can be found (Supplemental 

table 3). These include photosynthesis (0.80), ribosome biogenesis and assembly (0.70), 

tRNA metabolism (0.64), starch metabolism (0.59) and amino acid activation (0.58). In 

contrast, very general GO categories receive low PPV scores due to the large number of 

putative false positive predictions (e.g. PPV Biological Process term metabolism = 0.035, 

PPV Molecular Function term catalytic activity = 0.16). Although comparing average 

connectivity with sensitivity per GO category suggests that primarily genes with large 

coexpression neighborhoods yield good prediction sensitivity, plotting both variables against 

each other (Supplemental figure 1) reveals that also many small coexpression neighborhoods 

provide good predictive power. Examples of GO categories with small coexpression 

neighborhoods but high prediction sensitivity include response to hydrogen peroxide, starch 

metabolism and response to high light intensity (average connectivity < 600 and SN ≥ 0.38). 

Examples of GO categories with low sensitivity scores but high connectivity (e.g. protein 

ubiquitination, meiosis, protein targeting and posttranscriptional gene silencing) suggest that 

the primary regulation of these genes is not at the transcriptional level, explaining the bad 

prediction scores.  

 

Identification of cis-regulatory elements and integration with coexpression clusters 

Complementary to functional enrichment using Gene Ontology, we also mapped 

putative cis-regulatory elements on all genes and calculated motif enrichment for the different 

gene coexpression clusters. Whereas known plant cis-regulatory elements were retrieved 

from PLACE (Higo et al., 1999) and AGRIS (Palaniswamy et al., 2006), a complementary set 

of elements was identified using the network-level conservation principle which applies a 

systems-level constraint (Elemento and Tavazoie, 2005). Briefly, this method exploits the 

well-established notion that each TF regulates the expression of many genes in the genome 

and that the conservation of global gene expression between two related species requires 

that most of these targets maintain their regulation. In practice, this assumption is tested for 

each candidate motif by determining its presence in the upstream regions of two related 
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species and by calculating the significance of conservation over orthologous genes (see 

Materials and methods). Whereas the same principle of evolutionary conservation is also 

applied in phylogenetic footprinting methods to identify transcription factor binding sites, it is 

important to note that here the conservation of several targets in the regulatory network is 

evaluated simultaneously and that aligned non-coding DNA sequences are not required. This 

is in contrast with standard footprinting approaches, which only use sequence conservation in 

upstream regions on a gene-by-gene basis to detect functional DNA motifs. Using motif 

conservation over orthologous genes between Arabidopsis and poplar (Populus trichocarpa) 

866 non-redundant 8-mer motifs with significant Network-level Conservation Scores (NCS; p-

value<0.05) were identified. Comparing these NCS-motifs with the known cis-regulatory 

elements from PLACE and AGRIS revealed that 63% (544/866) match described elements. 

Reversely, 24% of the known motifs show significant evolutionary conservation when 

applying the network-level conservation principle, suggesting that some of these motifs might 

be too stringently defined to show cross-species conservation or represent species-specific 

regulatory elements. Plotting the NCS values for the remaining 322 NCS-motifs not matching 

known motifs indicates that they have similar conservation scores (inter-quantile values 

13.91-15.21-17.63) compared to the known motifs (inter-quantile values 13.81-15.33-17.99). 

This indicates that both sets of motifs (i.e. NCS-motifs matching and not matching known 

motifs) are equally well conserved between Arabidopsis and poplar at a genome-wide level 

and that the new motifs can be considered as putative cis-regulatory elements.  

Although the network-level conservation method provides an elegant way to uncover 

candidate cis-regulatory elements, identifying individual biological functional motif instances 

on promoter sequences remains problematic. Especially the short and sometimes 

degenerate nature of these 8-mers (or transcription factor binding sites in general) yields a 

large fraction of false-positive motif matches. Therefore, for NCS-motifs we only considered 

Arabidopsis instances showing evolutionary conservation in one or more orthologous poplar 

promoters. This filtering step yields overall higher enrichment values when validating motif 

instances using GO (Table 2). In contrast, for known experimentally defined plant motifs from 

