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Crowdsourcing Thousands of Specialized Labels:
A Bayesian Active Training Approach
Maximilien Servajean, Alexis Joly, Dennis Shasha, Julien Champ, and Esther Pacitti

Abstract—Large-scale annotated corpora have yielded
impressive performance improvements in computer vision and
multimedia content analysis. However, such datasets depend
on an enormous amount of human labeling effort. When the
labels correspond to well-known concepts, it is straightforward
to train the annotators by giving a few examples with known
answers. It is also straightforward to judge the quality of their
labels. Neither is true when there are thousands of complex
domain-specific labels. Training on all labels is infeasible and
the quality of an annotator’s judgements may be vastly different
for some subsets of labels than for others. This paper proposes
a set of data-driven algorithms to 1) train image annotators on
how to disambiguate among automatically generated candidate
labels, 2) evaluate the quality of annotators’ label suggestions, and
3) weigh predictions. The algorithms adapt to the skills of each
annotator both in the questions asked and the weights given to
their answers. The underlying judgements are Bayesian, based on
adaptive priors. We measure the benefits of these algorithms on a
live user experiment related to image-based plant identification
involving around 1000 people. The proposed methods are shown
to enable huge gains in annotation accuracy. A standard user
can correctly label around 2% of our data. This goes up to 80%
with machine learning assisted training and assignment and up
to almost 90% when doing a weighted combination of several
annotators’ labels.

Index Terms—Crowdsourcing, Bayes methods, parameter
estimation, Taylor series.

I. INTRODUCTION

R ECENT years have seen the emergence of consider-
able progress in computer vision and multimedia anal-

ysis techniques. In addition to fundamental algorithmic contri-
butions, the availability of large-scale annotated datasets has
played a central role in this performance improvement. Popular
datasets such as LabelMe [26], ImageNet [11], or more recently
YFCC100M [33] have formed the basis of thousands of research
publications and have greatly influenced the research directions
taken by the multimedia and machine learning communities. In
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particular, the recent increase in attention on convolutional neu-
ral networks is largely due to the impressive performance gains
these methods have enabled in the context of the ImageNet clas-
sification challenge [19]. However, building such large datasets
is often challenging since it requires the accurate tagging of
huge quantities of media items. Therefore, the use of crowd-
sourced and more generally user-generated annotations became
the de facto methodology for building training data in a variety
of multimedia tasks [3], [11], [20], [28]. For instance, with Ama-
zon Mechanical Turk, each image is presented to a set of users
whose task is to provide relevant tags [3], [11]. Platforms such
as Zooniverse [5] have focused their action on citizen science
data such as astronomical pictures of galaxies. Citizen scientists
have processed large amounts of scientific data that could not
have been processed otherwise.

When the labels correspond to well known or easy-to-learn
concepts, it is straightforward to train the annotators by giv-
ing a few examples with known answers. Neither is true when
there are thousands of complex domain specific labels. In this
paper, we focus on the particular case of crowdsourcing domain-
specific annotations that usually require hard expert knowledge
(such as plant species names, architectural styles, medical diag-
nostic tags, etc.). We consider that common knowledge is not
sufficient to perform the task but any people can be taught to
recognize a small subset of domain-specific concepts. In such a
context, it is best to take advantage of the various capabilities of
each annotator through teaching (annotators can enhance their
knowledge), assignment (annotators can be focused on tasks
they have the knowledge to complete) and inference (different
annotator propositions can be aggregated to enhance labeling
quality).

In typical crowdsourcing workflows, annotators receive tasks
such as labeling a picture or media item. Because the quality
of each individual response can be low, most systems make
use of redundancy. Thus, the same task is usually assigned to
several annotators. Then, by aggregating the results, the sys-
tem can achieve higher quality. Our system focuses on clas-
sification tasks. That is, we are given a dataset to label (im-
ages in our case) and a set of classes (plant names in our
case). Each item within the dataset is associated to an un-
known true class which needs to be determined. State-of-the-art
crowdsourcing algorithms generally aim at resolving two main
issues:

1) Task assignment: Each task requires some skills to be
performed and each worker is associated with some of
those skills. The goal is to assign tasks to qualified users,
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giving the right amount of redundancy to ensure quality
and maximize the number of correctly completed tasks.

2) Classification inference: Each annotator, proposes a class
for a given item. The goal is to aggregate the class votes
in order to find the correct one for each item.

Task assignment is often considered to be an optimization
problem: the goal is to maximize the number of correctly com-
pleted tasks. This is done by estimating the skills required to
resolve the tasks and the skills associated with each user [2],
[24], [34]. Then, one can derive the likelihood of each task to
be correctly performed given the set of annotators assigned to it
and maximize the number of correctly completed tasks.

Crowdsourcing algorithms for classification inference [10],
[18], [25], [31], [36] are typically based on a Bayesian infer-
ence of the most probable labels according to the confusion
matrix of each worker. The confusion matrix of each anno-
tator is usually derived from that annotator’s previous contri-
butions (i.e. labels given to other items) and thus represents
the annotator’s established classification ability. New classi-
fication tasks can then be assigned according to these abili-
ties [2], [34] and the most likely class can be inferred from
the provided labels. Traditional Bayesian models [10], [18]
are initialized by taking into account the known confusion
of each class with respect to all other classes for all given
annotators.

There have been approaches that have successfully treated
thousands of classes (e.g. cars, trees, people) such as Ima-
geNet [11] but the few specialized classes of such datasets are
very noisy and therefore unusable [16]. Other works [21] pro-
pose to define a balanced and structured taxonomy that can be
used to ask few questions in order to quickly identify the correct
class even when confronted with thousands of potential classes.
Unfortunately defining such a balanced taxonomy is not triv-
ial for many expert problems including plant classification [7]
for which the natural taxonomy is strongly imbalanced (e.g.
among 197 families of the French flora, one family accounts for
800 species, while 120 of these families account for less than
10 species each). None of these works have dealt successfully
with thousands of specialized classes. Indeed, the very large
number of classes, e.g. thousands of plant species or of any
other named entities, makes it infeasible to train a complete
confusion matrix for each participant as it would require them
to answer a huge number of queries (typically quadratic in the
number of classes). We therefore propose new crowdsourcing
models and algorithms for complex classification tasks that take
into account the high dimensionality of the problem and the
need to dynamically adapt the hypothesis space (i.e. the set of
classes presented to each user).

As Simpson and Robert [30] suggest, each potential annotator
ideally would need to be trained [1] to disambiguate among the
plausible candidate classes of each item. In the context of com-
plex classification tasks involving very large number of classes,
we propose an active user training framework where the train-
ing hypothesis space is adaptively and dynamically chosen for
each user and observation through machine learning techniques.
For instance, if at some point a data item has some probability
distributions p(ti = j) over the classes, then it is useful to train

one or more annotators to disambiguate among the most prob-
able classes. Further, since a given annotator is trained only on
a subset of classes, the system should ask him or her to classify
data items corresponding to the classes with which he or she has
some familiarity.

This paper presents the following original contributions in
order to address the problem of thousands-of-classes domain-
specific image annotations crowdsourcing:

1) We address the cold-start problem (i.e. find an initial prob-
ability distribution over the classes) by using the predic-
tions of a machine learning algorithm (in the event, a con-
volutional neural network). This will enable us to assign
tasks appropriately and to build the appropriate training
quizzes.

2) We then introduce Task Skills-Aware Assignment that
assigns tasks to annotators based on their confusion
matrices.