PLACE and AGRIS all motif instances on Arabidopsis promoters were retained for further 

analysis. Although these databases sometimes report highly similar motifs that might be 

considered as redundant entries, we observed that in several cases motif variants, when 

performing genome-wide mappings, yielded sets of target genes showing different GO 

enrichment. For example, when considering the Gbox related motifs CACGTG, ACACGTG, 

CACGTGTA and CACGTGGC, we observed that the first two show GO enrichment to 

response to cold, the last motif variant towards photosynthesis and starch metabolism, and 

that the third motif with TA suffix does not show any significant enrichment to any of these 

GO terms. Complementary, of these four motifs only the second ACACGTG motif shows 
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enrichment towards response to abscisic acid (ABA) stimulus (p-value < 0.017) although the 

more degenerate ACGTGKC PLACE motif shows a stronger association with ABA 

responsive genes (p-value < 1.1e-04). Since these examples confirm the biological relevance 

of motif variants (Geisler et al., 2006), for all PLACE and AGRIS elements motif variants were 

maintained. 

Performing motif enrichment using the complete ATH95 network reveals that 46% of 

the genes have one or more significant motif in their coexpression neighborhood. In total 762 

of the 866 NCS-motifs (or 88%) and 249 of the known 721 motifs (35%) were found to be 

enriched. An overview of the ten most frequently enriched NCS-motifs together with their 

biological role determined using GO enrichment is shown in Table 2. All ten motifs 

correspond with well-described plant cis-regulatory elements. Examples of frequent motifs 

include the TELO and UP1 motif driving the expression of ribosomal genes, the Ibox and 

Gbox present in genes involved in photosynthesis and stress reponse, the ABA responsive 

element (ABRE), the E2F motif regulating DNA replication genes and the MSA element 

responsible for M-phase specificity during the cell cycle. For each motif the full set of putative 

target genes, including GO enrichments, can be found online 

(http://bioinformatics.psb.ugent.be/ATCOECIS/).   

 

Dissecting the cell cycle regulatory network using E2Fa and OBP1 target genes 

 To test the applicability of our approach to unravel biological coexpression networks 

and infer regulatory logic, we used data from a detailed transcription factor overexpression 

experiment studying cell cycle control in Arabidopsis. Based on transcriptome analysis of 

OBP1 overexpression lines, Skirycz and colleagues recently identified that this DOF 

transcription factor is involved in cell cycle initiation (Skirycz et al., 2008). To identify cis-

regulatory elements and predict new regulatory interactions, we combined expression data 

reporting oscillating transcripts in synchronized Arabidopsis cell suspensions (Menges et al., 

2003) with clustering, GO and motif enrichment analysis. For the 632 genes upregulated by 

OBP1, a significant enrichment of the corresponding cis-regulatory element TAAAG is 

observed (Table 3). Partitioning the genes using phase expression during cell division reveals 

that for the DOF upregulated genes showing periodic expression 69% peaks at M phase. 

This expression pattern is clearly reflected in the motif analysis with the MSA element (M-

specific activator) being 11-fold enriched (GACCGTTN; p-value<6.64e-30). 

 The genes repressed by OBP1 show GO enrichment for cell wall modification and 

response to biotic stimulus. To study the underlying regulatory control, we applied the CAST 

clustering algorithm (Ben-Dor et al., 1999) on our full expression matrix and analyzed these 

coexpression clusters containing 5 or more DOF downregulated genes. Advantages of CAST 
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clustering over more classical algorithms such as hierarchical or K-means clustering are that 

only two parameters have to be specified (the affinity measure, here defined as PCC ≥ 0.72 

and the minimal number of genes within a cluster, here set to 5) and that it independently 

determines the total number of clusters and whether a gene belongs to a cluster. In addition, 

only genes are grouped in a cluster if they all show a minimal expression similarity with all 

other genes present in that cluster, yielding global non-overlapping gene clusters with 

homogeneous expression patterns. The largest cluster covers 164 of the 842 downregulated 

genes and is strongly enriched for photosynthesis and the Ibox (CTTATCCN). Additionally, 

five smaller clusters were found all showing stress or defense response, of which two also 

showed motif enrichment. The first cluster contains 25 genes showing strong shoot osmotic-

stress response in the expression data and is enriched for ANCATGTG (MYCATRD22), a 

dehydration responsive element. The second cluster contains 11 genes mainly showing 

expression in leaf, is enriched for GO category ‘systemic acquired resistance’ and shows 

motif enrichment for the ACGTCATAGA motif (LS7ATPR1), a salicylic acid-inducible element 

involved in systemic inducible plant defense responses (Despres et al., 2000). Whereas the 

downregulation of several stress-responsive regulons coincides with the negative link 

between stress and cell proliferation, the downregulation of the photosynthetic machinery is 

in agreement with the lack of Rubisco expression in meristems (Fleming et al., 1996). 