3) Third, we present a new method called Active User Train-
ing. Here, the goal is to train annotators to disambiguate a
specific set of classes. To do so, we form a quiz composed
of the most likely classes for a given item according to
the previously hypothesized classes for that item (whether
human or machine learning based).

4) Finally, we present a variant of the Bayesian inference
framework devised by Simpson and Robert [30] which
we improve by taking into account the uncertainty of the
confusion matrix prior resulting from the system’s partial
knowledge of the annotators.

To evaluate the proposed solutions, we implemented a pub-
licly available game at theplantgame.com.1 It is part of the
Pl@ntNet system [15]. Pl@ntNet is an innovative participatory
sensing platform relying on image-based plant identification as
a mean to enlist non-expert annotators and facilitate the produc-
tion of botanical observation data. It relies on a mobile applica-
tion available on iOS and Android which enables the users to
take images of plants and to receive in return the most likely
species. The data stream generated through the app consists in
a set of plant observations. This dataset can be used to moni-
tor bio-diversity, invasive species and general plant population
structure. However, although machine learning might success-
fully identify some observations, the data stream is highly noisy
and therefore would benefit from large-scale human validation.

This paper is organized as follows. Section II introduces the
related work upon which we have built our method. Section III
presents the problem definition as well as our framework ar-
chitecture. In Section IV we describe active user training.
Section V presents our skills-aware batch assignment approach.
Section VI describes our variant of the Bayesian inference
model. Section VII presents our experimental evaluation and
we conclude the paper in Section VIII.

II. RELATED WORK

In our work, we address three main questions: how to train
users, how to assign tasks to users, and how to perform inference

1[Online]. Available: http://theplantgame.com
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based on the results. We therefore propose an overview of the
previous work addressing these questions.

A. Classification Inference

Although crowdsourcing is still an emerging domain, contri-
butions related to classifier combinations, error-rate evaluations
and other issues started in the 1970s. One of the first works
on the topic of multiple classifiers was done by Dawid and
Skene [10]. It focused on estimating the error-rate of several
expert classifiers from a noisy ground truth. This work forms
the basis of a lot of the current work that we will present in this
section.

In [35], Tulyakov et al. propose an overview of several classi-
fier combination methods. From the simplest, such as a majority
voting or Borda – the rank of a result depends on its rank pro-
posed by all classifiers – to more complex methods such as the
ones that use the Dempster-Shafer theory of evidence.

Recently, Bayesian models have been shown to outperform
other combination methods [18], [25], [31]. In [25], Raykar
et al. show how to learn a classifier using data features and
classification votes. Their approach is only partially Bayesian
as the model is used only as a “point estimate”. Additionally,
the main goal was not to perform classification but to learn
a classifier on more realistic labels: each item in the training
dataset is not associated to a single class but to a probability
distribution over all the classes. The goal is to determine these
probability distributions and to train a classifier on it.

Kim and Ghahramani [18] propose a complete Bayesian
model to aggregate the classifications votes of multiple im-
perfect classifiers, be they humans or machines. They develop
two main approaches, one taking into account the dependency
among classifiers and one ignoring it. They show that complex
models that take into account the dependencies among classifiers
do not actually enhance the classification quality. In addition,
they use Gibbs sampling to evaluate the model – Gibbs sam-
pling is however expensive to run and therefore unusable when
thousands of labels are present (as in our work).

In [36], Venanzi et al. propose to exploit correlations among
the annotators to increase the classification quality. Thus, each
user is part of a community whose members are likely to have
the same confusion matrix. The main advantage of this work
is to estimate the classification capabilities of the annotators
more precisely even though very few classification examples are
available. In contrast to our setting, they consider each annotator
to be already skilled and capable of performing every task.

Simpson et al. [31] propose a Bayesian approach similar to
the one introduced by Kim and Ghahramani. However, they use
a Variational Bayesian approach to estimate the model. Addi-
tionally, they model evolving skills using the notion of dynamic
classifier combination. Our inference procedure builds upon
their variational model.

Welinder and Perona [38] also provide a Bayesian approach
for image classification. We differ from their approach in two
main ways. First, they consider the annotators to be already
skilled. Second, they iteratively try to assign tasks to experts. In
our case, experts are a rare resource so assignment is considered
to be a global optimisation problem.

Parameswaran et al. [21] propose to identify the correct class
by following a set of questions structured in a graph. The goal
there is to find the minimum expected number of questions in
order to find the true classes of all items. However, defining a
taxonomy to reduce the problem difficulty when confronted with
thousands of classes is not trivial. As already mentioned earlier,
the plant taxonomy tree is also completely unbalanced, so each
question would just remove few species at each step (rather than,
say, half). Defining a plant taxonomy based on visual facets has
also been shown to produce unbalanced results [7].

Bragg et al. [6] propose a method where the confidence in
an annotator’s ability is computed based on his/her number of
correct classification (from a ground truth). In our work, we use
a Bayesian network to infer the annotators’ abilities.

B. Task Assignment

Task assignment refers to the action of assigning a task to a
user depending on his own skills.

Tran-Thanh et al. [34], propose a strategy where up toB tasks
can be assigned in a way that minimizes the expected number
of misclassified items. That is, each user is supposed to give
an answer that follows a Bernoulli distribution. Then, by ap-
plying a fusion method, the correct label of each task may be
estimated. The goal is to assign tasks to annotators without ex-
ceeding the budget while maximizing the number of correctly
estimated labels. However, they consider all annotators capa-
ble of accomplishing all tasks. This is not true in our scenario
nor in any scenario in which classification requires specialized
knowledge (basically any field such as biology, ecology, or epis-
temologically similar application).

Basu et al. propose [2] an approach that, given an objective
function, efficiently allocates tasks to workers. Their approach
supposes that each user provides a constant quality gain (i.e. the
quality gain does not depend on the task), an assumption we
cannot make as some classes are more difficult to disambiguate.

As some tasks require expert knowledge, Gottlieb et al. [13]
propose a method to discover experts in the crowd. Their ap-
proach consists of asking complex question where the ground
truth is known and only when correct answers have been given
by the user, ask him to perform the task.

Simpson and Robert [30] use the Kullback-Leibler informa-
tion gain formula to determine the most relevant annotator to
whom a specific task should be assigned. To do so they consider
a Hire and Fire policy. They assume that tasks are allocated one
by one and if an annotator is not allocated a task immediately,
he/she will leave. In our scenario, we have found that annotators
may stay for a sufficiently long time. Thus we consider task as-
signment as an optimization problem where several annotators
may be assigned to several tasks and vice versa.

Sheng et al. [29] and Parameswaran et al. [22] propose a prob-
abilistic model to determine which item will most likely benefit
from being assigned. In our model, as inference generates prob-
abilities, one can easily be used to fix a threshold for instance
(e.g. all items having probabilities over 99% of belonging to one
class are considered correctly classified).

All these works consider each worker to be already suffi-
ciently skilled. Simpson and Robert [30] admit the possibility
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that a worker’s skills may evolve through time and suggest train-
ing as one possibility but do not address the problem of training.

C. System Oriented Works

In this subsection, we consider works that combine several
techniques in a system oriented way.

In [23], Quinn et al. combine machine learning with crowd-
sourcing to address three objectives: maximize the processing
speed, minimize the cost and maximize the quality. These objec-
tives are part of the input and the system automatically allocates
the tasks to humans and machines accordingly. They consider
the crowdsourced tasks as sufficiently easy to be performed by
everyone and don’t address profile-based task assignment.

In [17], Kamar et al. develop an architecture called Crowd
Synth that provides a trade-off between cost and accuracy under
budget constraints. The platform is based on a Markov Decision
Process. They consider each worker as already skilled.

Welinder and Perona [38] propose to progressively select
items to be processed depending on a budget constraint, thus
offering an accuracy-cost trade-off. We follow their approach
of using Bayesian Inference to estimate the true labels. We also
follow them in estimating the expertise of each user based on the
posterior probabilities of the Bayesian model. In their context,
all users have the same skills, so users are interchangeable. In
our case, many plants can be identified by many people, but a
few require special expertise, so we reserve those for our expert
informants.

All these papers assume that human classifiers have sufficient
skills from the beginning to perform the tasks. Therefore, they
presume no training is necessary (or they don’t address the train-
ing problem). In our case, we cannot make these assumptions
because most annotators are initially not experts in most labels.
Our goal is thus to educate them first and to assign them tasks
they can solve accordingly.

D. Annotator Training

In [12], Fang et al. study an active learning approach. Like
us, they assume that annotators can be trained and their per-
formance improved. To do so, they select items that need to be
classified and for each of them, they construct a tuple of the most
reliable annotator and the least reliable one. Thus, the knowl-
edge from the best annotator helps to improve the performance
of the worst one. We differ from them in three ways. First, they
suppose that no training data is available to perform the training.
In our case, we use training data both to train a convolutional
neural network and to train the crowd (the annotators). Second,
in complex classification problem as ours, all annotators may
not be capable of learning all the sub-problems. Thus, finding
the best and the worst annotator for training may end up with
no performance gain. For instance, in our plant classification
problem, species with the biggest potential gain actually corre-
spond to species almost impossible to learn for beginners. Fi-
nally, we study the whole workflow from training, assignment to
inference.

Fig. 1. Framework architecture, user view.

Fig. 2. Framework architecture, system view.

III. PROBLEM DEFINITION AND FRAMEWORK ARCHITECTURE

In this section, we present the problem definition as well as
the framework architecture introduced in this paper.

Problem Definition: we are given a dataset D of items that
need to be classified and a set of classes C. Each item in D
is associated to an unknown true class in C that needs to be
discovered. We are given a set of annotators K. Each annotator
can suggest a possible class in C for an item in D. The goal is
to maximize the number of true class discovered for all items
in D. To achieve such results, we focus on three intermediate
goals:

1) how to train human annotators efficiently,
2) how to assign items in D to human classifiers in K who

have a good chance of proposing a correct classification,
3) how to infer the most probable classes based on the mul-

tiple classifiers’ votes.
To address these problems, we rely on the architecture pre-

sented in Fig. 1 for the users’ view and in Fig. 2 for the system’s
view. It is composed of four modules:

1) Convolutional neural network: when a new (unvalidated)
data item is added to the system, a machine learning mod-
ule will first predict the set of label-probability pairs. In
our experiments we use the convolutional neural network
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architecture described in [32] pre-trained on ImageNet
and fine tuned on LifeClef’s training data [8] which gives
state-of-the-art performance for image-based plant identi-
fication. However, our system could be generalized to any
other data and machine learning module. Each new item
is thus systematically associated to a probability distribu-
tion p(ti = j) indicating the likelihood of a class for an
item. When the probability of one class exceeds a system
defined threshold (e.g. t = 99% in our experiments), the
item is automatically tagged as validated. Otherwise, the
item is considered as unvalidated and is issued to the itera-
tive crowdsourced human validation processes (i.e. active
training, task assignment and classification inference).

2) Active training: each item is associated with a probabil-
ity distribution indicating the likelihood of a class for an
item. Based on the likelihood of all items, the system cre-
ates quizzes containing the candidate classes so that the
annotators learn how to disambiguate them.
Each quiz is associated to its difficulty which is the prob-
ability that the annotators will successfully answer the
questions in the quiz. Then, when some annotator starts a
training session, the system selects a quiz whose difficulty
is adapted to his current skills. That way, annotators are
trained to disambiguate classes that actually correspond
to the problem at hand. In parallel, the system starts to
learn the annotators’ confusion matrices to use the dur-
ing the inference process (as explained in paragraph 4) as
well as to estimate the skills and success probabilities of
each user. A confusion matrix for a user maps a label j
to a set of label-probability pairs P, noted π(k)

j for user k,
denoting the likelihood that the annotator will mistake a
plant having label j with each of the labels in P.

3) Task assignment: the system assigns an unvalidated item
to the annotators who are likely to assign a correct class to
them, based on the annotators’ confusion matrices. Here,
we consider annotators’ success to be more important
than the overall information gain as the annotators must
be rewarded to obtain better cognitive skills [14]. Most
related works allow the opposite: an annotator who always
gives the same wrong answer would be considered to be
a high quality classifier.

4) Inference: as labels (votes) are given by the annotators to
a set of items, an inference model will update their prob-
ability distributions as well as the annotators’ confusion
matrices.
Once the probability that an item belongs to a class ex-
ceeds the threshold t, it is considered validated and the
annotators who were assigned to it are informed of the
result (feedback to the annotator, cf. Fig. 1). Otherwise,
it enters a new cycle of validation but with its updated
probability distribution p(ti = j) which reflects reduced
uncertainty.

IV. ANNOTATOR ACTIVE TRAINING

In this section we present our method for training the anno-
tators. We restrict ourselves to the case of training solely based

on quizzes with feedbacks (i.e. quizzes in which we indicate to
the annotator the correct answer after each question so that he
or she can learn through trial and error).

Unlike machine learning-based classifiers, humans cannot
face and learn a thousands of class problem directly. For in-
stance, in plant classification, a non-expert human would be
completely lost if he had to identify an observation among thou-
sands of species.

Thus, to train the annotators in an effective way, the idea is
to generate quizzes of small size (e.g. 6, 8, 10 or 12 among
thousands of possible classes). A quiz corresponds to a set of
classes Q = 〈c1 , ..., ck 〉 that the annotator will be trained on
and a number of questions m. Then, running the quiz entails
sampling plant images uniformly from each class inQ and then
presenting those to the annotator. Each time a user indicates
his class (or classes if he is hesitating) assignment to a training
image v, the system gives him/her the correct answer. To make
this a game, the more often a user gives correct answers, the
more points he/she receives.

Given all
(
n
s

)
possible quizzes of size s among the total num-

ber of classes n, we want to select those “useful” for our classifi-
cation purpose and assign them to each annotator. A way of do-
ing so would consist of finding the optimal set of quiz/annotator
pairs that maximizes the expected number of correct classifi-
cations given the likelihood of all unvalidated items and the
annotators’ confusion matrices π(k) . However, such ideal op-
timization is non trivial because it would require to compute
a priori the posterior probability of success of a specific anno-
tator on a quiz (e.g. the probability p(π′(k)

l,j |π(k)
l,j ; q) of the anno-

tator’s confusion π′(k)
l,j before he/she has been trained on a quiz

q). This is problematic in several ways. First, it is not trivial to
estimate how well an annotator will assimilate the given lesson:
some annotators may learn quickly and durably, while some oth-
ers may not. More generally, estimating p(π′(k)

l,j |π(k)
l,j ; q) depends

on many neuropsychological factors that are very complex to
model.

Second, even considering a simpler heuristic such as training
an annotator on his/her current most confused classes can be
problematic. Such classes usually correspond to the most dif-
ficult ones that only experts can deal with. Thus, he/she might
not be able to disambiguate them even after dozens of training
quizzes.