 The observation that 38 DOF upregulated genes peak during S phase are enriched 

for the E2F motif (5-fold for GCGGGAAN; p-value<9.97e-06) suggested a link between OBP1 

and E2F, a well-studied regulator controlling the activation of genes required for cell cycle 

progression and DNA replication (Vandepoele et al., 2005). Therefore, we compared these 

DOF target genes and a set of putative E2F target genes that were also identified through 

microarray analysis on E2Fa/DPa overexpressing plants (Vandepoele et al., 2005). 

Comparing the upregulated genes from the E2Fa and OBP1 experiments revealed that a 

significant number of 65 genes are shared between both overexpression lines (Table 3, data 

set DOF/E2F_UP). Although this set of genes does not show enrichment for the TAAAG DOF 

motif, 74% of these genes have a WTTSSCSS E2F binding site in their promoter. Together 

with the observation that the transcription factor E2Fa is upregulated by OBP1, these results 

suggest a feed-forward mechanism between both regulators. Our hypothesis that the E2Fa 

transcription factor is a downstream OBP1 target is in agreement with the observation that 

OBP1 is involved in cell cycle initiation in response to developmental and environmental 

signals (Skirycz et al., 2008). Similarly, the strong enrichment of the MSA element in the DOF 

target genes showing a strong M phase peak expression suggests that other factors are 

involved in the signaling between OBP1 and the activation of these mitotic cell cycle genes.  
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The organization of cis-regulatory elements in Arabidopsis promoters 

Complementary to the enrichment analysis of gene coexpression neighborhoods to 

gain novel insights about gene functions, summarizing all motif instances over all target 

genes provides a global view on motif organization in Arabidopsis. Enrichment analysis of 

cis-regulatory elements over all GO categories yielded several examples of strong 

associations between motifs and biological processes (Figure 4; for complete lists see 

Supplemental figures 2 and 3 or the ATCOECIS website). Similar to the motif enrichment 

analysis using gene coexpression neighborhoods, we found more NCS-motifs enriched over 

one or more GO categories compared to known plant motifs (50% and 10%, respectively). 

Moreover, combining genes from different GO categories with conserved motif instances 

reveals the existence of specific and global cis-regulatory elements. Whereas more than 

three quarter (327/430) of all NCS-motifs are only enriched in less than five GO categories, 

the remaining 103 motifs are enriched in multiple (between 5 and 45) GO categories. 

Examples of global cis-regulatory elements enriched in 15 or more categories are the TELO 

motif, the Ibox, the E2F motif and the AGATCTNN motif (Supplemental figure 2). 

Complementary, we found two other (sets of) motifs, CTATATAN and CT-dinucleotide motifs, 

showing strong position and strand specificity (i.e. close to the startcodon of the gene and on 

the same strand of the transcribed gene) resembling TATA and Y patch core promoter motifs, 

respectively. In agreement with Yamamoto and co-workers (Yamamoto et al., 2007), the Y 

path (e.g. ACAGAGNG or CNTCTCTC) is preferentially located closer to the transcription 

start site than the TATA motif (Supplemental table 4). Examples of specific motifs consist of 

the Heat Shock Element GAANNTTC found to be enriched in ‘response to heat’ genes, a 

DRE-like motif GNNGACCA enriched in red light signaling genes and ANGAAAGA enriched 

in cytokinin mediated signaling genes. When comparing motif position biases (Supplemental 

table 4), we found that 40% of the global cis-regulatory elements show a preferential 

promoter location compared to 12% for the specific elements. This tendency for the former to 

be preferentially located close to the transcription start site confirms their role as core 

promoter elements. Although this strong positional bias of CT-dinucleotide motifs confirms 

their putative function as core elements, several GO categories were found enriched for the 

presence of conserved CT-dinucleotide motifs, suggesting a biological role for these low 

complexity motifs. Examples include kinase regulatory activity (70% of genes have 