As an alternative, we propose a two-step approach. Fig. 3
presents such training through an example that will be discussed
throughout this paper. First, a large set of quizzes are created
independently of the annotators’ confusion matrices. Second,
the quizzes are assigned to the annotators based on the expected
difficulty of each quiz and each annotator’s confusion matrix.

1) Quiz creation via Monte-Carlo sampling: the goal here is
to create quizzes based on the likely labels of the unval-
idated items independently of the annotators’ confusion
matrices. Given an unvalidated item i and its labels’ like-
lihood p(ti), a set of quizzes is generated through Monte-
Carlo sampling. In other words, the probability of appear-
ance of a class j in a quiz is proportional to its likelihood
p(ti = j) – based on the outputs of the machine learning
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Fig. 3. Active training example. An item is first processed by the CNN which produces the list of probabilities associated to each class. This probability
distribution is then sampled several times to create training quizzes. Once some user (e.g., Alice) has completed a training session, her confusion matrix is updated.

module or on the previous inference results if some classi-
fications propositions have already been retrieved. Using
Monte-Carlo sampling rather than creating the quiz based
on the top-kmost probable classes is beneficial for several
reasons. First, it increases the probability that the correct
class appears in at least one of the quizzes, even if it is very
low at the beginning. Whatever the probability p of the
correct class for an item, the probability that it appears in
at least one of q quizzes of k classes is 1 − (1 − f(p, k))q

where f(p, k) is the probability mass function of the non-
central hyper-geometric distribution. Whatever the values
of p and k, there is always a sufficiently large number m
of quizzes guaranteeing that the correct species appears
in at least one quiz and thus that at least one user has been
trained on that class. Second, as the quizzes are created
through random sampling, annotators are trained in com-
plementary ways and their classification votes tend to be
more statistically independent (which is a nice property
as we want to aggregate their votes). In the example of
Fig. 3, the machine learning module (CNN) returned a
probability distribution for a new item. Only four classes
have positive probabilities. These four classes are sampled
several times with respect to their probabilities in order to
create several subsets of all the classes. Thus, in the end,
several groups of classes currently considered likely for
an item are created and are directly used as quizzes.

2) Quiz assignment via difficulty estimation: Given some
user k, the goal here is to assign him/her quizzes of in-
creasing difficulty. Based on the confusion matrices of all
annotators, one is able to compute the difficulty of a quiz
thanks to its expected success probability

p(success) =
∑

j∈J
πjj × p(ti = j) (1)

where J refers to all the classes, πjj is the expected prob-
ability that some user will give the correct answer when
confronted with class j and p(ti = j) is the probability
that item i belongs to class j.
Each user is associated with a threshold indicating the
maximum allowed difficulty. Then, the more a user plays,

the lower will be the threshold and the more difficult
the quiz assigned to him will be. The threshold is first
initialized based on the user’s declared expertise.
The system, given some user, will automatically and ran-
domly select a quiz which meets the threshold criteria.
As an example, a beginner who just starts to play should be
trained on quizzes whose expected success rate is superior
to 99% across all quizzes. Note that the more a user plays,
the more difficult the quizzes will be and also the more
classes he/she will be asked to remember because quizzes
are selected randomly.

Fighting cognitive bias: Another limitation of human being
is cognitive bias. In our preliminary experiments, we have ob-
served three main biases the annotators are subject to. First,
when confronted several times with the same answers, the an-
notators tend to remember the position of the answer in the
list instead of its label. Second, we also noticed that annotators
tend to remember the shape of the words constituting the labels
instead of the words themselves. Both of these biases prevent
the annotator from remembering the labels names durably. The
third bias we noticed concerns the images used to illustrate each
class. When only presented with a small number of different
classes, the annotator tends to remember simplistic discrimina-
tive features for each class. These features may work well for
the small number of classes in the quiz but can’t be generalized.

To address these issues, we proposed the design of training
sessions to incorporate redundancy. Instead of training the user
on a quiz composed of p questions, we train him on k different
quizzes of p/k questions. All the k quizzes are sampled from
the same likelihood but with an increasing number of classes.
They are therefore likely to intersect in terms of the classes
they contain but will force the user to learn new discriminative
features and force him to read and remember the labels. The
position of each question is also randomized between each quiz
so that the annotator does not learn the position of the answers.
Such an approach is inspired from experiments on mice and has
been applied on Amazon Mechanical Turk2 where the system

2[Online]. Available: www.MTurk.com
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penalizes motor skills and gives rewards (points) to cognitive
skills [14].

Fighting forgetfulness: As another limitation of human beings
is memory, we observed that sometimes annotators performed
very well on a given species during training but forgot its name
when an image of that plant was assigned to them later on. To
address this problem, we introduced the notion of on demand
retraining (cf. Fig. 1). When an annotator is assigned to a new
task, he/she may run a new ad-hoc training quiz which is directly
sampled from the distribution p(ti = j) of the item that needs
to be annotated.

Starting to learn user confusions: As soon as users start to
train, it is possible to detect classes among which they are con-
fused. In the example of Fig. 3, Alice had a 0.98 success rate
for class A but tended to confuse classes C and D. This in-
formation gives a prior idea of each user’s ability to classify
the items among the classes. This confusion matrix will be
further enriched and re-inferred during the inference step (see
Section VI).

Note that having all this data to initialise the confusions of
all users is very important in the context of thousands of classes
where the total number of possible confusions is quadratic in
the number of classes.

V. SKILLS-AWARE TASK ASSIGNMENT

We propose here a task assignment strategy that takes the
user’s inferred skills into account when assigning unvalidated
items.

The objective function we want to maximize here is the num-
ber of objects for which at least one user has proposed a cor-
rect classification. Pragmatically, however, there are some con-
straints. First, based on each user k’s willingness to work, user
k should be assigned no more than nk objects. Also, no object i
should be assigned to more thanmi users to avoid an unbalanced
tagging of the items. Given these considerations, the objective
function can be described as follows:

maximize
xi k

N∑

i=0

K∑

k=0

xik × f(p(success(k)
i ))

subject to
N∑

i=0

xik < nk ∀k,
K∑

k=0

xik < mi ∀i

xik ∈ {0, 1} ∀i, k
where xi,k takes the value 1 if item i is assigned to annotator
k and 0 otherwise, and N and K are the total number of items
and annotators respectively. Additionally, if the success proba-
bility is too low, a user may not want to answer at all – most
annotators prefer not to answer when they feel very unsure.
Thus, we introduce a function f(p(success(k)

i )) which tends to
0 when the probability of success decreases and to 1 when the
probability of success increases. Thus, the function f enables
more accurate prediction of the success of a user. Notice that
this objective function is very similar to the one proposed by
Simpson et al. [30] based on entropy. We mainly differ from
them in the overall goal: in our playful approach, we do not

maximize the number of global classifications but the number
of successful assignments. We want the user to feel satsified and
enjoy the experience by successfully classifying their items.

Fig. 4 follows the example from the previous section for the
assignment tasks. Here, Alice showed her ability to distinguish
classesA andB with more than a 90% success rate. A new item
is processed by the neural network and the most likely classes
are those for which Alice is good. By contrast, Alice is not good
for all for other classes. Thus, she is likely to be assigned to this
item.

When nk = 2 the maximization problem is NP-Hard [27].
When nk > 2 there is no proof that it is NP-Hard nor is there an
exact known polynomial solution. Algorithm 1 presents a heuris-
tic providing an approximate solution (inspired from Dantzig’s
greedy approximation of the knapsack problem [9]). The main
idea of the heuristic is to associate a cost for each annotator
equal to the number of classes where π(k)

jj > t. Here, t repre-
sents a threshold which indicates if an annotator will be likely
to correctly classify an item. Thus, each item will be assigned to
the annotators who can classify that item and as few other items
as possible. Experts, who can identify many different classes
and are considered “expensive”, are reserved for the difficult
tasks.

Our experiments have shown that this heuristic achieves 90%
of the score of the optimal assignment – computed using open
sources optimizers – while being much faster. Indeed, the heuris-
tic does not even need to process all the data to perform task
assignments while a huge cost of the optimal strategy is to cre-
ate the optimisation problem (e.g. the objective function must
consider all annotator/item pairs). In addition, the optimizers
we used rely on a Branch and Bound (B&B) algorithm which
is known to have an exponential worst case complexity while
the complexity of our heuristic is linear in the number of users
and items. Note however that the performance of our algorithm
depends on the previously introduced function f and on the
constraint t. If f tends to be uniform and/or t is low, then the
algorithm will tend to assign very difficult tasks as they appear
to users that will likely not be able to perform correct classifi-
cation. By contrast, if f favors strong probabilities of success
and/or t is high, then the algorithm may not be able to as-
sign items to some users as their probability of success will be
too low. However, any non-extreme values show to have good
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Fig. 4. Assignment example. An item is first processed by the CNN which produces the list of probabilities associated to each class. This probability distribution
is then used together with the user confusion matrices to estimate the user’s chance of success. Here, Alice is very good at classifying items in classes A or B
which are the most likely classes of the new item. By contrast, she is not at all good at classifying among other classes. Therefore, the system assigns her to this
item, because she is a good candidate.

performance. In our experiments, twas set to 0.9, i.e. only tasks
with a success probability superior than 90% can be assigned.

VI. INFERENCE

In this section, we show how inference is performed using
both the results of the training quiz and the annotators’ classi-
fications votes. Note that inference both estimates each user’s
confusion matrix in addition to estimating the label probabilities
of each item (as well as the prior probability of each class). The
effectiveness of our active training and assignment methods is
thus closely related to the effectiveness of the inference method.

A. Bayesian Model

In crowdsourcing, a crucial issue is to combine the annotators’
classification votes in a way that maximizes the likelihood that
the system will find the correct classifications. In the example of
Fig. 5 which follows the previous examples, an item is associated
to a probability distribution that shows that it likely belongs
to class A or B. Alice proposed class A (that she is good at
disambiguating). After the inference process takes into account
the current probabilities, the users’ confusion matrices and the
votes, a new probability distribution is proposed where class A
has a 0.98 chance of being the correct one.

In addition to the posterior probability of each item, the user
confusion matrices are also updated to maximize the likelihood.

The inference process is run periodically (every 5 minutes
in our implementation), thus user confusion matrices and label
probabilities are continuously updated.

Formally, we are given a set of classifiers K (annotators),
a set of items D and a set of classes C. Each item in D is
associated to an unknown true class in C and each classifier in
K can propose a class in C for an item in D.

One popular way to infer the true class of each item is to use
Bayesian probabilities and networks [10], [18], [25], [31].

Fig. 6 presents the Bayesian network we use. It is based on
the one proposed by Simpson et al. [31] and is similar to the one
proposed by Kim et al. [18]. In such Bayesian networks, the goal
is to find the true label ti of all data items 1, ..., N . The true label
is supposed to be generated through a multinomial distribution
where the probability of each class j is denoted κj . We are given

Fig. 5. Inference example. An item is associated to some probability distribu-
tion thanks to the CNN and previous inferences. This probability distribution is
then used together with the user confusion matrices and the user’s assignment
of class labels to infer a posterior probability.

Fig. 6. Graphical model of the Bayesian network used to infer the correct
classification with partial knowledge.
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a set of annotators who produce a set of classification votes c(k)
i ,

where i is the data item index and k is the annotator’s index.
These classification votes are supposed to be generated through
a multinomial distribution of parameters π(k)

j coming from the
confusion matrix. That is

π
(k)
j,l = p(c(k)

i = l|ti = j)

or, in other words, it is the probability that user k will give
answer l while the true answer was j. Thus, even though some
users may give incorrect classification votes, the system can still
infer the true label. Finally, both π(k)

j and κ are conceptually

generated through a Dirichlet distribution of parameters θ(k)
j

and ν respectively. Equation (2) presents the joint probability

p(κ,Π, t, c|θ0 , ν) =
N∏

i=1

{

κti

K∏

k=1

π
(k)

ti ,c
(k )
i

}

p(κ|ν)p(Π|θ0).

(2)
Unfortunately, in large-scale classification, it is very likely

that only partial knowledge is available. For instance, based on
our active training quizzes concerning only a few classes for
any given annotator/user, we may know that a user u does not
confuse classes D and E but we may not know anything about
that user’s ability to distinguish D from F .

To represent this incompleteness, we propose the model
shown in Fig. 6 where we suppose that each θ

(k)
j l is gener-

ated through an independent gamma distributions of parameters
α

(k)
j l0 ∈ A and β(k)

j l0 ∈ B.
The joint probability thus becomes

p(κ,Π, t, c, θ|A,B, ν) =
N∏

i=1

{

κti

K∏

k=1

π
(k)

ti ,c
(k )
i

}

p(κ|ν)

· (Π|θ)p(θ|A,B). (3)

The next subsection shows how we infer the parameters of the
new model efficiently.

B. Solving the Inference With Thousands of Labels

The large dimensionality of the problem makes it difficult to
run Bayesian inference. For instance, suppose that we are given
N = 1, 000 classes and K = 1, 000 classifiers. Then, we may
represent the confusion of all classifiers with a tensor composed
of one billion cells, making it infeasible to run a full Bayesian
inference in reasonable time. We focused on two approaches to
address this problem.

1) Variational Bayes: First, we use a variational approach
(inspired from [31]) because it is known to be efficient in com-
putation time compared to Gibbs sampling and offers better
results than the popular EM method [31].

Unfortunately, in our model, the matrices π(k) are generated
through Dirichlet distributions while the matrices θ(k) are gen-
erated through independent Gamma distributions which are not
conjugate with the Dirichlets. This renders the variational equa-
tions no longer tractable. To address this issue, our proposed
solution is to approximate the posterior probability of the non
conjugate branch of the Bayesian network using the Laplace

approximation Method [37] (Laplace’s method approximates
integrals of exponentials using Taylor’s theorem). Once all vari-
ational equations have been derived, they form a circular de-
pendency allowing to solve the inference through the procedure
described in Algorithm 2. More details are given in appendix A.

In Algorithm 2, q refers to the variational approximation of
the probability function p. Hence, q�(t) is the approximation of
the posterior probability of the variable t. Unlike the approach
of Simpson et al. [31], we update the posterior probability of θ
(line 6) before updating π while directly using the initialization
values. In particular, one can notice that when the variance of
our gamma priors tends toward 0 our model is the same as
that proposed by Simpson et al. – if the variance tends toward
0, then θ is fixed. Thus our model is a generalization of their
method having the advantage that it can be used for several
sources of uncertainty in the classification (in our case, the
partial knowledge of the possible classes during training).