CNTCTCTC), microtubule motor activity (46% of genes have CTCTNCNC), cell wall 

biosynthesis (45% of genes have CNTCTCTC) and Golgi membrane localization (52% of 

genes have GNCTCTCN). Apart from positional biases for individual motifs, for a set of 

ribosome biogenesis genes we found a clear and strict promoter organization when 
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comparing TELO and UP1 motif instances. On a genome-wide scale both motifs are 

significantly enriched in ribosomal genes and in 92% of the genes containing both motifs the 

TELO motif is located more upstream compared to the UP1 motif (Supplemental figure 4). 

This observation confirms the existence of cis-regulatory motifs in plants showing clear 

organizational constrains (Kim et al., 2006). 

 

 

Discussion 

The aim of our study was to investigate the applicability of coexpression networks to 

infer functional information for Arabidopsis genes. For a large fraction of genes with similar 

functional annotation, either using GO categories or AraCyc pathways, elevated 

coexpression levels were found using the expression coherence measure (Wei et al., 2006). 

Although many of these functional categories only partially correspond to transcriptional 

modules, the clustering of expression profiles using a gene-centric approach provides a 

practical starting point to study the coexpression neighborhood of a certain gene. Whereas 

enrichment analysis using GO confirms the ‘guilt-by-association’ principle for many genes 

(Horan et al., 2008), our benchmark experiment quantifying the predictive power of 

coexpression networks to infer known functional annotations reveals that for a majority of 

biological processes many known GO associations cannot be deduced from the 

coexpression network. Although more advanced computational classification systems trained 

for a specific biological process can partially solve this problem (Li et al., 2006), the 

integration of information about cis-regulatory elements provides an alternative approach to 

further characterize gene functions.  

By combining known plant motifs and a new set of evolutionary conserved motifs we 

could annotate 9,117 coexpression neighborhoods with one or more motif. Compared to the 

Pathway-Level Co-expression method implemented in CressExpress  (Srinivasasainagendra 

et al., 2008), which selects relevant genes if they are coexpressed with multiple query genes, 

the application of a statistical test for enrichment of functional annotation provides a robust 

and complementary method to identify new genes involved in different biological processes. 

Similar GO enrichment tools are also available in Arabidopsis coexpression tools like ACT 

(Jen et al., 2006), ATTED-II (Obayashi et al., 2007) and Plant Gene Expression Database 

(Horan et al., 2008). Clearly, the annotation of enriched cis-regulatory elements in guide gene 

clusters provides additional information compared to existing coexpression tools for 

Arabidopsis like ACT (Jen et al., 2006), CressExpress (Srinivasasainagendra et al., 2008) 

and the Plant Gene Expression Database (Horan et al., 2008). For a set of 866 putative cis-

regulatory elements identified using the network-level evolutionary conservation principle, we 
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found that 88% of them are significantly enriched in one or more coexpression 

neighborhoods and that half of these NCS-motifs are enriched in one or more GO category. 

Since 37% of these motifs do not match any known plant cis-regulatory element, the detailed 

information about conserved motif instances provides a valuable resource to further enlarge 

our knowledge about transcriptional control in plants. Whereas the ATTED-II coexpression 

database also provides information about cis-regulatory elements, only 7-bp words are used 

to predict functional elements using the CEG method (i.e. correlation between gene 

expression and a defined gene group (Obayashi et al., 2007)). The presence of both known 

and NCS-based cis-regulatory elements in ATCOECIS offers a complementary set of tools to 

analyze coexpression gene sets. It contains a diverse set of simple and intuitive search 

functions that makes it possible to retrieve information about GO and motif enrichment for the 

gene coexpression neighborhoods described in this study. In addition, user-defined gene sets 

generated using clustering of dedicated expression data or chromatin immunoprecipitation 

experiments can be processed to identify motifs overrepresented in the target genes. 

Although some tools (e.g. ACT) provide clique finders to extract sets of genes showing 

consistent coexpression, so far we were unable to obtain better results when systematically 

comparing cliques with other clustering algorithms using GO and motif enrichment 

(unpublished results). 