2) Exploiting Sparsity: As we work on thousands of classes,
we are actually dealing with sparse data: two classes j and lmay
never be confused by any classifier (because they have never
been presented together) and π(k)

j l may be considered equal to
0 or ε→ 0 . In our scenario, with over 1,000 classes and more
than 1,000 annotators, we have observed that less than 2% of
the possible confusions appear at all. The main benefit of that
sparsity is to use a sparse representation factorization as empty
cells will end up with the same value and can thus be processed
as a single variable. Therefore, instead of computing sparse
cells separately, one just has to compute them once according
to their factorization. The details are available in appendix A.
This approach significantly reduces the memory demands of the
model as well as its computation time.

VII. EXPERIMENTS

In this section we present the experimental evaluation of our
approach. Section VII-A introduces the setup of our experiments
and Section VII-B presents the results.

A. Setup

To evaluate our contributions, we implemented the frame-
work architecture of Figs. 1 and 2 within a game platform called
The Plant Game.3 We used the dataset released for the LIFE-
CLEF2015 [4] contest. We kept all plant observations where
at least one picture of the flower was available. We thus had a
total of 6,300 plant observations to classify. In addition we had

3[Online]. Available: http://theplantgame.com
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Fig. 7. Plant Game users’ statistics.

a training set composed of 13,900 observations. Note that this
training dataset is the same as the one used to train the Convo-
lutional Neural Network. Each single observation is composed
of at least one picture but could consist of several images of
different organs (e.g. entire view, leaf, branch, flower, fruit) of
the same plant. The test and the training sets correspond to 1,000
different plant species – classes in the paper. These species cor-
respond to the most popular ones from the Pl@ntnet data stream
associated to the Western European flora. 1,107 annotators par-
ticipated to the experiment.

To play, participants had to establish an account where he/she
had to self-evaluate his/her current expertise (i.e. beginner, inter-
mediate, expert); this information is notably used to fit the initial
threshold of the difficulty of the training quizzes recommended
to him/her. Fig. 7 represents the distribution of self-declared
expertise. Most of our players self-identified as beginners.

The Plant Game offers several game modes:
1) Training: allow a user to be trained as described in

Section IV,
2) Assignment: this is the user interface where each annotator

can see the tasks/observations that are assigned to him
using the different strategies,

3) Ranking: to boost user motivation, all users can see how
they perform with respect to other users in the Ranking
view.

We compared three strategies to obtain plant identifications:
1) observations are randomly assigned and users have not

been trained on them beforehand,
2) Users have been trained (cf. Section IV) but observations

are randomly assigned,
3) Users have been trained (cf. Section IV) and observations

are assigned as discussed in Section V.
In addition to training and assignment we also analyse the

two following aspects:
1) Inference effectiveness: we compare three classification

inference methods. First, majority voting (MV) which is
the baseline. It is the easiest to implement and offers good
results. Then, Variational Independent Bayesian classi-
fier combination named (VIBCC) which provides state-
of-the-art performance [31]. Finally, our updated model
(VIBCC2) taking into account the partial knowledge of
the annotators’ confusion.

Fig. 8. Classification accuracy for several assignment and training approaches.
(a) The user is not trained and plant assignments/observations are chosen ran-
domly. (b) The user has been trained on disambiguating some species, however,
assignments are still chosen randomly. (c) the user is trained and he or she is as-
signed observations that he or she is likely to identify correctly. When comparing
the results in going from (a) to (b) or (b) to (c), the p − val < 1/10000 indicat-
ing that training and adaptive assignment bring both practically and statistically
significant benefits.

2) Overall classification performance: we show the quality
gain compared to the fully automated machine learning-
based algorithm used as input of our crowdsourcing
system.

In addition, we computed the p-value to evaluate the statis-
tical significance of training and adaptive assignment. When
doing so, the null hypothesis corresponds to “the contribution in
question (training or adaptive assignment) does not change the
results” (e.g. random assignment and skills-aware assignment
performs similarly). A high p-value means that it is not possible
to reject the null hypothesis.

Our results are structured in three sections, each describing
one of the three contributions: active training, assignment (and
the effect of retraining) and inference. Also, a final analysis of
the overall workflow is provided.

B. Results

We present here the results of our experiments. Fig. 8 shows a
global overview of the benefits of our contributions. The figure
will be discussed in detail at the end, but shows that the benefits
are practically and statistically significant.

1) Active Training: Here we evaluate the impact of the users’
training. Fig. 8 clearly shows that plant identification is essen-
tially an impossible task for untrained annotators. Additionally,
the number of correct answers is so small that no classification
method actually outperforms the others. Notice, however, that
although the 2.5% accuracy for untrained users is bad, it is still
significantly better than a random classifier (i.e. 0.001% accu-
racy). On the other hand, when the users have the option of being
trained, their accuracy reaches 37% (with random assignment)
and 80% (with optimized assignment).

In Fig. 9 we can see that the average individual success rate
of each annotator ranges from 80% (with a high standard de-
viation of σ = 0.36) to 94% (with a small standard deviation
of σ = 0.1). The small gap between the different annotators’
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Fig. 9. Users’ average success rate in training quiz per declared expertise. The
success rate does not vary very much, because the assigned quizzes are simpler
for less expert users.

Fig. 10. Average success rate in Quiz 1.

Fig. 11. Average response time in Quiz 1.

categories means that they have been trained on observations
corresponding to their level of expertise – although beginners
tend to have a high variability. Thus, beginners have an average
success rate of 80% while experts reach 86%. The high vari-
ance of the beginners’ results confirm that they tend to answer
at random when they don’t know the species yet in contrast to
experts who refuse to answer in such cases.

Figs. 10 and 11 show the benefit of training by comparing
the evolution of the success rate and of the response time per
user depending on the number of the question asked in a quiz –

Fig. 12. Average success rate per quiz (i.e., 1, 2, and 3).

Fig. 13. Average success rate per species.

between 1 and 30. These figures clearly show that the users be-
come more and more confident after acquiring training. Indeed,
they answer faster and faster and increase their average success
rate. In average, at question 30 the users take 6 seconds (with a
standard deviation of σ = 2.53) and identify the species with a
success rate of 82% (σ = 0.4).

In Fig. 12, we observe the evolution of the average success
rate of the users when they played three successive quizzes with
more and more possible species in the answers (i.e. 6, 8 and
10). We can observe that within a quiz, the more they play, the
better they become. However, as soon as they start a new quiz
with more choices, their success rate decreases before increasing
again to a higher level. This is due to the fact that new species
were added and cognitive biases are reduced (cf. Section IV). At
the end of the third session (i.e. 90 questions asked), the average
success rate per user reaches nearly 90% (σ = 0.362).

Finally, Fig. 13 shows that the more a single user trains on
a single species the better he/she becomes. Specifically, the
success rate rises from 68% (σ = 0.468) to almost 84% (σ =
0.424).

Training alone is not sufficient when assignments are random.
Fig. 8 also shows that when the users only have the possibility to
retrain on their assignment (i.e. retraining & rand assignment),
they still have a moderate accuracy of around 33.7% (σ = 0.26).
This is much better than without any training but, it still does



SERVAJEAN et al.: CROWDSOURCING THOUSANDS OF SPECIALIZED LABELS: BAYESIAN ACTIVE TRAINING APPROACH 1387

Fig. 14. Average identification success rate per declared expertise.

not outperform the automatic CNN classification. Assignment
is thus crucial to boost performance.

2) Assignment: Fig. 8 shows that when using task assign-
ment (i.e. assign items to users to maximize the likelihood of
success), the users have an individual success rate of more than
80% (σ = 0.309).

Note that around 13% of the time, the users were not capable
to identify the species on the first try and had to perform a retrain
quiz to recall how to classify the item (even though they were
already trained on it). When doing so, they reached an accuracy
of 90.66% (σ = 0.283). Notice that users who are willing to
retrain obtain better results than those who think they know the
answer.