To demonstrate the utility of our framework to detect new regulatory interactions, we 

used publicly available transcriptome data of OBP1 overexpression lines. This DOF 

transcription factor was recently identified as a regulator integrating developmental signals 

and cell cycle initiation (Skirycz et al., 2008). Starting from differentially expressed genes, the 

clustering of expression data and subsequent motif analysis identified 5 different transcription 

factor binding sites that could be linked with different modes of DOF regulation. Whereas the 

TAAAG DOF motif and the MSA element were found to be enriched in many upregulated 

genes (Table 3), clustering of the downregulated genes yielded 3 coexpression clusters with 

motif enrichment. The largest cluster mainly contained photosynthesis genes having an Ibox 

in their promoter and the two smaller clusters, showing stress and defense response, were 

enriched for the MYCATRD22 dehydration responsive element and LS7ATPR1, an element 

involved in systemic inducible plant defense responses, respectively. The presence of 

several DOF upregulated genes involved in DNA replication with S phase peak expression in 

synchronized Arabidopsis cell suspensions (Menges et al., 2003) suggests a link between 

OBP1 and the E2F pathway. Indeed, comparison of E2F target genes with these DOF targets 

showed a significant overlap of 65 genes of which 74% have a WTTSSCSS  E2F binding site 

in their promoter (Table 3). Our hypothesis that a regulatory interaction exists between the 

OBP1 and the E2Fa transcription factor is supported by the fact that the latter is also 

upregulated in the OBP1 overexpression line. We speculate that OBP1, linking 
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developmental and environmental signals with cell cycle initiation, might regulate several 

transcription factors controlling the progression through the different phases of the cell cycle. 

As reported in this analysis, the sensitivity of coexpression functional prediction 

systems varies largely for genes involved in different biological processes. Also the selected 

set of microarray experiments, together with the applied distance measures and similarity 

thresholds, will have a great influence on the biological relevance of predicted gene functions 

(Yeung et al., 2004). Although it has been shown that coexpression is relatively stable when 

using >100 arrays (Vandepoele et al., 2006; Aoki et al., 2007), the availability of relevant 

microarray experiments to infer regulatory networks for a biological process of interest 

undoubtedly will increase the resolution and prediction accuracy of meta-analysis platforms. 

Whereas the association of different global and specific regulatory elements with different GO 

categories provides a fist glimpse on the regulatory logic embedded in plant promoters, the 

application of biclustering methods on a genome-wide scale can provide more detailed 

insights about the combinatorial nature of transcriptional control in plants. Similarly, the 

application of coexpression neighborhood analysis in a multi-species phylogenomic 

framework using orthologous gene relationships will make it possible to maximally exploit 

evolutionary conservation and enrichment analysis for gene function inference. 

 

Material and methods 

 

Expression data 

A total of 322 (48x3 AtGenExpress Development and Tissue slides +  68x2 

AtGenExpress Stress slides + 42 Birnbaum Root slides) Affymetrix ATH1 microarray slides 

monitoring the transcriptional activity of ~ 20,000 Arabdidopsis genes in different tissues and 

under different experimental conditions were retrieved from the Nottingham Arabidopsis 

Stock Centre (http://arabidopsis.info/. Raw data was background corrected and normalized 

using RMA (Irizarry et al., 2003) and a custom-made Chip Description File (CDF). This high-

quality CDF file was build using selected reporter probes that have perfect sequence identity 

with a single target gene's transcript. Reporters that hybridize with one mismatch to another 

gene's transcript are filtered out. We also filtered out reverse complementary matching 

reporters and reporters that hybridize multiple times on the genomic sequence. The latter 

was done in order to remove reporters that match unannotated sequences. We included 

probe sets in this study only if they consisted of at least eight reporters which resulted in 

19,937 unique probe sets (Casneuf et al., 2007). Note that these stringent criteria used to 

construct the CDF file make it possible to reliably measure expression values for duplicated 
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genes (i.e. free from cross-hybridization between paralogs showing high sequence 

similarity).The mean intensity value was calculated for the replicated slides. As a result, 129 

experiments measuring the expression for 19,937 genes were retained for further analysis 

yielding an expression matrix with approximately 2.5 million data points (Supplemental table 

5).  