We can observe in Fig. 14 that the identification success rate
does not increase with the annotators’ declared expertise. Be-
ginners actually have approximately the same success rate as
more experienced identifiers providing that they have been cor-
rectly trained and have been given classification tasks adapted
to their skills.

However, the high variance of the results obtained here con-
firms the need of redundant votes for each observation and
effective aggregation methods.

3) Inference: We now compare the different inference meth-
ods: majority voting MV , Variational Independent Bayesian
Classifier Combination methods (VIBCC, state-of-the-art) and
VIBCC 2 (ours). Fig. 8 first shows that our new inference method
has a better accuracy than the state-of-the-art method in all train-
ing and assignment scenarios. However, the gap is too small to
reject the null-hypothesis (i.e. VIBCC 2 performs similarly to
VIBCC).

To determine possible secondary benefits of our inference
method, we conducted further analysis of the results as reported
in Table I. In particular, we measured the mean average precision
instead of the brute force top-1 accuracy, so as to reflect the rele-
vance of the estimated probabilities that are crucial for the active
training and the optimized assignment. We also recomputed the
inference of the three methods using fixed number of votes per
observations (i.e. 2, 3, 4 and 4+). For each number of votes,
we did a k-fold inference with 1,000 random observations each
time with k = 6. Based on the results we computed the p-value
with the null hypothesis being that VIBCC 2 performs similarly

TABLE I
MEAN AVERAGE PRECISION GAIN WITH

P-VALUE NS (NOT SIGNIFICANT)

votes/obs VIBCC 2 VIBCC (p-val) MV (p-val)

2 0.864 0.8529 (0.02) 0.85 (2.5.10−3 )
3 0.884 0.8734 (0.012) 0.831 (< 1/10000)
4 0.857 0.857 (ns) 0.748 (< 1/10000)
4+ 0.848 0.844 (ns) 0.752 (< 1/10000)

Fig. 15. Recall precision: human versus machine.

to VIBCC or MV – ns stands for not significant when it is not
possible to reject the null hypothesis.

When the number of distinct votes is low, VIBCC 2 outper-
forms VIBCC. When the number of votes reaches 4 (or more),
both method seem to converge (the p-value is no longer signifi-
cant after 4 votes per observation). It can be shown analytically
that when the size of the dataset is big enough (i.e. in terms of
redundancy per species and users), both methods converge to
the same result at a ratio that depends on how the priors of the
models has been set.

All methods degrade when the number of votes increases,
but Bayesian methods less so. The reason is that more votes re-
flects more uncertainty (more classes are possible). The results
clearly show that when the problem becomes difficult and re-
quires more votes, Bayesian approaches outperform the simple
majority voting in a statistically significant way.

4) Global Framework: Fig. 8 shows the combination of in-
ference method, training and assignment that attains the highest
classification quality. The majority of the gain is due to the com-
bination of active training and adaptive assignment. By contrast,
the inference algorithm matters little. Fig. 15 contains the pre-
cision results of the observations considered as “validated” (i.e.
probability of one class higher than a threshold set to 99%). It
shows the impressive gain of The Plant Game compared to the
standalone Convolutional Neural Network used as the input of
our framework (i.e. GoogleNet [32] fine tuned on LifeClef’s
data [8]). For instance, at the point of 90% recall, the Plant
Game obtains a precision of 98% while the CNN alone only ob-
tains 85%. In other words, when we consider that the platform
has correctly classified an item, classification quality is much
higher than using machine learning alone.
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Thus, adaptive training-assisted crowdsourcing vastly re-
duces the uncertainty of automated predictions for this appli-
cation and we suspect for any multi-class domain where each
class demands high expertise.

VIII. CONCLUSION

In this paper we have presented a framework for crowd-
sourced classification in the context of thousands of complex
classes. Our strategy is built on three ideas:

First users can be trained on how to disambiguate classes
even if they had absolutely no knowledge about the task at first.
Training on demand appears to help even further.

Second, data items should be assigned to users according to
their acquired skills. This allows non-experts to obtain the same
success rate as experts.

Finally, a generalized version of the Variational Bayesian
Independent Classifier Combination introduced in [31] better
takes into account the uncertainty introduced by sparse data.
The sparseness arises because annotators only train on a very
small subset of the thousands of specialized classes. Therefore,
only partial knowledge is available.

Overall, our experiments clearly show the effectiveness of our
framework for achieving correct predictions of complex tasks
such as plant identification.

Future work may address the problem of how to continuously
train the CNN based on the newly validated data and how to
improve users training through more accurate modeling of their
learning capacity and forgetfulness.

APPENDIX

A. Variational Model

This family of models is used to approximate the computation
of intractable integrals. In our particular context, it consists in
finding a tractable distribution q minimizing the KL divergence
with respect to the true posterior distribution

DKL (P ||Q) =
∫
q(z)log q(z )

p(z |x)

=
∫
q(z)log q(z )

p(z ,x) + log p(x)

log p(x) = DKL (P ||Q) + L(Q) (4)

whereL(Q) is called the variational free energy. The distribution
q(Z) is generally assumed to factorize among its latent variables
and parameters

q(Z) =
M∏

i=1

qi(Zi |X). (5)

It can be shown using the calculus of variations that the best
form of q is as follows:

log qi(Zi |X) = Ej �=i [log p(Z,X)] + const. (6)

When developing this equation, the fact that the priors are cho-
sen to be conjugated imply that qi(Zi) will actually decompose
to the same form as its true posterior. Then, circular depen-
dencies will appear among the different variational equations.

These dependencies actually describe the algorithm that will
iterate until convergence. Convergence can be evaluated using
the variational free energy.

Recall that the joint probability of our model is

p(κ,Π, t, c, θ|A,B, ν) =
N∏

i=1

{

κti

K∏

k=1

π
(k)

ti ,c
(k )
i

}

p(κ|ν)

· p(Π|θ)p(θ|A,B). (7)

Similarly to other variational Bayesian approaches (cf.
Appending VIII-A), the form of our variational approach fac-
torizes in the following way:

q(κ, t,Π, θ) = q(t)q(κ)q(Π)q(θ). (8)

As we chose a nonconjugate prior over the Dirichlet used to
generate the confusion matrices of each annotator, it is however
non trivial to determine all the variational equations as in the
classical case.

B. Items and Classes Distributions (Conjugate Branch of the
Network)

Each part of this equation will now be evaluated, starting with
the estimator of q(t)

log q�(t) = Eκ,Π[log p(κ, t,Π, c)] + const. (9)

For simplification and similarly to Simpson et al. [31], we use
the following notation:

log ρi,j = Eκj ,πj [log p(κj , ti , πj , ci)]

= Eκj [log κj ] +
K∑

k=1

Eπj

[
log π(k)

j,c
(k )
i

]
. (10)

Based on ρ, the probability of a true label given an object i can
be estimated in the following way:

q�(ti = j) = Et [ti = j] =
ρi,j

∑J
ι=1 ρi,ι

. (11)

Equation (11) is the typical posterior probability of ti .
For simplification we use the following notations:

Nj =
N∑

i=1

Et [ti = j] (12)

which corresponds to the expected number of occurrences of
each true class. Similarly, we compute the expected number of
rejects (i.e. the parameters β) and of accepts (i.e. the parameters
α) in each true class per user

N
(k)
j l =

N∑

i=1

δ
c

(k )
i l

Et [ti = j] (13)

where δ
c

(k )
i l

is the dirac function which equals 1 when c(k)
i = l.

The development of q�(κ) follows what Simpson et al. pro-
posed using the fact that κ is generated through a Dirichlet
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distribution:

log q�(κ) = Et

⎡

⎣
N∑

i=1

J∑

j=1

log κti ,j

⎤

⎦+ log p(κ|ν0) + const

=
J∑

j=1

Nj log κj +
J∑

j=1

(ν0,j − 1)log κj + const

=
J∑

j=1

(Nj + ν0,j − 1)log κj + const. (14)

We can see in (14) that we obtain a posterior Dirichlet
distribution

q�(κ) ∝ Dir(κ|ν1 , ..., νJ ) (15)

where ν is updated in the following manner:

νj = ν0,j +Nj . (16)

We can now compute the expectation of log κj

E[log κj ] = ψ(νj ) − ψ

(
L∑

ι=1

νι

)

(17)

where ψ is the digamma function.

C. Users Distributions (Nonconjugate Branch of the Network)

In order to approximate the posterior distribution of the pa-
rameters θ using Laplace method, several assumptions are nec-
essary as presented in [37].

1) First, θmust be real valued which is the case in our context
and p(θ|A,B) must be twice differentiable with respect
to θ which is the case of the gamma distribution.

2) Second, p(π(k)
j |θ(k)

j ) must be in the exponential family,
which is the case of the Dirichlet distribution and therefore
can be expressed as

p(π(k)
j |θ(k)

j )

= h(π(k)
j )exp{η(θ(k)

j )T t(π(k)
j ) − a(η(θ(k)

j ))} (18)

where h(π(k)
j ) is a function called base measure, t(π(k)

j )

is the sufficient statistic, η(θ(k)
j ) is the natural parameters

and a(η(θ(k)
j )) is the log partition function. η(θ(k)

j ) is
assumed to be twice differentiable: this is the case of the
Dirichlet. In our context, this elements take the following
values:

1) h(π(k)
j ) = 1

2) t(π(k)
j ) = [log π(k)

j1 , ..., log π(k)
jJ ]T

3) η(θ(k)
j ) = [θ(k)

j1 − 1, ..., θ(k)
jJ − 1]T

3) a(η(θ(k)
j )) =

∑
i logΓ(θ(k)

j i ) − logΓ(
∑

i θ
(k)
j i ).

3) Finally, we also assume p(c(k)
i = j|π(k

j )) to be in the ex-
ponential family which is the case of the multinomial

p(c(k)
i = j|π(k

j )

= h(c(k)
i )exp{η(π(k)

j )T t(c(k)
i ) − a(η(π(k)

j ))} (19)

where the important parameters can be described as
follows:

1) t(c(k)
i ) = [c(k)

i = 1, ..., c(k)
i = J ]T

2) η(π(k)
j ) = [log π(k)

j1 , ..., log π(k)
jJ ]T

3) a(η(π(k)
j )) = 0.

Notice that η(π(k)
j ) = t(π(k)

j ). Thus (19) can be reformu-
lated as follows:

p
(
c
(k)
i = j|πkj

)
= h

(
c
(k)
i

)
exp

{
t
(
π

(k)
j

)T
t
(
c
(k)
i

)
.

(20)
We now estimate q�(θ) using Laplace method such as pre-

sented in [37]

q�
(
θ

(k)
j

)
∝ exp

{

η
(
θ

(k)
j

)T
E
π

(k )
j

[
t
(
π

(k)
j

)]

− a
(
η
(
θ

(k)
j

))
+ log p

(
θ

(k)
j

)
}

∝ exp

{

f
(
θ

(k)
j

)
}

(21)

f
(
θ

(k)
j

)
� η

(
θ

(k)
j

)T
E
π

(k )
j

[
t
(
π

(k)
j

)]

− a
(
η
(
θ

(k)
j

))
+ log p

(
θ

(k)
j

)
(22)

We can now approximate f using the second-order Taylor
approximation around the value of θ(k)

j that maximizes the func-

tion which we note
̂
θ

(k)
j

f
(
θ

(k)
j

)
≈ f

(
̂
θ

(k)
j

)
+ ∇f

(
̂
θ

(k)
j

)(
θ

(k)
j −̂θ(k)

j

)

+
1
2

(
θ

(k)
j −̂θ(k)

j

)T
∇2f

(
̂
θ

(k)
j

)(
θ

(k)
j −̂θ(k)

j

)
.

(23)

Notice that since
̂
θ

(k)
j maximizes f , then ∇f(

̂
θ

(k)
j ) = 0.

Then

q�
(
θ

(k)
j

)
∝ exp

{

f

(
̂
θ

(k)
j

)
+

1
2

(
θ

(k)
j −̂θ(k)

j

)T

×∇2f

(
̂
θ

(k)
j

)(
θ

(k)
j −̂θ(k)

j

)}

(24)

q�
(
θ

(k)
j

)
≈ N

(
̂
θ

(k)
j ,−∇2f

(
̂
θ

(k)
j

)−1
)

. (25)

The Gaussian form of our approximation results from the Taylor
approximation. Recall that we did the approximation around the

value
̂
θ

(k)
j which maximizes the function f . Thus we still need
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to compute
̂
θ

(k)
j . To do so, we first develop f

f(θ(k)
j ) = (θ(k)

j )T E
π

(k )
j

[t(π(k)
j )]

−
(
∑

i

logΓ
(
θ

(k)
j i

)
−
(

logΓ
(∑

i

θ
(k)
j i

))

+
∑

i

{
α

(k)
j i log θ(k)

j i − β
(k)
j i θ

(k)
j i

}
(26)

where

E
π

(k )
j

[
t
(
π

(k)
j

)

l

]
= ψ

(
π

(k)
j l

)
− ψ

(
∑

i

π
(k)
j i

)

. (27)

Here, we use a numerical method (i.e. Gradient Descent) to find
̂
θ

(k)
j .

Once
̂
θ

(k)
j has been estimated, we can develop q�(π(k)

j )

log q�
(
π

(k)
j

)
= log p

(
c(k) |t = j, πj

)
+ log h

(
π

(k)
j

)

+ E
θ

(k )
j

[
η
(
θ

(k)
j

)]T
t
(
π

(k)
j

)
+ C (28)

which can be reformulated using (20) as

q�
(
π

(k)
j

)
∝ h

(
π

(k)
j

)
exp

{(
η
(
θkj
))

+ tc)T t
(
π

(k)
j

)}
(29)

q
(
π

(k)
j

)
= Dir

(
π

(k)
j |θ(k)

j1 , ..., θ
(k)
jJ

)
(30)

where

θ
(k)
j l = θ̂

(k)
j l +N

(k)
j l . (31)

D. Sparsity Discussion

In this subsection, we present how we dealt with data sparsity
to speed up the inference’s algorithm. As a preliminary, one
should consider that all variables are initialized with default
value superior to 0 to avoid wrong inferences (e.g. an annotator
never confused two classes but start to confuse them at some
point).

First, in Π, some confusions do not exist. Thus, if we only
need to compute the probabilities π(k)

j,l on existing confusion as
they will be the only one useful when inferring the true class of
an item i.

Second, when estimating θ, the problem is more complex
as we proceed to a maximization to find its value. Hence, the
solution is to factorize all sparse cells in (26). Then, since all
this cells will end up with the same value, we can consider them
as a single variable:

A sparse matrix implementation may consider default values
for sparse cells on each line and benefit from this optimization.
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