 

Expression coherence and clustering 

The expression coherence (EC), which is a measure for the amount of expression 

similarity within a set of genes, was calculated as described by Pilpel and co-workers (Pilpel 

et al., 2001). EC reports the fraction of gene pairs per GO category that show elevated 

coexpression. Here, the Pearson Correlation Coefficient (PCC) was used as a measure for 

similarity between expression profiles. Based on the similarity between expression profiles for 

1,000 random genes (~1,000*999*0.5 gene pairs), a PCC threshold of 0.72 corresponding 

with the 95th percentile of this random distribution was used to detect significantly co-

expressed genes. To calculate the random EC for Gene Ontology (GO) categories, random 

gene sets were sampled with the same size as the category under investigation. 

To create guide gene clusters, we selected for each gene all coexpression partners 

showing a PCC bigger then or equal to a defined threshold. Only guide gene clusters 

containing ten or more genes were retained. Three PCC thresholds were evaluated 

corresponding with the 90th, 95th and 99th percentile of the random background distribution. 

Note that guide gene clusters can overlap with each other because each gene present on the 

ATH1 microarray is initially selected as a guide gene. CAST clusters were identified as 

described in (Vandepoele et al., 2006). 

  

Gene Ontology functional annotation 

Gene Ontology associations for Arabidopsis proteins were retrieved from TAIR 

(www.arabidopsis.org; (Swarbreck et al., 2008)). The assignments of genes to the original 

GO categories were extended to include parental terms (i.e. a gene assigned to a given 

category was automatically assigned to all the parent categories as well) using the Perl 

GO::Parser and GO::Node modules. All GO categories containing fewer than 25 genes were 

discarded from further analyses. Enrichment values were calculated as the ratio of the 

relative occurrence in a set of genes to the relative occurrence in the genome. The statistical 

significance of the functional enrichment within gene sets was evaluated using the 

hypergeometric distribution adjusted by the Bonferroni correction for multiple hypotheses 

testing. Corrected p-values<0.05 were considered as significant. GO-motif networks were 

drawn using Cytoscape (Cline et al., 2007). 
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Evaluation of functional predictive power 

 The functional predictive power of a gene’s coexpression neighborhood was 

determined by calculating the sensitivity (SN = TP / (TP + FN)) and the positive predictive 

value or precision rate (PPV = TP / (TP + FP)). For each guide gene i all significant GO 

enrichments found in the set of coexpressed genes were considered as GO predictions for 

gene i.  True positives (TP) are actual positive examples predicted as positives, false 

negatives (FN) are actual positive examples predicted as negatives and false positives (FP) 

are actual negative examples predicted as positives.  As GO annotations are far from 

complete, we estimated the number of false predictions using a random sampling approach. 

Starting from all j positive genes annotated with a particular GO term, FP was estimated by 

randomly selecting j negative genes and counting how much positive predictions were made. 

This procedure was repeated 100 times and FP for a given GO term was calculated as the 

average fraction of positive predictions. 

 

Cis-regulatory element analysis 

Starting from all possible 8-mers (generated using the 5-letter alphabet A,C,G,T,N) we 

applied the Network-level Conservation Score to determine evolutionary conserved motifs 

present in the upstream sequences of Arabidopsis genes. This evolutionary filter is used to 

discriminate between potentially functional and false motifs and applies a systems-level 

constraint to identify putative cis-regulatory elements (Elemento and Tavazoie, 2005; 

Vandepoele et al., 2006).  The method exploits the well-established notion that each TF 

regulates the expression of many genes in the genome and that the conservation of global 

gene expression between two related species requires that most of these targets maintain 

their regulation. In practice, this assumption is tested for each candidate motif by determining 

its presence in the upstream regions of two related species (here Arabidopsis and poplar) 

and by calculating the significance of conservation over orthologous genes. Orthologous 

groups were identified through protein clustering using OrthoMCL (Li et al., 2003). Starting 

from an all-against-all BLASTP sequence similarity search using the full proteomes of A. 

thaliana (26,541 proteins) and Populus trichocarpa (45,554 proteins), 11,707 orthologous 

clusters were defined, covering 18,088 Arabidopsis and 22,760 poplar genes. These 

orthologous groups contain inparalogous genes (i.e., genes duplicated after the divergence 

between Arabidopsis and Populus), and thus offer a more realistic representation of orthology 

compared to, for example, reciprocal best hit approaches. Motif mapping was done using 

dna-pattern (RSA tools; (van Helden et al., 2000)) and was restricted to the first 1,000bp 

upstream from the translation start site or to a shorter region if the adjacent upstream gene is 

located within a distance smaller than 1000 bp. Starting from all 193,584 8-mers the top 5% 

motifs with the highest NCS values (NCS score > 12.48) were selected and similar motifs 
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were grouped. We measured the similarity between two motifs as the PCC of their 

corresponding position weight matrix. Note that all NCS-motifs are represented by consensus 

sequences and that the transformation to PWMs was only done for internal motif processing. 

Each motif of length w was represented using a single vector, by concatenating the rows of its 

matrix (obtaining a vector of length 4*w). Subsequently, the PCC between every alignment of 

two motifs was calculated, as they are scanned past each other, in both strands (Kreiman, 

2004; Xie et al., 2005). Then, all motifs with a PCC > 0.75 were considered as similar and only 

the motif with the highest NCS value was retained using it’s consensus sequence. This resulted 

in a set of 866 non-redundant motifs that were used for further analysis. 

To calculate motif enrichment for clusters, only Arabidopsis NCS-motif matches 

conserved in one or more orthologous poplar gene were retained. Significance levels were 

calculated using the hypergeometric distribution adjusted by the Bonferroni correction for 

multiple hypotheses testing (using the number of evaluated motifs). Corrected p-values < 0.05 

were considered as significant. 
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Figure Legends 

 

Figure 1. Expression Coherence scores for genes functionally annotated using Gene 

Ontology (A) and AraCyc (B). BP, MF and CC refer to Biological Process, Molecular Function 

and Cellular Component categories and the number of categories is indicated in parenthesis. 

 

Figure 2. Functional enrichment of Gene Ontology and cis-regulatory element annotation for 

guide gene cluster AT5G59220. Lines indicate coexpression relationships and colored circles 

show the functional annotation for the individual genes. Enrichment analysis is performed 

using the hypergeometric distribution and Bonferroni correction for multiple hypotheses 

testing. Results are shown for the ATH95 benchmark coexpression network. 

 

Figure 3. Functional predictive power for three benchmark coexpression networks build using 

different expression similarity thresholds (ATH90, ATH95 and ATH99). Panels A-C show 

cumulative sensitivity scores for a subset of GO categories and panel D shows overall 

cumulative sensitivity scores. PPV refers to Positive Predictive Values. 

 

Figure 4. Examples of cis-regulatory motifs showing significant associations with one or more 

Gene Ontology categories. GO-motif networks reveal for different GO categories the fraction 

of genes having the motif in their promoter (p-value<0.05 using the hypergeometric 

distribution). The line thickness reflects the motif coverage per GO category and varies from 

6% to 70%. Known motifs from AGRIS or PLACE are indicated in italic.
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Tables 

Table 1. Properties of the different coexpression networks.  

Network name (1) # genes #edges median number of edges per 

gene (lower and upper quartile) 

# (%) genes with GO 

BP enrichment 

Average PPV for 

GO categories (2) 

Average SN for GO 

categories (3) 

ATH90 * 19,716 13,580,283 1,625 (341, 2988) 18,668 (94%) 93% 39% 

ATH95 * 18,861 6,765,135 650 (88, 1590) 16,663 (84%) 92% 39% 

ATH99 * 14,187 1,504,781 91 (11, 449) 9,566 (50%) 88% 33% 

ATHGGM 6,653 25,106 4 (2, 8) 1,232 (19%) 85% 9% 

(1) * based on 50 GO categories covering 11,838 guide genes (2) PPV = Positive Predictive Value (3) SN = Sensitivity 
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Table 2. GO enrichment for the 10 most frequent cis-elements enriched in ATH95 gene coexpression neighborhoods (1).  

Motif #genes Known motif GO category  Enrichment  

   GO label GO description p-value fold (2) 

AAACCCTA 2524 TELO GO:0042254 ribosome biogenesis and assembly 5.84E-53 7.67 (3.85) 

CTTATCCN 1794 Ibox GO:0015979 photosynthesis 2.18E-87 11.88 (3.15) 

GGCCCANN 1601 UP1 GO:0042254 ribosome biogenesis and assembly 6.08E-68 11.93 (2.68) 

GCCACGTN 1475 Gbox GO:0015979 photosynthesis 1.95E-86 13.55 (n.e.) 

GCGGGAAN 1303 E2F GO:0006260 DNA replication 8.89E-26 8.80 (9.40) 

GACCGTTN 930 MSA GO:0007018 microtubule-based movement 9.83E-12 9.82 (n.e.) 

AANGTCAA 389 Wbox GO:0050832 defense response to fungi 6.22E-08 13.00 (1.50) 

CNGATCNA 382 AGMOTIFNTMYB2 GO:0048193 Golgi vesicle transport 1.22E-08 17.60 (n.e.) 

NCGTGTCN 328 ABRE GO:0009737 response to abscisic acid stimulus 1.04E-07 6.84 (2.00) 

CATGCANN 284 RYREPEATBNNAPA GO:0048316 lipid transport 9.99E-04 8.10 (1.84) 

(1) Similar motifs with the same GO enrichment trends are not shown. 

(2) Enrichment values considering all motif matches on Arabidopsis promoters (i.e. both conserved and non-conserved) are shown in parenthesis; 

n.e. no enrichment. 
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Table 3. Regulatory analysis of E2Fa/OBP1 target genes. 

Features / Data set OBP1_UP OBP1_DOWN E2Fa_UP E2Fa_DOWN OBP1/E2Fa_UP 

# Genes 632 842 412 220 65* 

      

Cell Cycle Modulated expression      

G1 9 13 2 3 2 

S 38 52 70 13 12 

G2 4 19 0 1 0 

M 114 3 3 0 3 

      

Enrichment Gene Ontology (1)      

GO:0006260 DNA replication 6.6x (2.83E-06)  24.2x (8.59E-36)  55.9x (4.90E-19) 

GO:0007017 microtubule-based process 9.9x (2.61E-13)     

GO:0042545 cell wall modification  4.3x (3.52E-03)    

GO:0009607 response to biotic stimulus  2.5x (5.87E-09)    

      

Enrichment cis-regulatory elements (2)     

GCGGGAAN (E2F) 3% (9.97E-06)  15% (4.19E-65)  26% (1.11E-20) 

WTTSSCSS (E2F PLACE)   55% (3.16E-37)  74% (4.72E-14) 

TAAAG (DOF PLACE) 94% (4.45E-04)     

GACCGTTN (MSA) 7% (6.64E-30)     

CTTATCCN (Ibox)  4% (4.56E-05)    

CCATGTGN (MYCATERD1)  3% (1.95E-04)    

ANCACATG (MYCATRD22)  6% (2.02E-07)    

* overlap significantly larger than expected by chance (p-value<3.50E-27) 

(1) enrichment fold (p-value) 

(2) fraction of genes with motif (p-value) 
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Supplemental data 

Supplemental table 1. EC values for different GO and AraCyc categories. 

Supplemental table 2. Coexpression network properties per GO category. 

Supplemental table 3. Predictive power scores for different GO categories based on the full 

ATH95 network. 

Supplemental table 4. Position and strand biases of conserved NCS-motif instances. 

Supplemental table 5. Microarray experiments in expression compendium. 

 

Supplemental figure 1. Correlation between average connectivity and prediction sensitivity 

per GO category.  

Supplemental figure 2. Enrichment of a subset of NCS-motifs over GO categories. For a 

complete overview, please use http://bioinformatics.psb.ugent.be/ATCOECIS/ 

Supplemental figure 3. Enrichment of known AGRIS and PLACE motifs over GO categories. 

Supplemental figure 4. Genome-wide positional biases of TELO and UP1 motifs in genes 

enriched for ribosome biogenesis. For a set of 226 genes containing a conserved TELO and 

UP1 motif the positions upstream from the translation start site are shown in a histogram. The 

numbers in parenthesis indicate the number of motif instances. 

 










